-
山东省是我国的渔业大省,海洋资源丰富,水域滩涂辽阔,有着巨大的开发潜力,水产品总产量、渔业经济总产值位居全国前列. 从水产养殖面积构成来看,目前山东海水养殖面积远超淡水养殖面积. 2018年以来,山东省海水养殖面积占总面积的比重维持在70%以上;到2020年海水养殖面积为580.35千公顷,占总面积的77.9%,可见海水养殖在山东省的经济发展中占据重要地位[1]. 传统的粗放式养殖模式对水体造成的污染越来越严重,不利于水产养殖业的可持续发展,而循环水养殖系统具有高效、节水、节能、减排等优点,成为当前最具前景的养殖模式之一,对渔业绿色可持续发展有着突出贡献,并且现阶段循环水的健康养殖将是水产养殖产业绿色高质量发展及实现绿色水产品的重要途径. 2021年中央一号文件中明确指出,推进水产品绿色健康养殖,要加强农产品和食品安全监管,发展绿色、有机农产品.
有些重金属元素进入水体时,生物会通过摄取、吸附与积累等过程,对重金属进行传递和富集,最终造成水产品的重金属污染,再通过食物链富集传递给人类,一旦食用污染的水产品,长期积累将引起器官中毒,威胁人体健康. 重金属不仅会损害人体的神经系统、肝脏、肾脏和其他解毒器官,还会导致免疫系统的削弱,甚至诱发癌症[2]. 循环水养殖系统中虽然对养殖废水进行了一系列循环处理,但由于该系统水体交换率低且几乎封闭循环的特性,仍存在一定的风险性[3]. 如果对于源水的处理不够完善,养殖用水也会受到污染,加上投喂饲料等影响因素也可能有一定累积风险,重金属等危害物质一旦进入循环水养殖系统,就不容易被排出,从而导致养殖生物体内重金属的累积,直接捕捞食用可能会出现至关重要的食品安全问题[4-5].
国内外关于水产品重金属污染的研究主要集中在近岸海域、池塘淡水的人工养殖以及捕捞野生的水产品等方面 [6],关于循环水养殖系统中水产品的重金属等污染风险以及评估的研究较少. 本文选取山东省烟台市某水产公司海水循环水养殖系统中的重要经济鱼类牙鲆(Paralichthys olivaceus)和珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂)作为研究对象进行重金属检测分析,了解系统中水体、鱼体的重金属分布特征,并采用单因子污染指数法、综合污染指数法、目标危险系数法评估其重金属污染程度和重金属污染的健康风险,为循环水养殖产业绿色可持续发展和模式的优化提供科技支撑. 同时,为食用此养殖企业循环水系统中牙鲆和珍珠龙胆石斑鱼的居民提供食品安全的数据,对居民身体的健康保障也具有重要意义.
