溶解性黑碳促进水环境中四环素的光降解

张宵, 刘一帆, 刘强, 楚沉静, 石美, 马小涵, 李霄云, 郑浩, 李锋民. 溶解性黑碳促进水环境中四环素的光降解[J]. 环境化学, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001
引用本文: 张宵, 刘一帆, 刘强, 楚沉静, 石美, 马小涵, 李霄云, 郑浩, 李锋民. 溶解性黑碳促进水环境中四环素的光降解[J]. 环境化学, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001
ZHANG Xiao, LIU Yifan, LIU Qiang, CHU Chenjing, SHI Mei, MA Xiaohan, LI Xiaoyun, ZHENG Hao, LI Fengmin. Dissolved Black Carbon Enhanced the Photodegradation of Tetracycline in Aqueous Solution[J]. Environmental Chemistry, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001
Citation: ZHANG Xiao, LIU Yifan, LIU Qiang, CHU Chenjing, SHI Mei, MA Xiaohan, LI Xiaoyun, ZHENG Hao, LI Fengmin. Dissolved Black Carbon Enhanced the Photodegradation of Tetracycline in Aqueous Solution[J]. Environmental Chemistry, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001

溶解性黑碳促进水环境中四环素的光降解

    通讯作者: Tel:0532-66781068,E-mail:zhenghao2013@ouc.edu.cn
  • 基金项目:
    海南省科技计划三亚崖州湾科技城联合项目(220LH061),山东省自然科学基金杰出青年基金(ZR2021JQ13)和山东省自然科学基金(ZR2019MD017)资助

Dissolved Black Carbon Enhanced the Photodegradation of Tetracycline in Aqueous Solution

    Corresponding author: ZHENG Hao, zhenghao2013@ouc.edu.cn
  • Fund Project: the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(220LH061), Natural Science Foundation for Distinguished Young Scholars of Shandong Province (ZR2021JQ13) and Natural Science Foundation of Shandong Province (ZR2019MD017).
  • 摘要: 具有固碳功能的生物炭材料在土壤修复和水体污染治理中的大规模施用导致了溶解性黑碳的(dissolved black carbon,DBC)的大量释放,其在污染物的环境地球化学过程发挥着重要作用. 相比于天然溶解有机质,DBC稠环度高、芳香性强、分子量小,有更高的光电转化效率,更易产生活性中间体促进有机污染物的光降解. 但不同热解温度(heating temperature,HTT)和生物质类型的DBC对水环境中抗生素(antibiotics, ATs)的光降解影响尚有待深入研究. 本文选取不同HTT(300—600 ℃)的芦苇和芦竹生物炭制备DBC,表征其基本理化性质及结构特征,研究其对水环境中典型ATs四环素(tetracycline, TC)光降解过程的影响,探究关键水环境条件的影响. 结果表明,随着HTT升高,两类DBC的有机碳含量呈先升高后降低趋势,平均分子量呈先降低后增加趋势;芳香性官能团含量增加,芳香性增强,腐殖酸和富里酸类物质含量升高. 所有DBC均促进了TC的光降解(16.3%—97.0%),促进效果随HTT的升高而呈上升趋势. HTT相同时,芦竹DBC对TC光降解的促进效果高于芦苇DBC. 水环境中常见阴离子(NO3、HCO3、SO42、Cl)及阳离子(Fe3+、Ca2+)均在不同程度上抑制了TC的光降解;碱性(pH 7—11)环境中DBC对TC光降解的促进作用强于酸性(pH 3—5)环境. 活性中间体猝灭实验表明DBC对TC光降解的促进作用主要由三重激发态DBC(3DBC*)主导. 本研究拓展了人们对水环境中DBC环境行为及其对共存ATs归趋的理解,为水环境中ATs环境过程和生态风险的预测提供了理论依据.
  • 我国工业高速发展及城镇化进程,使得重金属造成的水污染日趋严重,成为了全球关注的环境问题之一[1]. 重金属不可被生物降解,易在生物体内累积并通过食物链放大,严重威胁人类健康及生态系统. 镉(Cd)、锌(Zn)、镍(Ni)是工业废水中最常见的重金属污染物[2]. Ni、Zn是生命体需要的微量元素,但高浓度Ni2+、Zn2+能引起呕吐、哮喘及中枢神经系统紊乱等中毒症状[34];Cd2+即使在较低浓度下也表现出较高生物毒性[5],长期接触Cd2+会导致慢性肺部疾病、骨骼畸形和肾功能衰减等问题[6]. 因此,高效去除水体中的以镉(Cd)、锌(Zn)、镍(Ni)为代表的重金属离子成为了亟待解决的问题,并在近年来受到了相关研究领域的广泛关注.

    从水中去除重金属离子的方法包括吸附、化学沉淀/混凝、离子交换、膜技术和电化学方法等[7]. 随着纳米技术的发展,纳米材料在水处理中逐渐发挥重要作用. 其中,纳米零价铁(nanoscale zero-valent iron, nZVI)凭借比表面积大、还原活性高、适用面广、环境友好等特性被广泛用于水环境中的重金属去除[8]. nZVI的粒径在(20—100) nm范围,呈链状,合成后瞬间在表面生成铁(氢)氧化物,这使nZVI形成了独特“核-壳”结构[9]. nZVI在参与重金属去除过程中,外氧化壳层首先通过静电引力和表面络合作用吸附重金属离子,随后单质铁核可以充当电子供体还原被吸附的重金属离子,因此nZVI对重金属的去除可能涉及吸附和还原机制[10]. 但nZVI在实践应用中也呈现出一定的局限性,如易自发团聚,表面活性位点减少;极易被空气和水氧化,大大削弱其还原能力,导致活性降低. 为了解决上述问题,大量研究对nZVI的改性进行了探索[1113],旨在进一步提升nZVI的稳定性、电子传递效率和去除的选择性.

    研究发现,nZVI对磷酸盐具有很强的亲和力,能通过吸附、沉淀等作用高效去除水中PO43-[1415]. 研究进一步表明,吸附在nZVI表面的PO43-能生成钝化层,磷酸基团的侧链质子抑制nZVI与氧和水的反应,从而对nZVI起到一定保护作用[16]. 因此,表面磷酸化能提高nZVI在水中的稳定性. 此外,磷酸盐能取代nZVI表面的羟基,与重金属形成三元配合物,进而增强其对重金属的配位能力[17]. 基于上述特性,表面磷酸化的nZVI(phosphorylated nanoscale zero-valent iron, P-nZVI)用于污染物去除已被广泛研究,如Zhang等[16]发现四聚磷酸盐改性nZVI对阿特拉津的降解过程中,四聚磷酸盐的存在抑制了质子还原,增强了分子氧活化,使阿特拉津的降解率提高955倍. Li等[18]的研究表明,磷酸化改性后,P-nZVI对Cr(Ⅵ)还原的电子选择性从6.1%提高到31.3%,去除效率提高了4倍,这是由于磷酸化修饰增强了对铬的吸附能力,进而促进其还原. 综上所述,nZVI的表面磷酸盐改性能提高对重金属离子的配位能力,同时表面磷酸盐抑制了nZVI被水和氧气氧化,在增强nZVI对重金属离子吸附能力的基础上有效提高了nZVI对吸附在表面的重金属的还原能力,其改性策略成本低,操作简单,效果显著. 但目前,P-nZVI对不同种类重金属的去除性能、机理的相关比较研究仍较少,因此,比较P-nZVI对常见重金属的去除能力和作用机制具有较大的研究价值.

    本研究以KH2PO4为磷化剂,通过液相还原法制备磷化改性的nZVI,并且选择了Cd2+、Zn2+、Ni2+3种典型的重金属离子作为目标污染物. 由于Fe0对Cd2+、Zn2+、Ni2+具有不同的还原能力;Cd2+、Zn2+、Ni2+受pH影响的沉淀-溶解特性存在差异;同时,其与表面磷酸根的亲和力也不尽相同,因此磷酸化改性后的nZVI对于上述3种金属离子的去除特性可能存在差异. 本文在讨论P-nZVI去除水溶液中Cd2+、Zn2+、Ni2+效果的基础上,进一步研究了pH、干扰离子等影响因素的影响,并结合XRD、XPS、SEM、TEM等表征,讨论P-nZVI去除Cd2+、Zn2+、Ni2+的微观机理差异. 本研究旨在比较P-nZVI对不同重金属的去除能力、重金属去除过程中的影响因素和微观界面特征,为进一步深入探索P-nZVI在微界面上与重金属离子的作用机理提供一定的参考.

    研究所用的nZVI、P-nZVI均采用NaBH4液相还原Fe3+法合成[19]. 根据先前的实验,P/Fe物质的量比在0.6左右P-nZVI去除效果较好,因此制备磷酸化修饰的nZVI时,需要将NaH2PO4以一定比例和NaBH4混合,确保P/Fe为0.6,并通过蠕动泵将混合溶液缓缓滴入三颈瓶中,其他步骤与nZVI的制备相同. 反应完成后,采用离心的方式收集nZVI并用去离子水和无水乙醇各洗涤3次,储存于无水乙醇中备用.

