-
生物炭(biochar,BC)是生物质在限氧条件下热解(<700 ℃)形成的固态的、难熔的、高度芳香化的富含碳的材料[1],被广泛用于固碳[1-2]、土壤改良[3-4]、水体和土壤污染修复[5]等领域. 溶解性黑碳(dissolved black carbon,DBC)是BC中可溶于水的具有稠环芳烃结构的组分[6]. BC的大规模施用导致DBC释放[7],并通过灌溉、渗透、地表径流在环境中迁移[8]. 相比于BC,DBC具有较小的芳香微域结构和更多的羧基和羟基官能团[8-9],有更高的反应活性和更强的环境迁移能力[9]. 据估计,DBC全球河流通量每年可达2650万t,占河流进入海洋溶解有机碳通量的10%,是陆地BC输入海洋的一个重要来源[6, 10]. DBC的芳香微域结构是有机物和重金属吸附/络合的高能位点[9],会影响污染物的吸附、迁移、转化等关键环境过程[8]. DBC富含的羧基和羟基官能团是其在氧化-还原反应中的重要电子来源[8],参与有机污染物的光化学转化过程[10-11]. 原料和热解温度(heating temperature,HTT)是影响BC性质和用途的关键因素,也必然决定了DBC的结构特征和环境行为[12]. 研究发现,木质素含量较高的稻壳制备的BC芳香性和产量显著高于低木质素含量的甘蔗所制备的BC[3]. 另外,相比于低温(<500 ℃)制备的BC,高温(>500 ℃)BC往往具有更高的芳香性、灰分和pH[5]. 因此,深入理解水环境中不同原料和HTT的DBC与有机污染物的相互作用,有助于更好地预测BC施用环境中污染物的环境行为和评估污染物的生态风险.
光化学转化是影响水环境中有机污染物环境归趋的重要过程[13]. 水环境中光敏剂的分子结构(芳香性结构和分子大小)和环境条件(pH和盐离子)等是影响光降解的重要因素[14]. 与水环境中天然溶解有机质(natural organic matter,NOM)相比,人工来源的DBC稠环度高,芳香性强,分子量较小,这使其具有更高的光电转化效率[8, 15],更易产生羟基自由基(·OH)、单线态氧(1O2)和激发三重态DBC(3DBC*)等活性中间体(reactive intermediates,RIS)[10]. DBC的这些特性导致其对水环境中有机污染物的光降解过程的影响较NOM更为复杂[16]. 研究发现,DBC促进了塑化剂(如邻苯二甲酸二乙酯)[16]、杀虫剂(如吡虫啉)[12]、个人护理品(如阿替洛尔)[15]和性激素(如17-β雌二醇)[10]等多种有机污染物的光降解. 然而,腐殖酸(humic acid, HA)(DBC的重要组成部分)也可能会因遮光效应抑制有机物的光降解[13]. 可见,DBC参与的水环境中有机污染物的降解过程仍然存在不确定性.
新污染物是指由人类活动造成的,但尚无法律法规和标准规定或规定不完善的,危害人体健康和生态环境的污染物,主要包括环境内分泌干扰物、全氟化合物、微塑料和抗生素(antibiotics, ATs)四大类[17],而我国对于新污染物的毒理学风险评估、替代技术开发的方面还有局限性. ATs是一类由微生物分泌、化学合成或半合成的化合物,因其对微生物生长代谢的抑制而被广泛应用于医疗、畜牧业、水产养殖等领域[18]. 四环素(tetracycline, TC)因其广谱抗菌性和低廉的价格成为使用量最大的ATs之一. 2015年,全球TC使用量达6万t[19],这也导致TC在地表水、地下水和饮用水等水环境中被广泛检出,含量为ng·L−1—μg·L−1[20-21]. TC对水生动物(水生植物、浮游动物和鱼类)具有较强的生物急性毒性,能够抑制藻类和水生植物叶绿素的合成[22-23]、促进氧化应激反应的产生,影响浮游动物和鱼类的生长发育[22],同时TC还能够破坏水体微生物群落结构[21],损害水生生态系统的结构和功能[24]. 另外,ATs的长期暴露能够促进抗生素抗性基因的传播扩散,增加人体对ATs的抗药性[25],对人体健康产生极大的威胁[18, 26]. ATs在水环境中的光降解过程引起了广泛关注[13]. ATs的光降解主要受ATs种类[15]、环境条件(pH、盐离子)[27]、光敏剂(NOM、DBC)[10]等影响. 目前,水环境中DBC存在时,ATs的光降解研究以往主要集中在单一HTT制备的DBC对ATs光降解的影响上[13, 28],很少涉及不同原料和HTT的DBC对TC光降解的影响.