循环水养殖系统重金属的分布特征及鱼体风险评估
Distribution characteristics of heavy metals in recirculating aquaculture system and risk assessment of fish
-
摘要: 为研究海水循环水养殖系统中水体及养殖鱼体重金属的分布特征和评估鱼体的污染状况及健康风险,本文以2021年山东省烟台市某水产公司两个海水循环水养殖系统中15个站点的水样和不同生长周期的牙鲆、珍珠龙胆石斑鱼(Paralichthys olivaceus、Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂)为研究对象,选用原子吸收光谱法和原子荧光光谱法测定分析其中重金属铜(Cu)、铅(Pb)、锌(Zn)、镉(Cd)、汞(Hg)和砷(As)的含量,并评估鱼体重金属的污染状况和健康风险. 结果显示,循环水养殖系统水体的重金属含量均未超标,在生物体中的含量均符合国家限量标准. 水体中Cu、Zn含量最大,Pb、Cd含量在9月最高,微滤机净化池水中的Pb含量大,Hg、Cu含量为6月最高,As含量为10月最大,水体中重金属含量可能与换水率、季节变化等情况有关. 鱼体中牙鲆和珍珠龙胆石斑鱼重金属含量均表现为Zn>Cu>As>Pb>Cd>Hg,Cu、Zn 作为鱼类生长的必要微量元素其含量最大;同一鱼体的重金属含量在不同生长周期存在显著差异,不同种类鱼体重金属含量均值差异显著(Hg除外). 根据综合污染指数法,鱼体肌肉内的重金属污染状况均属于无污染清洁状态,目标危险系数证明其膳食暴露风险都较低. 综合表明,此循环水养殖系统中的水体和鱼体是安全的,人类食用此系统中的鱼体不会存在相关风险.Abstract: In order to study the distribution characteristics of heavy metals in water body and cultured fish of the seawater recirculating aquaculture system and evaluate the pollution status and health risk of fish, this paper selected the water samples from 15 sites in two seawater recirculating aquaculture system and the Paralichthys olivaceus and Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂ with different growth period of an aquaculture company in Yantai City, Shandong Province in 2021 as the research objects. Atomic absorption spectrometry and atomic fluorescence spectrometry were used to determine and analyze the contents of copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), mercury (Hg) and arsenic (As), and we also evaluated the pollution status and health risks of heavy metals in fish. The results showed that the content of heavy metals in water body of the recirculating aquaculture system did not exceed the standard, and the content in organisms met the national limit standard. The content of Cu and Zn in water body were the highest, and the content of Pb and Cd were highest in September. The content of Pb was high in the water of the microfilter purification pool, the content of Hg and Cu were highest in June, and the content of As was highest in October. The content of heavy metals in water body may be related to the water exchange rate, seasonal changes, etc. The contents of heavy metals in Paralichthys olivaceus and Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂ were all followed the order: Zn>Cu>As>Pb>Cd>Hg, Cu and Zn were the essential trace elements for fish growth and their contents were the highest. The content of heavy metals in the same fish had significant differences in different growth period, and the mean content of heavy metals in different kinds of fish has significant differences (except Hg). According to the comprehensive pollution index method, the heavy metal in the muscle of fish belonged to the clean state without pollution. The method of target risk coefficient proved that the dietary exposure risk of fish was low. The comprehensive results showed that the water body and fish body in this circulating aquaculture system were safe, and there was no risk associated for human to eat the fish in this system.