    实验分别探究了P-nZVI吸附Cd2+、Zn2+、Ni2+的动力学特征、pH及干扰离子等因素对重金属去除的影响. 所有实验中P-nZVI的投加量均为0.5 g∙L−1,重金属离子的初始浓度为100 mg∙L−1. 在动力学实验中,首先配制一定量Cd2+、Zn2+、Ni2+溶液至三颈瓶中,调节反应初始pH为6±0.1,通氮20 min脱去溶液中O2,再加入适量P-nZVI,分别反应0(空白)、5、10、15、30、40、50、60、75、90、120 min取出少量溶液,过0.22 μm滤膜后测定离子浓度. 反应过程中,采用磁力搅拌器以250 r·min−1进行机械搅拌,使P-nZVI与目标离子充分接触. pH实验中,为防止Cd2+、Zn2+、Ni2+大量沉淀控制pH范围在2—8之间,使用HCl和NaOH调节反应pH分别为2±0.1、3±0.1、4±0.1、5±0.1、6±0.1、7±0.1、8±0.1,其他步骤同上. 为探究溶液中干扰离子对吸附的影响,在其他操作不变的情况下,控制反应pH为6±0.1,量取适量含有共存离子的溶液[HA、Na2SO4、NaHCO3、Mg(NO32、Ca(NO32]加入三颈瓶中,使共存离子浓度分别为0、10、50 mg∙L−1. 上述所有实验,控制实验温度为25 ℃.

    采用电感耦合等离子体发射光谱仪(ICP-720 ES,安捷伦公司,美国)测定溶液中Cd2+、Zn2+、Ni2+浓度. 采用Zeta电位测定仪(Zetasizer Nano ZS90)测定P-nZVI的零电荷点,ASPS 2460气体分析仪测定材料孔径分布及比表面积. 为比较反应前后材料的微观形貌变化,采用场发射电子扫描显微镜(Nova naniSEM-450, FEI公司,美国)及球差校正扫描透射电子显微镜(TatanTMG2 60-300, FEI公司,美国)进行表征,并使用EDS能谱对材料的元素分布情况进行定性及半定量分析. 采用X射线衍射仪(D8 Advance,布鲁克公司,德国)及X射线光电子能谱仪(ESCALAB 250XI, 赛默飞, 美国)探测材料体相物质的晶体结构及表相化学组成、元素种类及价态,并使用MDI Jade 6软件对XRD结果进行比对分析、Advantage 5.948软件对XPS谱进行分峰拟合. 采用Origin 2021软件对所得数据进行绘图.

    HAADF-STEM图直观反映出P-nZVI的壳-核结构特征及表层2 nm左右的无定形壳(图1a). Fe、O、P及Fe+O重叠的EDS元素分布图显示,Fe、O元素分别分布在颗粒内核与外壳,P元素均匀分布在颗粒表面(图1a). 磷酸基团的修饰虽不影响零价铁的“壳-核”结构,却使nZVI的球形轮廓稍有变形并出现不规则边缘;同时,P-nZVI的HAADF-STEM图揭示P-nZVI内部出现了明显的径向裂纹结构,该裂纹从外壳层延伸至铁芯内部. 这与Zhang等的研究结果一致[20],Zhang等指出在磷酸基团存在下,铁壳表面生成的磷酸铁物种阻碍颗粒的继续长大,并且铁芯生长和外壳层施加的阻力发生了对抗,导致P-nZVI最终生长成边缘缺陷、内部皲裂的不规则球状颗粒. BET测试也证实了这一现象,计算结果显示P-nZVI的比表面积为(159.27±1.01) m2∙g−1,远大于nZVI的比表面积(26.54±2.13) m2∙g−1;同时,P-nZVI的总孔容及孔径均值分别为(0.6093±0.0025) cm³·g−1、(21.22±0.19) nm,相较于nZVI均有所增加(图2表1). 因此,裂纹结构显著增加了材料的比表面积,这有利于提供更多活性位点、促进吸附. 该结构还有利于污染物快速穿过氧化外壳层,提高Fe0的电子利用率[21].

    图 1  (a)P-nZVIHAADF-STEM图像和Fe、O、P、Fe+O的EDS 元素分布图;(b)P-nZVI的Fe 2p、O1s XPS谱图;(c)不同pH下P-nZVI、nZVI的Zeta电位图;(d)P-nZVI上磷酸基团的结合示意图
    Figure 1.  (a)HAADF-STEM image of fresh P-nZVI as well as the corresponding elemental mapping of Fe, O, P and the overlapped mapping of Fe, O;(b)XPS survey spectra of P 2p, Fe 2p and O 1s of P-nZVI;(c)zeta potential of P-nZVI and nZVI at different pH;(d)schematic diagram of phosphate groups binding mode
    图 2  nZVI(a)和P-nZVI(b)的 N2吸附-脱附等温线(插入图为相应的孔径分布图)
    Figure 2.  N2 adsorption-desorption isotherms of(a)nZVI(b)P-nZVI (Inset is the pore size distribution)
    表 1  nZVI及P-nZVI的比表面积、孔容、孔径对比
    Table 1.  Comparison of specific surface area, pore volume and pore size of nZVI and P-nZVI
    比表面积/(m2·g−1)Surface area 孔容/(cm3·g−1)Pore volume 孔径/nmPore size
    nZVI 26.54±2.13 0.0759±0.0030 27.67±0.06
    P-nZVI 159.27±1.01 0.6093±0.0025 21.22±0.19
     | Show Table
    DownLoad: CSV

    为进一步确定P-nZVI表面元素成分及化学性质,对P-nZVI进行了XPS分析(图1b)及不同pH下的Zeta电位测试(图1c). P 2p XPS谱图在132.54 eV、133.49 eV的特征峰分别归属于P 2p1/2、P 2p3/2[20],该结果证实了纳米铁表面的成功磷酸化. Fe 2p XPS谱图观察到P-nZVI在710.69 eV、713.76 eV附近分别出现Fe(Ⅱ)—O与Fe(Ⅲ)—O的特征峰[22],表明新鲜制备的P-nZVI表面出现一定程度的氧化,氧化层的形成主要来自于溶液中水及少量氧的腐蚀作用[23],这一现象与nZVI类似. 有趣的是,P-nZVI与nZVI的O 1s XPS谱存在明显区别. P-nZVI在结合能为529.83 eV、530.98 eV、532.48 eV附近的特征峰分别归属于O2-、OH-以及物理或化学吸附水[24]. 其中,P-nZVI的OH-光电子特征峰占比高达到75.67%,O2-的占比偏低,仅为12.59%(表2);nZVI的O2-与OH-光电子峰面积占比接近,分别为43.98%和53.08%,化学计量比接近1:1,表明nZVI表面铁氧化物以FeOOH为主(表2[25]. 该对比表明,P-nZVI表面存在较高比例的 OH-,这主要来自于磷酸基团的贡献,表明nZVI表面被大量磷酸根包被. 磷酸盐可能主要以3种方式结合在nZVI表面(图1d):(1)nZVI的氧化铁外壳对磷酸基团发生静电吸附,该结合方式会受到pH的显著影响[26]. (2)PO43-与颗粒表面羟基脱水络合(方程式1),以单齿单核形式结合在nZVI表面[18,27]. (3)随着nZVI外壳的腐蚀,释放的Fe2+能与PO43-发生沉淀作用(方程式2),以表面沉积[26]的方式附着在颗粒上. Zeta电位测试的结果与预期一致,由于结合在nZVI表面的磷酸基团能提供一定负电荷,导致P-nZVI的IEP相较于nZVI大幅下降. Zhang等[20]通过DFT计算证实,磷酸基团周围负电量增加,因此P-nZVI表面能通过累积负电荷的方式增大对重金属阳离子的静电引力[28].

    表 2  nZVI及P-nZVI的O1s XPS谱中O2-、OH-及H2O相对丰度(% at.)
    Table 2.  Relative abundance of O2-, OH- and H2O in the O1s XPS spectra of nZVI and P-nZVI
    P-nZVI nZVI
    O2- 23.11 43.98
    OH- 62.88 53.08
    H2O 14.01 2.94
    总计 100
     | Show Table
    DownLoad: CSV
    stringUtils.convertMath(!{formula.content}) (1)
    stringUtils.convertMath(!{formula.content}) (2)

    通过批量去除实验,对nZVI、P-nZVI去除Cd2+、Ni2+、Zn2+的动力学过程进行了对比研究. 结果表明,磷酸化修饰成功实现了对3种重金属离子的高效去除(图3a、b). 未经修饰的nZVI对Cd2+和Zn2+的去除率仅为45.4%、53.8%,并且去除率在达到平衡后的一定时间内出现波动,这是由于P-nZVI对金属离子的吸附不牢固,易出现解吸现象. 而P-nZVI对Cd2+、Zn2+的去除率相比nZVI有大幅提升,分别达到79.6%、90.6%. 这是由于P-nZVI表面形成了nZVI-PO43--金属阳离子三络合物,磷酸基团能快速富集并稳定结合重金属离子,不易造二次释放.

    图 3  (a, b)反应动力学曲线;(c, d)伪一级、伪二级动力学拟合曲线;(e)pH的影响;(f, g, h)干扰离子的影响
    Figure 3.  (a, b)Kinetic adsorption experiments of nZVI and P-nZVI;(c, d)fitted curves of pseudo-first-order kinetic model and pseudo-second-order kinetic model;(e)influence of different pH conditions;(f, g, h)influence of interfering ions

    对比Ni2+的去除动力学,发现P-nZVI能加快Ni2+的去除,在15 min左右即去除了80%的Ni2+,并将去除率提高10%左右. 结合标准氧化还原电位可知,Ni2+/Ni的标准电位(E0 = − 0.23 V)高于Fe2+/Fe(E0 = − 0.44 V),因此Ni2+不仅可以被吸附固定,还能通过还原作用去除[29]. Fe0的电子转移被认为是整个反应过程的限速步[19],而P-nZVI的缺陷结构有利于Ni2+快速突破氧化外壳的反应屏障、“攻击”富含电子的铁核,促进还原过程并提升去除效率.