本研究以不同HTT(300—600 ºC)制备的湿地植物芦苇(Phragmites australis)和芦竹(Arundo donax)BC为原料提取DBC,探究HTT对DBC理化性质及结构特征的影响,系统研究了不同HTT的DBC对水环境中典型ATs TC的光降解的影响,并探讨了水中常见离子和pH对TC光降解过程的影响,以期阐明DBC影响TC光降解的主要机制. 研究结果将为评估DBC的环境行为及其对共存有机污染物的环境归趋的预测和生态风险的评估提供理论依据.
溶解性黑碳促进水环境中四环素的光降解
Dissolved Black Carbon Enhanced the Photodegradation of Tetracycline in Aqueous Solution
-
摘要: 具有固碳功能的生物炭材料在土壤修复和水体污染治理中的大规模施用导致了溶解性黑碳的(dissolved black carbon,DBC)的大量释放,其在污染物的环境地球化学过程发挥着重要作用. 相比于天然溶解有机质,DBC稠环度高、芳香性强、分子量小,有更高的光电转化效率,更易产生活性中间体促进有机污染物的光降解. 但不同热解温度(heating temperature,HTT)和生物质类型的DBC对水环境中抗生素(antibiotics, ATs)的光降解影响尚有待深入研究. 本文选取不同HTT(300—600 ℃)的芦苇和芦竹生物炭制备DBC,表征其基本理化性质及结构特征,研究其对水环境中典型ATs四环素(tetracycline, TC)光降解过程的影响,探究关键水环境条件的影响. 结果表明,随着HTT升高,两类DBC的有机碳含量呈先升高后降低趋势,平均分子量呈先降低后增加趋势;芳香性官能团含量增加,芳香性增强,腐殖酸和富里酸类物质含量升高. 所有DBC均促进了TC的光降解(16.3%—97.0%),促进效果随HTT的升高而呈上升趋势. HTT相同时,芦竹DBC对TC光降解的促进效果高于芦苇DBC. 水环境中常见阴离子(NO3−、HCO3−、SO42−、Cl−)及阳离子(Fe3+、Ca2+)均在不同程度上抑制了TC的光降解;碱性(pH 7—11)环境中DBC对TC光降解的促进作用强于酸性(pH 3—5)环境. 活性中间体猝灭实验表明DBC对TC光降解的促进作用主要由三重激发态DBC(3DBC*)主导. 本研究拓展了人们对水环境中DBC环境行为及其对共存ATs归趋的理解,为水环境中ATs环境过程和生态风险的预测提供了理论依据.Abstract: The large-scale application of biochars with the function of carbon sequestration in soil remediation and water pollution control has resulted in the discharges of dissolved black carbon (DBC), which plays an important role in the environmental geochemical process of various pollutants. Compared with natural dissolved organic matter (NOM), DBC with higher condensed degrees, stronger aromaticity, smaller molecular weight, higher photoelectric activity, potentially generates more active intermediates to facilitate the photodegradation of organic pollutants. However, the effects of DBCs produced from different biomass under different heating temperature (HTT) on the photodegradation of antibiotics in water environment was poorly understood. Therefore, the biochars derived from reed and giant reed at 300—600 ℃ were selected to prepare the DBCs, and their basic physical, chemical properties and structural characteristics were also characterized to investigate the effects of DBCs on photodegradation process of typical antibiotic tetracycline (TC) in the water environment, and the influences of related key environmental factors were also considered. With increasing HTT, the organic carbon content of DBC increased first and then decreased, molecular weight decreased first and then increased, the aromaticity, contents of aromatic functional groups, and humic acid and fulvic acid substance increased. All the tested DBCs consistently promoted the photodegradation of TC by 16.3%—97.0%, and the promoting effect was elevated by the increasing HTT. At the same HTT, DBCs derived from giant reed showed a greater promoted effect on the TC photodegradation relative to the DBCs derived from reed. Anions (NO3−, HCO3−, SO42−, Cl−) and cations (Fe3+, Ca2+) that are frequently detected in the water environment generally inhibited the TC photodegradation to the different extent. DBC showed