-
Key words:
- recirculating aquaculture /
- heavy metals /
- fish /
- risk assessment.
-
表 1 牙鲆重金属含量(mg·kg−1)
Table 1. Contents of heavy metals in Paralichthys olivaceus
重金属含量/(mg·kg−1)
Heavy metals content5月
May6月
June9月
September10月
October平均值
AverageCu 0.165±0.054 0.200±0.020 0.216±0.029 0.153±0.009 0.184 Pb 0.043±0.008 0.025±0.004 0.024±0.007 0.026±0.007 0.030 Zn 2.597±0.503 3.220±1.076 2.734±0.336 3.892±0.144 3.110 Cd 0.002±0.000 0.006±0.004 0.003±0.001 0.003±0.000 0.003 Hg 0.001±0.001 0.001±0.001 0.000±0.000 0.000±0.000 0.001 As 0.005±0.001 0.036±0.009 0.058±0.016 0.046±0.004 0.036 表 2 珍珠龙胆石斑鱼重金属含量(mg·kg−1)
Table 2. Contents of heavy metals in Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂
重金属含量/(mg·kg−1)
Heavy metals content5月
May6月
June9月
September10月
October平均值
AverageCu 0.247±0.014 0.086±0.047 0.286±0.007 0.424±0.071 0.261 Pb 0.046±0.024 0.018±0.013 0.018±0.001 0.021±0.001 0.026 Zn 2.950±0.101 4.707±1.901 3.972±0.249 2.424±1.392 3.512 Cd 0.004±0.000 0.004±0.003 0.001±0.000 0.001±0.000 0.002 Hg 0.000±0.000 0.001±0.000 0.000±0.000 0.000±0.000 0.001 As 0.040±0.013 0.001±0.000 0.070±0.048 0.037±0.003 0.053 表 3 不同生长模式下牙鲆中重金属含量对比
Table 3. Comparison of metal contents in Paralichthys olivaceus body weight under different growth modes
模式
Pattern重金属含量/(mg·kg−1)
Heavy metal contentPb Cd Cu 循环水养殖
Circulating aquaculture0.030 0.003 0.184 近海养殖
Inshore aquaculture0.260 0.030 1.630 近海野生
Inshore wild0.250 0.030 1.670 表 4 4个月的重金属单因子污染指数(Pi)和综合污染指数(P综)
Table 4. Single factor pollution index (Pi) and comprehensive pollution index (P综)
Cu Pb Zn Cd Hg As P综 牙鲆(Paralichthys olivaceus) 5月 0.003 0.087 0.065 0.020 0.002 0.050 0.354 6月 0.004 0.051 0.081 0.039 0.002 0.360 0.474 9月 0.004 0.048 0.068 0.030 0.001 0.580 0.592 10月 0.003 0.052 0.097 0.027 0.000 0.460 0.532 Pi平均 0.004 0.059 0.078 0.029 0.002 0.360 0.474 珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) 5月 0.005 0.092 0.074 0.040 0.001 0.400 0.500 6月 0.002 0.037 0.118 0.035 0.002 0.010 0.276 9月 0.006 0.036 0.099 0.013 0.001 0.430 0.514 10月 0.008 0.042 0.061 0.006 0.001 0.370 0.475 Pi平均 0.005 0.050 0.088 0.023 0.002 0.300 0.435 表 5 单一(THQ)及复合(TTHQ)重金属摄入的健康风险指数
Table 5. Health risk index of single (THQ) and complex (TTHQ) heavy metal intake
Cu Pb Zn Cd Hg As TTHQ 牙鲆(Paralichthys olivaceus) 5月 0.0074 0.0222 0.0155 0.0036 0.0004 0.0030 0.0520 6月 0.0090 0.0130 0.0192 0.0070 0.0004 0.0215 0.0700 9月 0.0097 0.0123 0.0163 0.0054 0.0002 0.0556 0.0995 10月 0.0069 0.0132 0.0233 0.0048 0.0001 0.0275 0.0757 THQ平均 0.0082 0.0152 0.0186 0.0052 0.0004 0.0269 0.0744 珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) 5月 0.0110 0.0024 0.0176 0.0072 0.0001 0.0239 0.0622 6月 0.0039 0.0010 0.0281 0.0063 0.0004 0.0006 0.0402 9月 0.0128 0.0009 0.0237 0.0023 0.0001 0.0257 0.0656 10月 0.0190 0.0011 0.0145 0.0011 0.0001 0.0221 0.0579 THQ平均 0.0117 0.0013 0.0210 0.0041 0.0004 0.0179 0.0564 -
[1] 2020年全国渔业经济统计公报[J]. 中国水产, 2021(8): 11-12. Statistical bulletin of national fishery economy in 2020[J]. China Fisheries, 2021(8): 11-12(in Chinese).