    为了进一步认识P-nZVI去除Cd2+、Zn2+、Ni2+的反应过程,对3种重金属离子的反应动力学进行了评估,分别采用伪一级、伪二级动力学模型进行模拟,两种模型表达式如下:

    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)

    式中,qt (mg∙g−1)为t时刻材料对重金属离子的吸附量,k1(min−1)为伪一级动力学模型的吸附速率常数,k2 (g·mg−1·min−1)为伪二级动力学模型的吸附速率常数. 图3c、d表明,P-nZVI对Cd2+、Zn2+、Ni2+的去除过程均更符合伪二级动力学模型,R2分别为0.9988、0.9992、0.9997.

    相较于活性炭、沸石等常见商用重金属去除材料,P-nZVI对上述3种重金属的去除能在短时间内达到相近的水平[30],但不同于这些材料的单一吸附作用,P-nZVI在与水及污染物相互作用中会不断产生高活性的新鲜表面,在一定程度上提升颗粒周边pH,从而能够通过吸附、沉淀、共沉淀等多种方式去除更多的重金属,同时该材料及其产物具有一定的磁性,便于分离回收,因此P-nZVI具有一定潜在应用价值.

    环境因素对水体中重金属存在形式及迁移转化具有重要影响,其中,pH是影响重金属吸附行为的关键因素之一[31]. 由于Cd2+、Zn2+、Ni2+在碱性条件下均会大量沉淀,因此本实验控制溶液初始pH值在2—8范围内,探究pH对P-nZVI吸附3种重金属离子的影响,结果如图3e所示. 当pH值为2、3时,P-nZVI对重金属离子的吸附量较低;pH值提升至4时,吸附量增幅明显, 因为P-nZVI在偏酸性环境下会受到H+的腐蚀而大量溶解. 当pH值从4增加到8,P-nZVI对Cd2+、Zn2+、Ni2+的吸附量分别从(152.24±1.89) mg·g−1、(165.52±1.14) mg·g−1、(172.25±3.21) mg·g−1提升至(168.24±2.83) mg·g−1、(185.52±4.23) mg·g−1、(188.54±2.84) mg·g−1.

    从表面化学的角度分析,由于P-nZVI的IEP为4.51(图1c),因此在低pH条件下,H+与重金属离子竞争P-nZVI表面的吸附位点,导致目标离子的吸附量较低. 随着pH升高,P-nZVI表面带明显负电,对金属阳离子的静电吸引大大增加,吸附量随之升高. 因此,在pH 7—8时重金属的去除效果最佳.

    为进一步探究P-nZVI在实际水体中对Cd2+、Zn2+、Ni2+的去除情况,本研究选择了自然水体中最为常见的几种阴阳离子SO42-、HCO3-、Ca2+和Mg2+,以及广泛存在于自然水体中的天然有机物质腐殖酸HA(黄腐酸含量>90%)进行探究. 结果与预期一致(图3f-h),阳离子Mg2+和Ca2+对Cd2+、Zn2+、Ni2+的去除抑制作用明显,且随着浓度的增加,抑制作用将增强. 因为Mg2+和Ca2+与目标离子带有相同的电荷且离子水合半径接近,在反应过程中能与目标离子竞争P-nZVI表面结合位点,导致去除效率下降[32]. 而阴离子SO42-、HCO3-存在时,P-nZVI对目标离子的吸附几乎不受影响.

    共存物质为HA时,目标重金属的去除率受到显著影响. 当HA浓度从0 mg·L−1增加到50 mg·L−1时,其对目标离子的去除效率至少下降20%. 这与HA表面丰富的官能基团有关,该表面特性使其具有较强的配位结合能力[33],在短时间极易占据大量活性位点,导致目标离子的解吸释放.

    图4为P-nZVI、nZVI与Cd2+、Zn2+、Ni2+3种重金属离子反应2 h后的XRD图谱. 谱图显示,在2θ = 44.8°附近均出现了尖峰,经对比确认,为Fe0(110)晶面峰(PDF # 89-7194);在2θ = 35.5°附近出现的峰为Fe3O4(311)面的宽化衍射峰(PDF # 75-0033),说明P-nZVI、nZVI反应后均表现出一定程度的氧化. 其中,与Cd2+、Zn2+反应后,该氧化峰信号较弱,可能由于表面铁(氢)氧化物的结晶度较差或主要以无定形态存在[34];与Ni2+反应后,相对较强的氧化峰信号表明铁的氧化较明显,并且P-nZVI的氧化更加显著. 值得注意的是,P-nZVI与Cd2+反应后,在2θ = 13.2°处出现了尖峰,这来自于Fe3(PO42·8H2O(020)晶面的衍射(PDF # 83-2453),表明少量磷酸盐还可能进一步在nZVI表面生成具有一定结晶度的蓝矿石[26]. XRD图谱上并未反映出与Cd、Ni、Zn元素相关的晶面衍射峰,因此需要结合其他表征手段进一步分析.

    图 4  nZVI、P-nZVI分别与 Cd2+、Zn2+、Ni2+反应后的XRD图谱
    Figure 4.  XRD diffraction patterns of spent nZVI and spent P-nZVI exposed to Cd2+, Zn2+, Ni2+

    nZVI、P-nZVI去除Cd2+、Zn2+、Ni2+后的形貌对比如图5所示. P-nZVI去除Cd2+后(图5b)外表变为不规则球形并出现絮状沉淀,而nZVI与Cd2+反应未出现明显絮状沉淀. 该对比表明P-nZVI的去除能力强于nZVI,P-nZVI表面的高浓度磷酸盐环境促使Cd2+形成了Cd3(PO4)2界面沉淀(pKsp = 32.6)[35]. 与Cd2+类似,Zn2+反应后纳米铁的球形形貌仍然保持并出现少量絮状沉淀(图5c、5d). 但与Ni2+反应后,P-nZVI表面的球形则完全消失,外表被大量片层状结构及针状结构覆盖(图5e、5f). 结合上述XRD谱图,这再次证实P-nZVI对Ni2+的去除能力最强,在反应过程材料表面氧化明显,生成了结晶度低/无定形铁(氢)氧化物,根据外观结构推测其主要成分可能为FeOOH[36].

    图 5  SEM表征:与Cd2+反应后的nZVI(a)和P-nZVI (b); 与Zn2+反应后的nZVI(c)和P-nZVI(d); 与Ni2+反应后的nZVI(e)和P-nZVI(f)
    Figure 5.  SEM images of spent nZVI exposed to Cd2+(a), Zn2+(c), Ni2+(e) and spent P-nZVI exposed to Cd2+(b), Zn2+(d), Ni2+(f)

    对P-nZVI反应后的单颗粒进行了STEM及EDS分析,以进一步对比微观界面的变化. 如图6a、6b所示,P-nZVI与Cd2+、Zn2+反应后,“壳-核”结构仍然保持,外形及内部结构没有明显改变,颗粒的裂纹及外部的氧化薄层清晰可见. 但EDS能谱的定量结果表明,反应后颗粒O原子相对丰度小幅增加(表3),这是由于溶液中O2、H2O对Fe0的腐蚀作用[23]. 根据Cd、Zn及P的EDS元素分布图,Cd2+、Zn2+与P元素的分布高度相关,均匀分布在外壳层,由此推测磷酸基团在Cd2+、Zn2+的去除过程中起到主导作用.

    图 6  P-nZVI与Cd2+(a)、Zn2+(b)、Ni2+(c)反应后的HAADF-STEM图、Fe、O、P及目标离子元素分布图
    Figure 6.  HAADF-STEM images of P-nZVI after reactions with Cd2+, Zn2+, Ni2+ as well as the corresponding elemental mapping of Fe, O, P, Cd, Zn, Ni:(a)reaction with Cd2+,(b)reaction with Zn2+,(c)reaction with Ni2+

    HAADF-STEM图显示,与Ni2+反应2 h后,P-nZVI颗粒的“壳-核”结构遭到严重破化,裂纹结构消失,图像明暗衬度的差异反映出铁芯已被明显腐蚀. Ni、Fe元素分布图表明Ni元素不仅分布在外壳层还深入铁核内部,颗粒中心的铁元素大量减少(图6c). 同时,反应后P-nZVI单颗粒中Ni原子相对丰度高于Cd、Zn,并且O原子比例升高至54.5%、Fe原子占比明显降低(表3),这进一步证明P-nZVI颗粒的快速氧化及铁离子的大量溶出[37]. 因此,P-nZVI与Ni2+的反应较为剧烈,这与SEM表征结果一致.

    表 3  P-nZVI及去除重金属后的EDS定量结果
    Table 3.  Quantitative results of EDS before and after removal of heavy metals
    P-nZVI 除Cd2+后After removal of Cd2+ 除Zn2+后After removal of Zn2+ 除Ni2+后After removal of Ni2+
    Fe 85.68 63.55 76.01 28.22
    O 13.83 34.37 21.90 54.50
    P 0.49 1.45 1.13 0.62
    目标污染物 0.64 0.95 16.55
    总计 100
     | Show Table
    DownLoad: CSV

    为进一步确定P-nZVI去除重金属的机理,采用XPS分析反应后的表面元素组成及价态变化. 如图7a所示,反应后的XPS谱图检测出了Cd、Zn、Ni元素的特征峰,证实重金属离子成功结合在P-nZVI表面.