a greater promoted effect on TC degradation in alkaline (pH 7—11) environment than acidic (pH 3—5) environment. The quenching experiment of reactive intermediates revealed that the TC photodegradation by DBC was mainly mediated by the triple excited state DBC (3DBC*). These findings expand our understanding regarding the environmental behavior of DBC and the fate of coexisted ATs in water environment, and provide the theoretical basis for predicting ATs environmental process and ecological risk in water environment.
-
Key words:
- biochar /
- dissolved black carbon /
- heating temperature /
- antibiotics /
- photodegradation /
- reactive intermediates
-
CAS 分子式
Molecular formula溶解度
SolubilitypKa 结构式
Structural formula64-75-5 C22H25ClN2O8 19.7 g·L−1
(25 ℃)pKa1=3.30
pKa2=7.68
pKa3=9.68表 2 DBC的基本物理化学性质
Table 2. Basic physicochemical properties of DBC
DBC TOC/(mg·L−1) pH SUVA254/L·(mgC·m-1)−1 E2/E3 E4/E6 LW300 123 4.25 0.18 3.92 7.17 LW400 152 4.74 0.12 5.01 5.82 LW500 98.9 5.96 0.16 3.67 3.88 LZ300 520 5.66 0.06 6.23 5.48 LZ400 832 5.77 0.02 7.28 15.8 LZ500 451 7.75 0.17 3.81 5.09 LZ600 101 10.2 0.27 4.61 2.00 注:SUVA254为100倍的254 nm处的吸光度和DBC TOC的比值,E4/E6为465 nm处吸光度和665 nm处吸光度的比值,E2/E3为254 nm处吸光度和365 nm处吸光度的比值.
Note: SUVA254 is the ratio of 100 times the absorbance at 254 nm to DBC TOC, E4/E6 is the ratio of the absorbance at 465 nm to 665 nm, E2/E3 is the ratio of the absorbance at 254 nm to 365 nm. -
[1] WANG L W, O'CONNOR D, RINKLEBE J, et al. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications [J]. Environmental Science & Technology, 2020, 54(23): 14797-14814. [2] LEHMANN J, COWIE A, MASIELLO C, et al. Biochar in climate change mitigation [J]. Nature Geoscience, 2021, 14(12): 883-892. doi: 10.1038/s41561-021-00852-8 [3] TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects [J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 191-215. doi: 10.1007/s11157-020-09523-3 [4] HAGEMANN N, JOSEPH S, SCHMIDT H P, et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility [J]. Nature Communications, 2017, 8: 1089. doi: 10.1038/s41467-017-01123-0 [5] IPPOLITO J A, CUI L Q, KAMMANN C, et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review [J]. Biochar, 2020, 2(4): 421-438. doi: 10.1007/s42773-020-00067-x [6] SONG F H, LI T T, SHI Q, et al. Novel insights into the molecular-level mechanism linking the chemical diversity and copper binding heterogeneity of biochar-derived dissolved black carbon and dissolved organic matter [J]. Environmental Science & Technology, 2021, 55(17): 11624-11636. [7] WAGNER S, JAFFÉ R, STUBBINS A. Dissolved black carbon in aquatic ecosystems [J]. Limnology and Oceanography Letters, 2018, 3(3): 168-185. doi: 10.1002/lol2.10076 [8] 彭红波, 杨东, 高鹏, 等. 生物炭中溶解性炭黑的释放及环境效应 [J]. 材料导报, 2020, 34(11): 11029-11034. doi: 10.11896/cldb.19050149 PENG H B, YANG D, GAO P, et al. Releasing and the environmental implications of dissolved black carbon from biochars [J]. Materials Reports, 2020, 34(11): 11029-11034(in Chinese). doi: 10.11896/cldb.19050149