[2] 蔡深文, 倪朝辉, 刘斌, 等. 赤水河主要经济鱼类重金属含量及风险评价 [J]. 淡水渔业, 2017, 47(3): 105-112. doi: 10.3969/j.issn.1000-6907.2017.03.016 CAI S W, NI Z H, LIU B, et al. Concentration and risk assessment of heavy metals in the main economic fishes from Chishui River [J]. Freshwater Fisheries, 2017, 47(3): 105-112(in Chinese). doi: 10.3969/j.issn.1000-6907.2017.03.016
[3] 万慧珊, 程波, 宋晓红, 等. 循环水养殖欧洲鲈鱼(Dicentrarchus labrax)重金属污染状况与富集分布特征 [J]. 渔业科学进展, 2017, 38(5): 83-91. doi: 10.11758/yykxjz.20160826001 WAN H S, CHENG B, SONG X H, et al. Contamination and accumulation of heavy metals in Dicentrarchus labrax cultured in recirculating aquatic systems [J]. Progress in Fishery Sciences, 2017, 38(5): 83-91(in Chinese). doi: 10.11758/yykxjz.20160826001
[4] SALAM M A, DAYAL S R, SIDDIQUA S A, et al. Risk assessment of heavy metals in marine fish and seafood from Kedah and Selangor coastal regions of Malaysia: A high-risk health concern for consumers [J]. Environmental Science and Pollution Research, 2021, 28(39): 55166-55175. doi: 10.1007/s11356-021-14701-z [5] HAN J L, PAN X D, CHEN Q, et al. Health risk assessment of heavy metals in marine fish to the population in Zhejiang, China [J]. Scientific Reports, 2021, 11: 11079. doi: 10.1038/s41598-021-90665-x [6] 王炫凯, 赵彤, 岳扬, 等. 循环水养殖红鳍东方鲀的重金属污染状况与健康风险评价[J]. 大连海洋大学学报. DOI:10.16535/j.cnki.dlhyxb.2021-280. WANG X K, ZHAO T, YUE Y, et al. Heavy metals contamination and health risk assessment in recirculating aquaculture Takifugu rubripes[J]. Journal of Dalian Ocean University,DOI:10.16535/j.cnki.dlhyxb.2021-280 (in Chinese).
[7] NAUEN C E, . Compilation of legal limits for hazardous substances in fish and fishery products[C]. FAO Fisheries Circular, 1983. [8] 中华人民共和国卫生部. GB 2762—2017 食品安全国家标准 食品中污染物限量(S). 北京: 中国标准出版社, 2017. Ministry of Health of PRC. GB 2762—2017 National food safety standard-Maximum levels of contaminants in foods(S). Beijing: China Standards Press, 2017(in Chinese).
[9] GAO Y, FANG L, XIANG Q Q, et al. Ecological risk assessment of heavy metals in fish from the Dianchi Lake, China using the integrated biomarker response approach [J]. Environmental Science and Pollution Research, 2020, 27(36): 45712-45721. doi: 10.1007/s11356-020-10434-7 [10] LIU J H, CAO L, DOU S Z. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China [J]. Marine Pollution Bulletin, 2017, 117(1/2): 98-110. [11] 罗钦, 吴建衍, 潘葳. 3种养殖淡水鱼重金属含量测定及健康风险评价 [J]. 食品安全质量检测学报, 2020, 11(18): 6568-6574. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.18.056 LUO Q, WU J Y, PAN W. Determination of heavy metal content of 3 kinds of cultured freshwater fish and health risk assessment [J]. Journal of Food Safety & Quality, 2020, 11(18): 6568-6574(in Chinese). doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.18.056
[12] 刘洋, 林彩, 陈金民, 等. 南海游泳动物重金属含量特征及风险评价 [J]. 海洋环境科学, 2021, 40(3): 401-406,416. doi: 10.12111/j.mes.20200110 LIU Y, LIN C, CHEN J M, et al. Distribution and risk assessment of heavy metal in nekton of South China Sea [J]. Marine Environmental Science, 2021, 40(3): 401-406,416(in Chinese). doi: 10.12111/j.mes.20200110
[13] 盛蒂, 朱兰保. 蚌埠市场食用鱼重金属含量及安全性评价 [J]. 食品工业科技, 2014, 35(22): 49-52,56. doi: 10.13386/j.issn1002-0306.2014.22.001 SHENG D, ZHU L B. Heavy metal content and safety evaluation of fish in Bengbu market [J]. Science and Technology of Food Industry, 2014, 35(22): 49-52,56(in Chinese). doi: 10.13386/j.issn1002-0306.2014.22.001
[14] 白晨, 郝天琦, 赵心悦, 等. 辽西沿海地区4种海鱼重金属富集特征与污染风险评价 [J]. 现代畜牧兽医, 2021(3): 70-73. BAI C, HAO T Q, ZHAO X Y, et al. Bioaccumulation characteristics and pollution risk assessment of four marine fishes in the coastal area of western Liaoning [J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2021(3): 70-73(in Chinese).