    图 7  与P-nZVI反应后,Cd 3d、Zn 2p、Ni 2p的XPS谱图和重金属的去除机理示意图
    Figure 7.  XPS survey spectra of Cd 3d, Zn 2p, Ni 2p, P 2p of P-nZVI after reaction,and schematic diagram of mechanisms for heavy metal removal by P-nZVI

    Cd 3d与Zn 2p的XPS谱图显示,nZVI去除Cd2+后Cd 3d5/2结合能为405.28 eV,归因于Cd(Ⅱ)在nZVI表面的吸附;Zn2+2p3/2结合能更高,特征峰值在1022.38 eV附近,均与文献报道一致[38]. 与P-nZVI反应后,Cd 3d5/2特征峰稍稍左移,通过分峰分别得到峰值为405.5 eV及406.18 eV的两个峰,根据Cd2+所处的化学环境不同,将 405.5 eV处的峰分配给吸附在nZVI活性位点上的Cd2+,406.18 eV处的峰分配给吸附于磷酸基团上的Cd2+. 由于Cd2+/Cd(E0 = − 0.40 V)的标准电位非常接近Fe2+/Fe(E0 = − 0.44 V),因此在nZVI上Cd2+被还原为Cd0在热力学上是不利的[34,39],并且在pH≤8时Cd2+几乎不发生沉淀[10]. 由上推测,P-nZVI主要以两种不同吸附方式去除Cd2+:(1)直接吸附于nZVI的表面活性位点[40](2)与磷酸基团结合,形成三元络合物[41]. 由于吸附在磷酸基团位点的Cd2+特征峰面积远大于直接吸附在nZVI表面的特征峰面积,这归因于磷酸根对Cd2+较高的亲和力(pKsp[Cd3(PO4)2] = 32.6),证实磷酸基团对Cd2+的吸附起到了主导作用. Zn2+的XPS结果与Cd2+类似,可通过同样的方式分峰并分配给不同吸附位点上的Zn2+. 由于Zn2+/Zn的E0 = − 0.7624 V 显著低于Fe2+/Fe, Zn2+在nZVI表面以吸附为主,并且Zn2+对PO43-也具有较高亲和力(pKsp[Zn3(PO4)2] = 32.04),因此Zn2+可能的去除机制与Cd2+相近,即优先吸附在磷酸根位点,少量直接与nZVI表面的铁(氢)氧化物结合[25]图7). Cd2+、Zn2+与nZVI的反应方程式可表达如下:

    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})

    Ni2+与P-nZVI反应后的XPS谱图显示,在851.89 eV、855.60 eV、861.25 eV附近出现了Ni0、Ni(Ⅱ)—O与Ni(Ⅱ)—OH的特征峰[42],其结合能相较于nZVI均略向左偏移. 同时,P-nZVI的Ni(Ⅱ)—O、Ni(Ⅱ)—OH特征峰信号明显强于Ni0,表明磷酸化修饰的纳米零价铁表面更倾向于吸附Ni2+,少量Ni2+被还原为Ni0. 而STEM及EDS元素分布图显示,P-nZVI的内部被严重腐蚀. 根据上述现象推测,P-nZVI首先通过三元络合作用将大量Ni2+吸附在表面,部分Ni2+能通过径向裂纹结构深入铁芯内部,发生较为剧烈的氧化还原反应. Zhang等[20]采用XPS刻蚀,详细比较了Ni2+在4 h内对nZVI及P-nZVI铁芯的腐蚀过程,结果证实P-nZVI的确大大提升了反应速率、促进腐蚀. 原因可作如下分析:浓度梯度被认为是污染物进入铁核速率的决定因素[43],虽然铁氧化物外壳及表面磷酸基团阻碍Ni2+与Fe0的直接接触,但由于P-nZVI表面负电荷量大,能比nZVI更迅速地通过静电引力作用将溶液中游离的Ni2+以物理、化学吸附结合在铁壳表面,较高的浓度梯度促进 Ni2+跨越P-nZVI氧化外壳层,向铁芯转移;其次,P-nZVI独特的径向裂纹及表面缺陷更有助于Ni2+向铁芯扩散,加快电子转移,提高Fe0的利用率(图7). 因此,P-nZVI的结构降低了Ni2+跨越铁氧化壳的阻碍,其反应方程式可表达如下:

    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})

    本文以KH2PO4为磷化剂通过液相还原法制备出磷酸化修饰的纳米铁,并结合XRD、SEM、TEM、XPS等分析手段探究其对Cd2+、Zn2+、Ni2+的去除效果及微观作用机制. 结果表明,P-nZVI是一种表面缺陷、内部皲裂的不规则球状颗粒,其较大的比表面积及表面包被的磷酸基团为重金属的吸附提供了更多位点. 反应动力学表明,P-nZVI对Cd2+、Zn2+、Ni2+的去除效率均显著优于nZVI,2 h左右分别达到了79.6%、90.6%、92.6%. 其中,P-nZVI对Cd2+、Zn2+的去除以表面磷酸基团的吸附为主,形成了nZVI-PO43--金属阳离子三元络合物,使重金属离子结合牢固、不易解吸. 该吸附过程均可用准二级动力学描述. 而Ni2+的去除过程有所不同,其首先在P-nZVI的表面吸附作用下被富集,其次部分Ni2+通过径向裂纹深入铁芯并被快速还原,因此P-nZVI独特的裂纹结构能促进电子的转移. 综上,P-nZVI表面的磷酸化修饰及物理结构的缺陷,使其具有较好的重金属去除活性,本研究结果为开发简单实用的改性nZVI高效去除重金属的方法提供了一定可行性思路.

  • 图 1  不同DBC的FTIR光谱图

    Figure 1.  FTIR spectra of different DBC

    图 2  DBC的荧光组分及相对含量

    Figure 2.  Fluorescence components and their relative contents in DBC

    图 3  光照和黑暗条件下不同DBC和不同浓度的LZ600对TC降解的影响

    Figure 3.  Effects of DBC and LZ600 concentrations on TC photodegradation under light and dark conditions

    图 4  不同离子和pH条件下LZ600对TC光降解的影响

    Figure 4.  Effect of LZ600 on TC photodegradation under different ambient ions and pH

    图 5  光降解对DBC性质及猝灭剂对TC光解的影响

    Figure 5.  Effect of photolysis on LZ600 and quenching experiment

    图 6  DBC影响TC降解的可能机制

    Figure 6.  Potential mechanisms of DBC promoting TC photodegradation

    表 1  TC理化性质[27]

    Table 1.  Physicochemical properties of TC[27]

    CAS分子式Molecular formula溶解度SolubilitypKa结构式Structural formula
    64-75-5C22H25ClN2O819.7 g·L−1(25 ℃)pKa1=3.30pKa2=7.68pKa3=9.68
    CAS分子式Molecular formula溶解度SolubilitypKa结构式Structural formula
    64-75-5C22H25ClN2O819.7 g·L−1(25 ℃)pKa1=3.30pKa2=7.68pKa3=9.68
    下载: 导出CSV

    表 2  DBC的基本物理化学性质

    Table 2.  Basic physicochemical properties of DBC

    DBCTOC/(mg·L−1)pHSUVA254/L·(mgC·m-1−1E2/E3E4/E6
    LW3001234.250.183.927.17
    LW4001524.740.125.015.82
    LW50098.95.960.163.673.88
    LZ3005205.660.066.235.48
    LZ4008325.770.027.2815.8
    LZ5004517.750.173.815.09
    LZ60010110.20.274.612.00
      注:SUVA254为100倍的254 nm处的吸光度和DBC TOC的比值,E4/E6为465 nm处吸光度和665 nm处吸光度的比值,E2/E3为254 nm处吸光度和365 nm处吸光度的比值.   Note: SUVA254 is the ratio of 100 times the absorbance at 254 nm to DBC TOC, E4/E6 is the ratio of the absorbance at 465 nm to 665 nm, E2/E3 is the ratio of the absorbance at 254 nm to 365 nm.
    DBCTOC/(mg·L−1)pHSUVA254/L·(mgC·m-1−1E2/E3E4/E6
    LW3001234.250.183.927.17
    LW4001524.740.125.015.82
    LW50098.95.960.163.673.88
    LZ3005205.660.066.235.48
    LZ4008325.770.027.2815.8
    LZ5004517.750.173.815.09
    LZ60010110.20.274.612.00
      注:SUVA254为100倍的254 nm处的吸光度和DBC TOC的比值,E4/E6为465 nm处吸光度和665 nm处吸光度的比值,E2/E3为254 nm处吸光度和365 nm处吸光度的比值.   Note: SUVA254 is the ratio of 100 times the absorbance at 254 nm to DBC TOC, E4/E6 is the ratio of the absorbance at 465 nm to 665 nm, E2/E3 is the ratio of the absorbance at 254 nm to 365 nm.
    下载: 导出CSV
  • [1] WANG L W, O'CONNOR D, RINKLEBE J, et al. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications [J]. Environmental Science & Technology, 2020, 54(23): 14797-14814.
    [2] LEHMANN J, COWIE A, MASIELLO C, et al. Biochar in climate change mitigation [J]. Nature Geoscience, 2021, 14(12): 883-892. doi: 10.1038/s41561-021-00852-8
    [3] TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects [J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 191-215. doi: 10.1007/s11157-020-09523-3
    [4] HAGEMANN N, JOSEPH S, SCHMIDT H P, et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility [J]. Nature Communications, 2017, 8: 1089. doi: 10.1038/s41467-017-01123-0
    [5] IPPOLITO J A, CUI L Q, KAMMANN C, et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review [J]. Biochar, 2020, 2(4): 421-438. doi: 10.1007/s42773-020-00067-x
    [6] SONG F H, LI T T, SHI Q, et al. Novel insights into the molecular-level mechanism linking the chemical diversity and copper binding heterogeneity of biochar-derived dissolved black carbon and dissolved organic matter [J]. Environmental Science & Technology, 2021, 55(17): 11624-11636.
    [7] WAGNER S, JAFFÉ R, STUBBINS A. Dissolved black carbon in aquatic ecosystems [J]. Limnology and Oceanography Letters, 2018, 3(3): 168-185. doi: 10.1002/lol2.10076
    [8] 彭红波, 杨东, 高鹏, 等. 生物炭中溶解性炭黑的释放及环境效应 [J]. 材料导报, 2020, 34(11): 11029-11034. doi: 10.11896/cldb.19050149