[9] 魏晨辉, 付翯云, 瞿晓磊, 等. 溶解态黑碳的环境过程研究 [J]. 化学进展, 2017, 29(9): 1042-1052. doi: 10.7536/PC170444 WEI C H, FU Y F, QU X L, et al. Environmental processes of dissolved black carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052(in Chinese). doi: 10.7536/PC170444
[10] ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution [J]. Environmental Science & Technology, 2018, 52(18): 10391-10399. [11] FU H Y, WEI C H, QU X L, et al. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications [J]. Environmental Pollution, 2018, 232: 402-410. doi: 10.1016/j.envpol.2017.09.053 [12] ZHANG P, SHAO Y F, XU X J, et al. Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light [J]. Science of the Total Environment, 2020, 724: 137913. doi: 10.1016/j.scitotenv.2020.137913 [13] LI S, HU J Y. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms [J]. Journal of Hazardous Materials, 2016, 318: 134-144. doi: 10.1016/j.jhazmat.2016.05.100 [14] BERTILSSON S, TRANVIK L J. Photochemical transformation of dissolved organic matter in lakes [J]. Limnology and Oceanography, 2000, 45(4): 753-762. doi: 10.4319/lo.2000.45.4.0753 [15] WAN D, WANG J, DIONYSIOU D D, et al. Photogeneration of reactive species from biochar-derived dissolved black carbon for the degradation of amine and phenolic pollutants [J]. Environmental Science & Technology, 2021, 55(13): 8866-8876. [16] FANG G D, LIU C, WANG Y J, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation [J]. Applied Catalysis B:Environmental, 2017, 214: 34-45. doi: 10.1016/j.apcatb.2017.05.036 [17] 王佳钰, 王中钰, 陈景文, 等. 环境新污染物治理与化学品环境风险防控的系统工程 [J]. 科学通报, 2022, 67(3): 267-277. doi: 10.1360/TB-2021-0422 WANG J Y, WANG Z Y, CHEN J W, et al. Environmental systems engineering consideration on treatment of emerging pollutants and risk prevention and control of chemicals [J]. Chinese Science Bulletin, 2022, 67(3): 267-277(in Chinese). doi: 10.1360/TB-2021-0422
[18] van BOECKEL T P, PIRES J, SILVESTER R, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries [J]. Science, 2019, 365(6459): eaaw1944. doi: 10.1126/science.aaw1944 [19] XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review [J]. Science of the Total Environment, 2021, 753: 141975. doi: 10.1016/j.scitotenv.2020.141975 [20] WANG J H, LU J, WU J, et al. Proliferation of antibiotic resistance genes in coastal recirculating mariculture system [J]. Environmental Pollution, 2019, 248: 462-470. doi: 10.1016/j.envpol.2019.02.062 [21] SHAO S C, WU X W. Microbial degradation of tetracycline in the aquatic environment: A review [J]. Critical Reviews in Biotechnology, 2020, 40(7): 1010-1018. doi: 10.1080/07388551.2020.1805585 [22] 侯力睿, 傅榆涵, 赵冲, 等. 兽药抗生素对生态环境的混合毒性研究进展 [J]. 环境化学, 2021, 40(1): 55-64. doi: 10.7524/j.issn.0254-6108.2020052502 HOU L R, FU Y H, ZHAO C, et al. Advance on combined toxicity of veterinary antibiotics on ecological environments [J]. Environmental Chemistry, 2021, 40(1): 55-64(in Chinese). doi: 10.7524/j.issn.0254-6108.2020052502