[15] 中华人民共和国国家卫生和计划生育委员会. 中国居民营养与慢性病状况报告(2015) (R). 中华人民共和国国家卫生健康委员会, 2015. National Health and Family Planning Commission of PRC. Report on nutrition and chronic diseases of Chinese residents (2015) (R). National Health Commission of the People's Republic of China, 2015(in Chinese).
[16] 郑娜, 王起超, 郑冬梅. 基于THQ的锌冶炼厂周围人群食用蔬菜的健康风险分析 [J]. 环境科学学报, 2007, 27(4): 672-678. doi: 10.3321/j.issn:0253-2468.2007.04.022 ZHENG N, WANG Q C, ZHENG D M. Health risk assessment of heavy metals to residents by consuming vegetable irrigated around zinc smelting plant based THQ [J]. Acta Scientiae Circumstantiae, 2007, 27(4): 672-678(in Chinese). doi: 10.3321/j.issn:0253-2468.2007.04.022
[17] 张晓文, 邵柳逸, 连宾. 4种太湖水产品体内重金属富集特征及食用安全性评价 [J]. 食品科学, 2018, 39(2): 310-314. doi: 10.7506/spkx1002-6630-201802049 ZHANG X W, SHAO L Y, LIAN B. Accumulation characteristics and safety evaluation of heavy metals in four kinds of aquatic products from lake Taihu [J]. Food Science, 2018, 39(2): 310-314(in Chinese). doi: 10.7506/spkx1002-6630-201802049
[18] LACERDA L D, SANTOS J A, MADRID R M. Copper emission factors from intensive shrimp aquaculture [J]. Marine Pollution Bulletin, 2006, 52(12): 1823-1826. doi: 10.1016/j.marpolbul.2006.09.012 [19] SOW A Y, ISMAIL A, ZULKIFLI S Z, et al. Survey on heavy metals contamination and health risk assessment in commercially valuable Asian swamp eel, Monopterus albus from Kelantan, Malaysia [J]. Scientific Reports, 2019, 9: 6391. doi: 10.1038/s41598-019-42753-2 [20] 车琳萍, 上官魁星, 于彩芬. 辽东湾北部近海渔业水域中重金属污染的季节和年际变化 [J]. 河北渔业, 2018(5): 44-49. doi: 10.3969/j.issn.1004-6755.2018.05.013 CHE L P, SHANGGUAN K X, YU C F. Seasonal and interannual changes of heavy metal pollution in offshore fishery waters of northern Liaodong Bay [J]. Hebei Fisheries, 2018(5): 44-49(in Chinese). doi: 10.3969/j.issn.1004-6755.2018.05.013
[21] 杨冬梅. 铬与人体健康 [J]. 科技创新导报, 2008, 5(30): 179. doi: 10.3969/j.issn.1674-098X.2008.30.176 YANG D M. Chromium and human health [J]. Science and Technology Innovation Herald, 2008, 5(30): 179(in Chinese). doi: 10.3969/j.issn.1674-098X.2008.30.176
[22] 吴伟, 范立民. 水产养殖环境的污染及其控制对策 [J]. 中国农业科技导报, 2014, 16(2): 26-34. doi: 10.13304/j.nykjdb.2014.076 WU W, FAN L M. Pollution and control measures of aquaculture environment [J]. Journal of Agricultural Science and Technology, 2014, 16(2): 26-34(in Chinese). doi: 10.13304/j.nykjdb.2014.076
[23] 吴丹, 张小军, 曾军杰, 等. 嵊泗区域贻贝重金属污染研究及健康风险评估 [J]. 安徽农业科学, 2021, 49(22): 164-169. doi: 10.3969/j.issn.0517-6611.2021.22.041 WU D, ZHANG X J, ZENG J J, et al. The pollution and health risk assessment of heavy metals in mussels in Shengsi area [J]. Journal of Anhui Agricultural Sciences, 2021, 49(22): 164-169(in Chinese). doi: 10.3969/j.issn.0517-6611.2021.22.041
[24] 王明华, 王桂忠, 李少菁. 重金属在海洋甲壳动物中的吸收和代谢[J]. 福建农业学报, 2005, 20(S1): 51-56. WANG M H, WANG G Z, LI S J. Assimilation and metabolism of heavy metals in marine crustacean[J]. Fujian Journal of Agricultural Sciences, 2005, 20(Sup 1): 51-56(in Chinese).