    PENG H B, YANG D, GAO P, et al. Releasing and the environmental implications of dissolved black carbon from biochars [J]. Materials Reports, 2020, 34(11): 11029-11034(in Chinese). doi: 10.11896/cldb.19050149

    [9] 魏晨辉, 付翯云, 瞿晓磊, 等. 溶解态黑碳的环境过程研究 [J]. 化学进展, 2017, 29(9): 1042-1052. doi: 10.7536/PC170444

    WEI C H, FU Y F, QU X L, et al. Environmental processes of dissolved black carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052(in Chinese). doi: 10.7536/PC170444

    [10] ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution [J]. Environmental Science & Technology, 2018, 52(18): 10391-10399.
    [11] FU H Y, WEI C H, QU X L, et al. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications [J]. Environmental Pollution, 2018, 232: 402-410. doi: 10.1016/j.envpol.2017.09.053
    [12] ZHANG P, SHAO Y F, XU X J, et al. Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light [J]. Science of the Total Environment, 2020, 724: 137913. doi: 10.1016/j.scitotenv.2020.137913
    [13] LI S, HU J Y. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms [J]. Journal of Hazardous Materials, 2016, 318: 134-144. doi: 10.1016/j.jhazmat.2016.05.100
    [14] BERTILSSON S, TRANVIK L J. Photochemical transformation of dissolved organic matter in lakes [J]. Limnology and Oceanography, 2000, 45(4): 753-762. doi: 10.4319/lo.2000.45.4.0753
    [15] WAN D, WANG J, DIONYSIOU D D, et al. Photogeneration of reactive species from biochar-derived dissolved black carbon for the degradation of amine and phenolic pollutants [J]. Environmental Science & Technology, 2021, 55(13): 8866-8876.
    [16] FANG G D, LIU C, WANG Y J, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation [J]. Applied Catalysis B:Environmental, 2017, 214: 34-45. doi: 10.1016/j.apcatb.2017.05.036
    [17] 王佳钰, 王中钰, 陈景文, 等. 环境新污染物治理与化学品环境风险防控的系统工程 [J]. 科学通报, 2022, 67(3): 267-277. doi: 10.1360/TB-2021-0422

    WANG J Y, WANG Z Y, CHEN J W, et al. Environmental systems engineering consideration on treatment of emerging pollutants and risk prevention and control of chemicals [J]. Chinese Science Bulletin, 2022, 67(3): 267-277(in Chinese). doi: 10.1360/TB-2021-0422

    [18] van BOECKEL T P, PIRES J, SILVESTER R, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries [J]. Science, 2019, 365(6459): eaaw1944. doi: 10.1126/science.aaw1944
    [19] XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review [J]. Science of the Total Environment, 2021, 753: 141975. doi: 10.1016/j.scitotenv.2020.141975
    [20] WANG J H, LU J, WU J, et al. Proliferation of antibiotic resistance genes in coastal recirculating mariculture system [J]. Environmental Pollution, 2019, 248: 462-470. doi: 10.1016/j.envpol.2019.02.062
    [21] SHAO S C, WU X W. Microbial degradation of tetracycline in the aquatic environment: A review [J]. Critical Reviews in Biotechnology, 2020, 40(7): 1010-1018. doi: 10.1080/07388551.2020.1805585
    [22] 侯力睿, 傅榆涵, 赵冲, 等. 兽药抗生素对生态环境的混合毒性研究进展 [J]. 环境化学, 2021, 40(1): 55-64. doi: 10.7524/j.issn.0254-6108.2020052502

    HOU L R, FU Y H, ZHAO C, et al. Advance on combined toxicity of veterinary antibiotics on ecological environments [J]. Environmental Chemistry, 2021, 40(1): 55-64(in Chinese). doi: 10.7524/j.issn.0254-6108.2020052502

    [23] 廖洋, 鲁金凤, 曹轶群, 等. 光催化降解对抗生素藻类毒性效应影响研究进展 [J]. 环境化学, 2021, 40(1): 111-120. doi: 10.7524/j.issn.0254-6108.2019122404

    LIAO Y, LU J F, CAO Y Q, et al. Research progress on the effects of photocatalytic degradation on the algae toxicity of antibiotics [J]. Environmental Chemistry, 2021, 40(1): 111-120(in Chinese). doi: 10.7524/j.issn.0254-6108.2019122404

    [24] ESCOBAR-HUERFANO F, GÓMEZ-OLIVÁN L M, LUJA-MONDRAGÓN M, et al. Embryotoxic and teratogenic profile of tretracycline at environmentally relevant concentrations on Cyprinus carpio [J]. Chemosphere, 2020, 240: 124969. doi: 10.1016/j.chemosphere.2019.124969
    [25] 徐冰洁, 罗义, 周启星, 等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险 [J]. 环境化学, 2010, 29(2): 169-178.

    XU B J, LUO Y, ZHOU Q X, et al. Sources, dissemination, and ecological risks of antibiotic resistances genes(args) in the environment [J]. Environmental Chemistry, 2010, 29(2): 169-178(in Chinese).

    [26] ZHU Y G, ZHAO Y, LI B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes"> [J]. Nature Microbiology, 2017, 2: 16270. doi: 10.1038/nmicrobiol.2016.270
    [27] ZHANG X, LI J, FAN W Y, et al. Enhanced photodegradation of extracellular antibiotic resistance genes by dissolved organic matter photosensitization [J]. Environmental Science & Technology, 2019, 53(18): 10732-10740.
    [28] SONG C, ZHANG K X, WANG X J, et al. Effects of natural organic matter on the photolysis of tetracycline in aquatic environment: Kinetics and mechanism [J]. Chemosphere, 2021, 263: 128338. doi: 10.1016/j.chemosphere.2020.128338
    [29] ZHENG H, WANG Z Y, DENG X, et al. Characteristics and nutrient values of biochars produced from giant reed at different temperatures [J]. Bioresource Technology, 2013, 130: 463-471. doi: 10.1016/j.biortech.2012.12.044
    [30] HAN L, NIE X, WEI J, et al. Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar [J]. Science of the Total Environment, 2021, 751: 141491. doi: 10.1016/j.scitotenv.2020.141491
    [31] WANG Y T, XIN Z B, PENG F, et al. Influence of pyrolysis temperature on characteristics and nitrobenzene adsorption capability of biochar derived from reed and giant reed [J]. Science of Advanced Materials, 2019, 11(11): 1523-1530. doi: 10.1166/sam.2019.3463
    [32] ZHANG J X, LUO J, TONG D M, et al. The dependence of pyrolysis behavior on the crystal state of cellulose [J]. Carbohydrate Polymers, 2010, 79(1): 164-169. doi: 10.1016/j.carbpol.2009.07.038
    [33] CAO J, JIANG J. Reducing capacities in continuously released low molecular weight fractions from bulk humic acids [J]. Journal of Environmental Management, 2019, 244: 172-179. doi: 10.1016/j.jenvman.2019.05.014
    [34] CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J]. Environmental Science & Technology, 2008, 42(14): 5137-5143.
    [35] XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures [J]. Environmental Science & Technology, 2014, 48(6): 3411-3419.
    [36] 朱静, 张朝晖. 近海CDOM光反应变化及SPM对其影响的研究 [J]. 环境科学与技术, 2019, 42(10): 9-13. doi: 10.19672/j.cnki.1003-6504.2019.10.002

    ZHU J, ZHANG Z H. Photoreaction changes of CDOM in offshore and study on effects of SPM on photoreaction [J]. Environmental Science & Technology, 2019, 42(10): 9-13(in Chinese). doi: 10.19672/j.cnki.1003-6504.2019.10.002

    [37] BIANCO A, MINELLA M, de LAURENTIIS E, et al. Photochemical generation of photoactive compounds with fulvic-like and humic-like fluorescence in aqueous solution [J]. Chemosphere, 2014, 111: 529-536. doi: 10.1016/j.chemosphere.2014.04.035
    [38] WU S M, ZUBER F, MANIURA-WEBER K, et al. Nanostructured surface topographies have an effect on bactericidal activity [J]. Journal of Nanobiotechnology, 2018, 16(1): 20. doi: 10.1186/s12951-018-0347-0
    [39] GREBEL J E, PIGNATELLO J J, SONG W H, et al. Impact of halides on the photobleaching of dissolved organic matter [J]. Marine Chemistry, 2009, 115(1/2): 134-144.
    [40] MACK J, BOLTON J R. Photochemistry of nitrite and nitrate in aqueous solution: A review [J]. Journal of Photochemistry and Photobiology A:Chemistry, 1999, 128(1/2/3): 1-13.
    [41] ZHOU L, SLEIMAN M, FERRONATO C, et al. Reactivity of sulfate radicals with natural organic matters [J]. Environmental Chemistry Letters, 2017, 15(4): 733-737. doi: 10.1007/s10311-017-0646-y
    [42] OU Q, XU Y H, HE Q, et al. Deposition behavior of dissolved black carbon on representative surfaces: Role of molecular conformation [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105921. doi: 10.1016/j.jece.2021.105921
    [43] WAITE T D. Role of iron in light-induced environmental processes[M]//The Handbook of Environmental Chemistry. Berlin/Heidelberg: Springer-Verlag, : 255-298.
    [44] 孔婧, 邓芠, 李若白, 等. 光降解酮洛芬的动力学及影响因素 [J]. 环境化学, 2016, 35(12): 2568-2574. doi: 10.7524/j.issn.0254-6108.2016.12.2016050601

    KONG J, DENG W, LI R B, et al. Photolysis of Ketoprofen in aqueous solution: Kinetics and influence of environmental factors [J]. Environmental Chemistry, 2016, 35(12): 2568-2574(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.12.2016050601

    [45] 刘纪阳, 薛爽, 张营, 等. 水相和冰相中不同pH条件下溶解性有机质对苊光降解的影响 [J]. 环境科学学报, 2021, 41(5): 1930-1939. doi: 10.13671/j.hjkxxb.2020.0400