[23] 廖洋, 鲁金凤, 曹轶群, 等. 光催化降解对抗生素藻类毒性效应影响研究进展 [J]. 环境化学, 2021, 40(1): 111-120. doi: 10.7524/j.issn.0254-6108.2019122404 LIAO Y, LU J F, CAO Y Q, et al. Research progress on the effects of photocatalytic degradation on the algae toxicity of antibiotics [J]. Environmental Chemistry, 2021, 40(1): 111-120(in Chinese). doi: 10.7524/j.issn.0254-6108.2019122404
[24] ESCOBAR-HUERFANO F, GÓMEZ-OLIVÁN L M, LUJA-MONDRAGÓN M, et al. Embryotoxic and teratogenic profile of tretracycline at environmentally relevant concentrations on Cyprinus carpio [J]. Chemosphere, 2020, 240: 124969. doi: 10.1016/j.chemosphere.2019.124969 [25] 徐冰洁, 罗义, 周启星, 等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险 [J]. 环境化学, 2010, 29(2): 169-178. XU B J, LUO Y, ZHOU Q X, et al. Sources, dissemination, and ecological risks of antibiotic resistances genes(args) in the environment [J]. Environmental Chemistry, 2010, 29(2): 169-178(in Chinese).
[26] ZHU Y G, ZHAO Y, LI B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes"> [J]. Nature Microbiology, 2017, 2: 16270. doi: 10.1038/nmicrobiol.2016.270 [27] ZHANG X, LI J, FAN W Y, et al. Enhanced photodegradation of extracellular antibiotic resistance genes by dissolved organic matter photosensitization [J]. Environmental Science & Technology, 2019, 53(18): 10732-10740. [28] SONG C, ZHANG K X, WANG X J, et al. Effects of natural organic matter on the photolysis of tetracycline in aquatic environment: Kinetics and mechanism [J]. Chemosphere, 2021, 263: 128338. doi: 10.1016/j.chemosphere.2020.128338 [29] ZHENG H, WANG Z Y, DENG X, et al. Characteristics and nutrient values of biochars produced from giant reed at different temperatures [J]. Bioresource Technology, 2013, 130: 463-471. doi: 10.1016/j.biortech.2012.12.044 [30] HAN L, NIE X, WEI J, et al. Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar [J]. Science of the Total Environment, 2021, 751: 141491. doi: 10.1016/j.scitotenv.2020.141491 [31] WANG Y T, XIN Z B, PENG F, et al. Influence of pyrolysis temperature on characteristics and nitrobenzene adsorption capability of biochar derived from reed and giant reed [J]. Science of Advanced Materials, 2019, 11(11): 1523-1530. doi: 10.1166/sam.2019.3463 [32] ZHANG J X, LUO J, TONG D M, et al. The dependence of pyrolysis behavior on the crystal state of cellulose [J]. Carbohydrate Polymers, 2010, 79(1): 164-169. doi: 10.1016/j.carbpol.2009.07.038 [33] CAO J, JIANG J. Reducing capacities in continuously released low molecular weight fractions from bulk humic acids [J]. Journal of Environmental Management, 2019, 244: 172-179. doi: 10.1016/j.jenvman.2019.05.014 [34] CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J]. Environmental Science & Technology, 2008, 42(14): 5137-5143. [35] XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures [J]. Environmental Science & Technology, 2014, 48(6): 3411-3419. [36] 朱静, 张朝晖. 近海CDOM光反应变化及SPM对其影响的研究 [J]. 环境科学与技术, 2019, 42(10): 9-13. doi: 10.19672/j.cnki.1003-6504.2019.10.002 ZHU J, ZHANG Z H. Photoreaction changes of CDOM in offshore and study on effects of SPM on photoreaction [J]. Environmental Science & Technology, 2019, 42(10): 9-13(in Chinese). doi: 10.19672/j.cnki.1003-6504.2019.10.002