[25] WEI Y H, ZHANG J Y, ZHANG D W, et al. Metal concentrations in various fish organs of different fish species from Poyang Lake, China [J]. Ecotoxicology and Environmental Safety, 2014, 104: 182-188. doi: 10.1016/j.ecoenv.2014.03.001 [26] USMAN Y M, NASIRU Y P, MODIBBO U U. Health risk assessment on humans by contamination of heavy metals in some edible crops and fish at Galena mining area of Nahuta, Alkaleri Local Government Area, Bauchi State, Nigeria [J]. African Journal of Pure and Applied Chemistry, 2020, 14(3): 42-50. doi: 10.5897/AJPAC2019.0814 [27] 徐笠, 陆安祥, 王纪华. 温度变化对重金属植物有效性影响的研究进展 [J]. 江苏农业科学, 2016, 44(10): 26-30. doi: 10.15889/j.issn.1002-1302.2016.10.006 XU L, LU A X, WANG J H. Research progress on the effect of temperature change on the availability of heavy metal plants [J]. Jiangsu Agricultural Sciences, 2016, 44(10): 26-30(in Chinese). doi: 10.15889/j.issn.1002-1302.2016.10.006
[28] 张小磊, 王晶晶, 安春华, 等. 郑州沿黄地区养殖鱼类中重金属污染与健康风险评价 [J]. 生态环境学报, 2018, 27(2): 350-355. doi: 10.16258/j.cnki.1674-5906.2018.02.020 ZHANG X L, WANG J J, AN C H, et al. Pollution characteristics and health risk assessment of heavy metals in cultured fish species along the Yellow River in Zhengzhou [J]. Ecology and Environmental Sciences, 2018, 27(2): 350-355(in Chinese). doi: 10.16258/j.cnki.1674-5906.2018.02.020
[29] LE N D, HOANG T T H, PHUNG V P, et al. Evaluation of heavy metal contamination in the coastal aquaculture zone of the Red River Delta (Vietnam) [J]. Chemosphere, 2022, 303: 134952. doi: 10.1016/j.chemosphere.2022.134952 [30] 王际英, 马晶晶, 李宝山, 等. 野生与人工养殖褐牙鲆亲鱼微量元素组成的差异比较 [J]. 渔业科学进展, 2012, 33(2): 29-34. doi: 10.3969/j.issn.1000-7075.2012.02.005 WANG J Y, MA J J, LI B S, et al. A comparison study of trace elements in wild and cultured Japanese flounder Paralichthys olivaceus [J]. Progress in Fishery Sciences, 2012, 33(2): 29-34(in Chinese). doi: 10.3969/j.issn.1000-7075.2012.02.005
[31] HASAN M, RAHMAN M, AHMED A A, et al. Heavy metal pollution and ecological risk assessment in the surface water from a marine protected area, Swatch of No Ground, north-western part of the Bay of Bengal [J]. Regional Studies in Marine Science, 2022, 52: 102278. doi: 10.1016/j.rsma.2022.102278