    LIU J Y, XUE S, ZHANG Y, et al. Effect of dissolved organic matter on photodegradation of acenaphthene under different pH conditions in water and ice [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1930-1939(in Chinese). doi: 10.13671/j.hjkxxb.2020.0400

    [46] 李聪鹤, 车潇炜, 白莹, 等. 水体中磺胺甲噁唑间接光降解作用 [J]. 环境科学, 2019, 40(1): 273-280. doi: 10.13227/j.hjkx.201805014

    LI C H, CHE X W, BAI Y, et al. Indirect photodegradation of sulfamethoxazole in water [J]. Environmental Science, 2019, 40(1): 273-280(in Chinese). doi: 10.13227/j.hjkx.201805014

    [47] LÓPEZ-PEÑALVER J J, SÁNCHEZ-POLO M, GÓMEZ-PACHECO C V, et al. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(10): 1325-1333.
    [48] MCNALLY A M, MOODY E C, MCNEILL K. Kinetics and mechanism of the sensitized photodegradation of lignin model compounds [J]. Photochemical & Photobiological Sciences, 2005, 4(3): 268.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.0 %DOWNLOAD: 4.0 %HTML全文: 86.4 %HTML全文: 86.4 %摘要: 9.6 %摘要: 9.6 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 82.8 %其他: 82.8 %Ashburn: 0.1 %Ashburn: 0.1 %Beijing: 7.2 %Beijing: 7.2 %Boulder: 0.1 %Boulder: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Changchun: 0.1 %Changchun: 0.1 %Chengdu: 0.1 %Chengdu: 0.1 %Chiyoda: 0.3 %Chiyoda: 0.3 %Curitiba: 0.6 %Curitiba: 0.6 %Gaocheng: 0.1 %Gaocheng: 0.1 %Guangzhou: 0.1 %Guangzhou: 0.1 %Gulan: 0.1 %Gulan: 0.1 %Hangzhou: 0.1 %Hangzhou: 0.1 %Harbin: 0.1 %Harbin: 0.1 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jinrongjie: 0.7 %Jinrongjie: 0.7 %Kobe: 0.1 %Kobe: 0.1 %Kunming: 0.1 %Kunming: 0.1 %Kunshan: 0.1 %Kunshan: 0.1 %Langfang: 0.1 %Langfang: 0.1 %Montreal: 0.1 %Montreal: 0.1 %Mountain View: 0.1 %Mountain View: 0.1 %Nanjing: 0.4 %Nanjing: 0.4 %Qingdao: 0.2 %Qingdao: 0.2 %San José: 0.1 %San José: 0.1 %Shanghai: 0.1 %Shanghai: 0.1 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Singapore: 0.2 %Singapore: 0.2 %Taiyuan: 0.1 %Taiyuan: 0.1 %Uppsala: 0.1 %Uppsala: 0.1 %Vila Velha: 0.1 %Vila Velha: 0.1 %Winnipeg: 0.2 %Winnipeg: 0.2 %Xiangtan: 0.1 %Xiangtan: 0.1 %XX: 3.2 %XX: 3.2 %Yuci: 0.1 %Yuci: 0.1 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhongshan: 0.1 %Zhongshan: 0.1 %上海: 0.1 %上海: 0.1 %北京: 0.2 %北京: 0.2 %天津: 0.1 %天津: 0.1 %宁波: 0.1 %宁波: 0.1 %广州: 0.1 %广州: 0.1 %成都: 0.1 %成都: 0.1 %朝阳: 0.1 %朝阳: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %益阳: 0.1 %益阳: 0.1 %福州: 0.1 %福州: 0.1 %运城: 0.2 %运城: 0.2 %重庆: 0.1 %重庆: 0.1 %银川: 0.1 %银川: 0.1 %长春: 0.1 %长春: 0.1 %马德里: 0.1 %马德里: 0.1 %其他AshburnBeijingBoulderChang'anChangchunChengduChiyodaCuritibaGaochengGuangzhouGulanHangzhouHarbinHyderabadJinrongjieKobeKunmingKunshanLangfangMontrealMountain ViewNanjingQingdaoSan JoséShanghaiShenyangShenzhenSingaporeTaiyuanUppsalaVila VelhaWinnipegXiangtanXXYuciYunchengZhongshan上海北京天津宁波广州成都朝阳济南深圳益阳福州运城重庆银川长春马德里Highcharts.com
图( 6) 表( 2)
计量
  • 文章访问数:  5583
  • HTML全文浏览数:  5583
  • PDF下载数:  196
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-02-25
  • 刊出日期:  2023-06-27
张宵, 刘一帆, 刘强, 楚沉静, 石美, 马小涵, 李霄云, 郑浩, 李锋民. 溶解性黑碳促进水环境中四环素的光降解[J]. 环境化学, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001
引用本文: 张宵, 刘一帆, 刘强, 楚沉静, 石美, 马小涵, 李霄云, 郑浩, 李锋民. 溶解性黑碳促进水环境中四环素的光降解[J]. 环境化学, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001
ZHANG Xiao, LIU Yifan, LIU Qiang, CHU Chenjing, SHI Mei, MA Xiaohan, LI Xiaoyun, ZHENG Hao, LI Fengmin. Dissolved Black Carbon Enhanced the Photodegradation of Tetracycline in Aqueous Solution[J]. Environmental Chemistry, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001
Citation: ZHANG Xiao, LIU Yifan, LIU Qiang, CHU Chenjing, SHI Mei, MA Xiaohan, LI Xiaoyun, ZHENG Hao, LI Fengmin. Dissolved Black Carbon Enhanced the Photodegradation of Tetracycline in Aqueous Solution[J]. Environmental Chemistry, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001

溶解性黑碳促进水环境中四环素的光降解

    通讯作者: Tel:0532-66781068,E-mail:zhenghao2013@ouc.edu.cn
  • 1. 中国海洋大学近海环境污染控制研究所,海洋环境与生态教育部重点实验室,青岛,266100
  • 2. 青岛海洋科学与技术国家实验室,海洋生态与环境科学功能实验室,青岛,266071
  • 3. 陕西师范大学地理科学与旅游学院,西安,710119
基金项目:
海南省科技计划三亚崖州湾科技城联合项目(220LH061),山东省自然科学基金杰出青年基金(ZR2021JQ13)和山东省自然科学基金(ZR2019MD017)资助

摘要: 具有固碳功能的生物炭材料在土壤修复和水体污染治理中的大规模施用导致了溶解性黑碳的(dissolved black carbon,DBC)的大量释放,其在污染物的环境地球化学过程发挥着重要作用. 相比于天然溶解有机质,DBC稠环度高、芳香性强、分子量小,有更高的光电转化效率,更易产生活性中间体促进有机污染物的光降解. 但不同热解温度(heating temperature,HTT)和生物质类型的DBC对水环境中抗生素(antibiotics, ATs)的光降解影响尚有待深入研究. 本文选取不同HTT(300—600 ℃)的芦苇和芦竹生物炭制备DBC,表征其基本理化性质及结构特征,研究其对水环境中典型ATs四环素(tetracycline, TC)光降解过程的影响,探究关键水环境条件的影响. 结果表明,随着HTT升高,两类DBC的有机碳含量呈先升高后降低趋势,平均分子量呈先降低后增加趋势;芳香性官能团含量增加,芳香性增强,腐殖酸和富里酸类物质含量升高. 所有DBC均促进了TC的光降解(16.3%—97.0%),促进效果随HTT的升高而呈上升趋势. HTT相同时,芦竹DBC对TC光降解的促进效果高于芦苇DBC. 水环境中常见阴离子(NO3、HCO3、SO42、Cl)及阳离子(Fe3+、Ca2+)均在不同程度上抑制了TC的光降解;碱性(pH 7—11)环境中DBC对TC光降解的促进作用强于酸性(pH 3—5)环境. 活性中间体猝灭实验表明DBC对TC光降解的促进作用主要由三重激发态DBC(3DBC*)主导. 本研究拓展了人们对水环境中DBC环境行为及其对共存ATs归趋的理解,为水环境中ATs环境过程和生态风险的预测提供了理论依据.

English Abstract

  • 生物炭(biochar,BC)是生物质在限氧条件下热解(<700 ℃)形成的固态的、难熔的、高度芳香化的富含碳的材料[1],被广泛用于固碳[1-2]、土壤改良[3-4]、水体和土壤污染修复[5]等领域. 溶解性黑碳(dissolved black carbon,DBC)是BC中可溶于水的具有稠环芳烃结构的组分[6]. BC的大规模施用导致DBC释放[7],并通过灌溉、渗透、地表径流在环境中迁移[8]. 相比于BC,DBC具有较小的芳香微域结构和更多的羧基和羟基官能团[8-9],有更高的反应活性和更强的环境迁移能力[9]. 据估计,DBC全球河流通量每年可达2650万t,占河流进入海洋溶解有机碳通量的10%,是陆地BC输入海洋的一个重要来源[6, 10]. DBC的芳香微域结构是有机物和重金属吸附/络合的高能位点[9],会影响污染物的吸附、迁移、转化等关键环境过程[8]. DBC富含的羧基和羟基官能团是其在氧化-还原反应中的重要电子来源[8],参与有机污染物的光化学转化过程[10-11]. 原料和热解温度(heating temperature,HTT)是影响BC性质和用途的关键因素,也必然决定了DBC的结构特征和环境行为[12]. 研究发现,木质素含量较高的稻壳制备的BC芳香性和产量显著高于低木质素含量的甘蔗所制备的BC[3]. 另外,相比于低温(<500 ℃)制备的BC,高温(>500 ℃)BC往往具有更高的芳香性、灰分和pH[5]. 因此,深入理解水环境中不同原料和HTT的DBC与有机污染物的相互作用,有助于更好地预测BC施用环境中污染物的环境行为和评估污染物的生态风险.