[37] BIANCO A, MINELLA M, de LAURENTIIS E, et al. Photochemical generation of photoactive compounds with fulvic-like and humic-like fluorescence in aqueous solution [J]. Chemosphere, 2014, 111: 529-536. doi: 10.1016/j.chemosphere.2014.04.035 [38] WU S M, ZUBER F, MANIURA-WEBER K, et al. Nanostructured surface topographies have an effect on bactericidal activity [J]. Journal of Nanobiotechnology, 2018, 16(1): 20. doi: 10.1186/s12951-018-0347-0 [39] GREBEL J E, PIGNATELLO J J, SONG W H, et al. Impact of halides on the photobleaching of dissolved organic matter [J]. Marine Chemistry, 2009, 115(1/2): 134-144. [40] MACK J, BOLTON J R. Photochemistry of nitrite and nitrate in aqueous solution: A review [J]. Journal of Photochemistry and Photobiology A:Chemistry, 1999, 128(1/2/3): 1-13. [41] ZHOU L, SLEIMAN M, FERRONATO C, et al. Reactivity of sulfate radicals with natural organic matters [J]. Environmental Chemistry Letters, 2017, 15(4): 733-737. doi: 10.1007/s10311-017-0646-y [42] OU Q, XU Y H, HE Q, et al. Deposition behavior of dissolved black carbon on representative surfaces: Role of molecular conformation [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105921. doi: 10.1016/j.jece.2021.105921 [43] WAITE T D. Role of iron in light-induced environmental processes[M]//The Handbook of Environmental Chemistry. Berlin/Heidelberg: Springer-Verlag, : 255-298. [44] 孔婧, 邓芠, 李若白, 等. 光降解酮洛芬的动力学及影响因素 [J]. 环境化学, 2016, 35(12): 2568-2574. doi: 10.7524/j.issn.0254-6108.2016.12.2016050601 KONG J, DENG W, LI R B, et al. Photolysis of Ketoprofen in aqueous solution: Kinetics and influence of environmental factors [J]. Environmental Chemistry, 2016, 35(12): 2568-2574(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.12.2016050601
[45] 刘纪阳, 薛爽, 张营, 等. 水相和冰相中不同pH条件下溶解性有机质对苊光降解的影响 [J]. 环境科学学报, 2021, 41(5): 1930-1939. doi: 10.13671/j.hjkxxb.2020.0400 LIU J Y, XUE S, ZHANG Y, et al. Effect of dissolved organic matter on photodegradation of acenaphthene under different pH conditions in water and ice [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1930-1939(in Chinese). doi: 10.13671/j.hjkxxb.2020.0400
[46] 李聪鹤, 车潇炜, 白莹, 等. 水体中磺胺甲噁唑间接光降解作用 [J]. 环境科学, 2019, 40(1): 273-280. doi: 10.13227/j.hjkx.201805014 LI C H, CHE X W, BAI Y, et al. Indirect photodegradation of sulfamethoxazole in water [J]. Environmental Science, 2019, 40(1): 273-280(in Chinese). doi: 10.13227/j.hjkx.201805014
[47] LÓPEZ-PEÑALVER J J, SÁNCHEZ-POLO M, GÓMEZ-PACHECO C V, et al. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(10): 1325-1333. [48] MCNALLY A M, MOODY E C, MCNEILL K. Kinetics and mechanism of the sensitized photodegradation of lignin model compounds [J]. Photochemical & Photobiological Sciences, 2005, 4(3): 268.