    光化学转化是影响水环境中有机污染物环境归趋的重要过程[13]. 水环境中光敏剂的分子结构(芳香性结构和分子大小)和环境条件(pH和盐离子)等是影响光降解的重要因素[14]. 与水环境中天然溶解有机质(natural organic matter,NOM)相比,人工来源的DBC稠环度高,芳香性强,分子量较小,这使其具有更高的光电转化效率[8, 15],更易产生羟基自由基(·OH)、单线态氧(1O2)和激发三重态DBC(3DBC*)等活性中间体(reactive intermediates,RIS)[10]. DBC的这些特性导致其对水环境中有机污染物的光降解过程的影响较NOM更为复杂[16]. 研究发现,DBC促进了塑化剂(如邻苯二甲酸二乙酯)[16]、杀虫剂(如吡虫啉)[12]、个人护理品(如阿替洛尔)[15]和性激素(如17-β雌二醇)[10]等多种有机污染物的光降解. 然而,腐殖酸(humic acid, HA)(DBC的重要组成部分)也可能会因遮光效应抑制有机物的光降解[13]. 可见,DBC参与的水环境中有机污染物的降解过程仍然存在不确定性.

    新污染物是指由人类活动造成的,但尚无法律法规和标准规定或规定不完善的,危害人体健康和生态环境的污染物,主要包括环境内分泌干扰物、全氟化合物、微塑料和抗生素(antibiotics, ATs)四大类[17],而我国对于新污染物的毒理学风险评估、替代技术开发的方面还有局限性. ATs是一类由微生物分泌、化学合成或半合成的化合物,因其对微生物生长代谢的抑制而被广泛应用于医疗、畜牧业、水产养殖等领域[18]. 四环素(tetracycline, TC)因其广谱抗菌性和低廉的价格成为使用量最大的ATs之一. 2015年,全球TC使用量达6万t[19],这也导致TC在地表水、地下水和饮用水等水环境中被广泛检出,含量为ng·L−1—μg·L−1[20-21]. TC对水生动物(水生植物、浮游动物和鱼类)具有较强的生物急性毒性,能够抑制藻类和水生植物叶绿素的合成[22-23]、促进氧化应激反应的产生,影响浮游动物和鱼类的生长发育[22],同时TC还能够破坏水体微生物群落结构[21],损害水生生态系统的结构和功能[24]. 另外,ATs的长期暴露能够促进抗生素抗性基因的传播扩散,增加人体对ATs的抗药性[25],对人体健康产生极大的威胁[18, 26]. ATs在水环境中的光降解过程引起了广泛关注[13]. ATs的光降解主要受ATs种类[15]、环境条件(pH、盐离子)[27]、光敏剂(NOM、DBC)[10]等影响. 目前,水环境中DBC存在时,ATs的光降解研究以往主要集中在单一HTT制备的DBC对ATs光降解的影响上[13, 28],很少涉及不同原料和HTT的DBC对TC光降解的影响.

    本研究以不同HTT(300—600 ºC)制备的湿地植物芦苇(Phragmites australis)和芦竹(Arundo donax)BC为原料提取DBC,探究HTT对DBC理化性质及结构特征的影响,系统研究了不同HTT的DBC对水环境中典型ATs TC的光降解的影响,并探讨了水中常见离子和pH对TC光降解过程的影响,以期阐明DBC影响TC光降解的主要机制. 研究结果将为评估DBC的环境行为及其对共存有机污染物的环境归趋的预测和生态风险的评估提供理论依据.

    • 本研究所用BC均是实验室前期以湿地植物芦苇和芦竹为原料,利用限氧慢速热解法在300—600 ℃条件下制备[29]. DBC的提取步骤如下[10, 13]:将0.2 g BC置于20 mL超纯水中,室温条件下130 r·min−1振荡12 h,过0.45 μm醋酸纤维膜,收集滤液. 将滤膜上的BC重新分散在20 mL超纯水中,用水浴超声仪(KQ-500DE,昆山舒美,中国)在40 kHz频率下水浴超声30 min,过0.45 μm醋酸纤维膜后再次收集滤液. 重复上述超声提取过程两次,合并收集到的滤液,即为DBC溶液[10, 15]. 芦苇DBC标记为LW300、LW400和LW500,芦竹DBC标记为LZ300、LZ400、LZ500和LZ600,数字代表BC的HTT. 将DBC置于4 ℃冰箱中避光保存. TC(纯度>99%)购于生工生物工程(上海)股份有限公司,理化性质见表1.

    • 总有机碳分析仪(TOC-Vcpn,Shimadzu,日本)和pH计(AB150,Thermo Fisher Scientific,美国)测定DBC的总有机碳(TOC)含量和pH. 紫外可见分光光度计(UV-9000S,上海元析,中国)测定DBC紫外-可见吸收光谱,扫描波长为100—900 nm. 荧光分光光度计(F-4600,日立,日本)分析DBC的荧光特性,测定发射波长(Em)为200—550 nm,激发波长(Ex)为220—450 nm. 傅里叶变换红外光谱仪(FTIR,Spectrum Two,PerkinElmer,英国)测定DBC的官能团,扫描区域为4000—500 cm−1,分辨率 4 cm−1 .

    • 在模拟太阳光照射下,于100 mL石英管(含20 mL溶液)中进行DBC暴露下的TC光解实验[27]. 以测得TOC作为DBC原始质量浓度(表2),配置100 mg·L−1(以C的质量计)的DBC储备液. 向石英管中分别加入0.02、0.2、2 mL的DBC储备液和1 mL的TC储备液(400 mg·L−1),用超纯水定容至20 mL. 将石英管放在于以汞灯为光源的光化学反应仪(BL-GHX-V,上海比朗,中国)中,波长为290—400 nm,光功率密度为30 W·m−2,石英管以25 r·min−1匀速旋转. 反应启动后,分别在0、10、20、40、60 min时取600 µL反应溶液,过0.22 µm聚醚砜滤膜后用高效液相色谱仪(HPLC 1260,安捷伦,美国)对TC定量分析. HPLC的检测条件为:C18反向色谱柱(3.5 μm,4.6 mm×250 mm),紫外检测器,波长设为355 nm,柱温为30 ℃,流动相为1:3的乙腈和草酸(0.01 mol·L−1)溶液,流速为 1 mL·min−1,进样量为20 μL.

    • 向含有2 mL DBC储备液的石英管中分别加入0、0.25、0.5、1、2 mL的TC储备液,用超纯水定容至20 mL,按照1.3.1节中条件光解、检测.

    • 选择水环境中常见的阴离子(NO3、HCO3、SO42-、Cl)和阳离子(Fe3+、Ca2+)进行光解实验[27]. 向含有2 mL DBC储备液和1 mL TC储备液的石英管中分别加入0、0.002、0.02、0.2、2 mL的离子储备液(100 mg·L−1),用超纯水定容至20 mL,按照1.3.1节中条件光解、检测.

    • 使用0.1 mol·L−1的HCl和NaOH将含有DBC(10 mg·L−1)和TC(20 mg·L−1)混合溶液的pH分别调整为3、5、7、9和11. 按照1.3.1节中条件光解、检测.

    • 为确定DBC产生的不同RIS在TC光降解中的作用,选择常用的猝灭剂异丙醇(IPA)、2,4,6-三甲基酚(TMP)和叠氮化钠(NaN3)分别验证·OH、3DBC*以及·OH和1O2在光降解过程中的作用[10, 12]. 向含有2 mL DBC储备液和1 mL TC储备液的石英管中分别添加20 μL IPA、2 mL 80 mg·L−1的NaN3和2 mL 0.545 g·L−1的TMP,用超纯水定容至20 mL,按照1.3.1节中条件光解、检测.

    • 采用Excel 2016和Origin 2018进行实验结果的处理分析及图表绘制. 使用SPSS 22.0进行单因素方差分析(ANOVA),结合Duncan 检验(P < 0.05)进行显著性差异分析. 利用Origin 2018绘制三维荧光光谱图并对荧光区域积分进行定量分析. 用二级动力学模型(1/C-1/C0=kt)模拟TC光降解动力学[13],其中CC0分别是t时刻和0时刻的TC浓度,k是二级速率常数.

    • DBC的物理化学性质如表2所示. 随着HTT升高,芦苇和芦竹DBC的TOC含量均呈先升高后降低的趋势. 这是由于在较低HTT下(300—400 ℃),BC炭化程度低,溶解性物质含量较高[3, 30];当HTT升至500 ℃时,纤维素和木质素进一步分解聚合,产生更多稳定性较强的芳烃类物质[3]. 另外,芦竹DBC的TOC含量(101—832 mg·L−1)高于芦苇DBC(98.9—152 mg·L−1),这可能是芦竹生物质较芦苇含有更多的纤维素和半纤维素[31],导致相同HTT的芦竹BC稳定性较低,含有更多的可溶性物质. 随着HTT升高,芦苇和芦竹DBC的pH分别由4.25和5.66上升至5.96和10.2,这是因为HTT升高导致BC中矿物质富集,且矿物质的溶解使得DBC的溶液的pH增加[3]. E4/E6是有机质的芳香性指标,与芳香性呈反比[12]. 随着HTT的升高,芦苇和芦竹DBC的E4/E6由7.17和5.48降低至3.88和2.00(除LZ400外),说明高HTT的DBC芳香性更高. 这是因为BC形成时,生物质发生脱水和裂解反应导致不稳定有机物分解,而聚合反应增加了芳香性物质的含量[5]. 值得注意的是,LZ400的E4/E6大幅升高,这可能是因为纤维素分解为酸醛等可溶性高的物质[32],导致芳香性组分在水相总有机质中占比下降. SUVA254­是有机质的芳香性指标,与芳香性呈正比[12]. 随着HTT升高SUVA254先降低后升高,这表明芳香性在400 ℃时降低,但高温DBC芳香性更高这与E4/E6的结果一致. 相同HTT下,芦苇DBC(0.12—0.18 L·(mg·C·m-1−1)比芦竹DBC(0.02—0.17 L·(mg·C·m-1−1)的芳香性更强,这可能是由于芦苇生物质的木质素含量高,产生的BC芳香性物质更多[31]. E2/E3是有机质分子量大小的指标,与其分子量呈反比[12]. 两类DBC的E2/E3随HTT增加先升高后降低,表明DBC分子量先降低后上升,这与芦苇和芦竹热解形成BC的过程中脂肪烃分解和芳香烃的形成有关[30]. 另外,相同HTT下,芦竹DBC的E2/E3比值(3.81—7.28)高于芦苇DBC(3.67—5.01),表明芦竹DBC平均分子量更小,这与TOC的含量变化规律一致,表明小分子量物质可能更易从BC溶出,形成DBC[33].

      DBC的FTIR图谱如图1所示. 对于芦竹DBC,其在1495—1734 cm−1(C=C、C=O)、1405 cm−1(—CH2—)和1159 cm−1(C—O)处有明显的吸收峰[34].

      随着HTT的升高,C—O的峰大幅度降低,—CH2—的峰也变小,表明不稳定的脂肪族化合物逐渐被分解,而C=C和C=O虽有小幅度降低,但仍有较大的振动峰存在,表明芦竹DBC仍具有较高的芳香性组分[34]. 对于芦苇DBC,在3338 cm−1(酚羟基,—OH)[29, 35]、1495—1734 cm−1(C=C、C=O)、1405 cm−1(—CH2—)和1159 cm−1(C—O)处有明显的吸收峰. 随着HTT升高,—CH2—和C—O的峰逐渐消失,表明不稳定的脂肪烃逐渐分解,C=C和C=O的峰虽也消失,但酚—OH的峰却无明显变化,说明芦苇DBC中的芳香性组分虽有分解,但仍有较高含量的芳香性组分存在. 总体来说,随着HTT的升高,DBC中脂肪族化合物的含量降低,芳香性组分含量增加,这与DBC的芳香性增加的结果一致(表2).

      DBC发色基团的含量对于其光化学反应的发生至关重要[36]. 因此对DBC进行了三维荧光光谱(3D-EEM)分析(图2).

      LW300、LW400、LZ300、LZ400和LZ500在Ⅲ(Ex:200—250 nm和Em:380—550 nm)、Ⅳ(Ex: 200—250 nm和Em: 330—380 nm)和Ⅴ(Ex: 250—400 nm和Em: 380—550 nm)处有明显的荧光峰,它们分别代表富里酸(fulvic acid, FA)类、溶解性微生物代谢产物和HA类物质. LW500和LZ600仅在Ⅲ和Ⅴ处有荧光峰,表明存在FA类和HA类物质. 所有DBC在Ⅰ(Ex:200—250 nm和Em:280—330 nm)和Ⅱ(Ex:200—250 nm和Em:330—380 nm)区域的荧光峰不明显,表明存在芳香性类蛋白质物质. 这些结果表明FA类和HA类物质是DBC的主要组分. 随HTT升高,芦苇DBC FA和HA相对含量分别由21.9%和49.7%增加至24.9%和63.6%,溶解性微生物代谢产物含量由17.1%降至7.5%,芦竹DBCFA类含量由15.6%增加到26.6%,溶解性微生物代谢产物和HA的含量分别由59.3%和18.2%减少到56.4%和9.7%. FA类和HA类物质的总含量随HTT升高呈上升趋势(71.6%—88.5%). NOM中的类FA和HA类物质是重要的光敏剂,吸收光子后会生成激发三重态HA(3HA*)和FA(3FA*),可通过能量转换或者电子转移降解有机污染物[37]. 因此,含有FA类和HA类组分的DBC也可能促进水体中ATs等有机污染物的光降解,这需要进一步的研究.

    • 不同种类DBC对TC光降解的影响如图3所示. 黑暗条件下,DBC对TC浓度无明显影响(图3a),表明非光化学过程对TC降解作用不明显. 光照条件下,DBC不存在时,TC的直接光降解率较低(6.2%),但DBC的存在显著增加了TC的光解率(16.3%—97.0%)(图3b). 用二级动力学方程拟合光解速率k,在不添加DBC时,k为8.3×10−5,添加DBC后,k分别升高为1.7×10−4、1.8×10−4、2.6×10−4、8.3×10−4、8.4×10−4、9.0×10−4和8.8×10−2图3c),表明DBC促进了TC的光解速率,且高温DBC促进效果更强. 相同HTT条件下,芦竹DBC对k的促进效果高于芦苇DBC. 7种DBC中,LZ600对TC的光解的促进最显著,且LZ600在10 mg·L−1的添加量下,TC光解率最高(图3d). 另外,当TC的初始浓度从5 mg·L−1增加至40 mg·L−1时,TC的光解速率从0.32 L·(mg·min)−1升高至1.45 L·(mg·min)−1,然后降低至0.15 L·(mg·min)−1R2>0.91). 其中,TC浓度为20 mg·L−1时,其光解速率最快. 因此,选用10 mg·L−1 LZ600和20 mg·L−1的TC进行后续实验. ZHOU等[10]也发现竹子DBC能够将17-β雌二醇的一阶速率常数提高1个数量级,这与上述DBC增加k值的结果一致,说明DBC能够作为一种高效的光敏剂促进TC的光降解.

    • 实际水环境中存在多种阴离子(如NO3、HCO3、SO42−、Cl)和阳离子(如Fe3+、Ca2+),可能影响DBC的光敏性及污染物的光转化过程[38-43]. LZ600存在的条件下,与不添加离子的对照组相比(99.6%),当溶液中存在NO3、HCO3、SO42−、Cl、Fe3+和Ca2+时,TC的光降解率降为76.0%—80.0%、76.3%—81.0%、71.5%—77.4%、66.8%—69.0%、16.0%—97.3%和1.2%—54.8%(图4a—g).

      另外,不添加离子时,k为6.6×10−2 L·(mg·min)−1,添加离子后,k降为3.4×10−3—3.9×10−3、3.4×10−3—4.2×10−3、3.5×10−3—3.7×10−3、2.2×10−3—2.7×10−3、2.5×10−4—2.6×10−2和9.8×10−4—1.3×10−3 L·(mg·min)−1图4g). 结果表明,环境中常见的离子对DBC介导的TC光降解有一定抑制效果,抑制效果受离子种类和浓度的影响. ZHANG等[27]研究表明HCO3和Cl能够与DBC产生的RIS反应,生成活性小于RIS的次级活性中间体,抑制抗生素抗性基因的光解. MACK和ZHOU等[40-41]发现,NO3和SO42−可以抑制DBC对光子的吸收而抑制DBC光解. OU等[42]发现,Ca2+能够与DBC形成内球配合体,促进DBC沉降进而抑制其光反应. Fe3+在0.01—0.1 mg·L−1添加量下显著抑制DBC的光解,这是由于Fe3+与DBC竞争光子抑制了RIS的生成[43]. 但当添加量为1—10 mg·L−1时,Fe3+对DBC光解的抑制效果被缓解,这可能是因为Fe3+与水分子和DBC产生了光敏剂Fe(OH)2+和Fe-DBC剂促进了RIS的产生[43-44]. 简而言之,离子通过影响DBC对光子的吸收以及RIS的活性影响TC的光降解.

      pH会影响DBC的表面活性和TC的电子密度[42, 45],因此pH可能会对TC的降解产生影响. 不同pH(3、5、7、9和11)对DBC影响的TC光降解如图4h. 随着pH增加,TC光解率从3.7%增加到67.9%,k从5.0×10−5增加到2.3×10−3 L·(mg·min)−1. 这表明碱性条件下,LZ600更有助于促进TC的光降解. 这与李聪鹤等[46]研究一致,在pH为11的条件下,溶解性有机质对磺胺甲恶唑的降解效果最显著. 这可能是由于pH的增加有助于增加DBC的稳定性[42]及促进RIS的产生[46],同时高pH条件下,TC去质子化程度增大,电子密度增加,更易受到RIS的攻击[46-47].

    • DBC是水环境重要的光敏剂,会在光照下发生化学转化[15]. 为探究光解前后LZ600结构组成的变化,测定了光降解后LZ600组成及含量(图5a). 与原始LZ600相比(图2g),光照后LZ600组分Ⅰ—Ⅴ的荧光强度显著降低(14.1%—35.0%),其中FA类和HA类对荧光强度变化的贡献最大(27.1%和54.2%),表明HA类和FA类物质在光照下发生了明显的转化. 先前的研究表明,FA和HA的添加能够产生大量的RIS,将ATs的降解速率提高34%[13]. 因此,DBC导致的TC光解的增强可能归因于FA类和HA类物质的光转化而产生的强氧化性的RIS [15].

      为了进一步探究DBC在光照下产生的不同RIS(·OH、1O23DBC*)在光解中的作用,进行了RIS猝灭实验. 如图5b所示,添加TMP(3DBC*猝灭剂)后,DBC对TC的光解率从97.0%降至84.0%,NaN3(·OH和1O2猝灭剂)和IPA(·OH猝灭剂)的加入对TC光解影响较小. 这说明TC的光降解的增强主要归因于3DBC*. 另外,TMP使得k从1.1×10−2 L·( mg·min) −1降至1.1×10−3 L·(mg·min)−1,IPA使k从1.1×10−2 L·( mg·min) −1降至8.9×103 L·(mg·min)−1,NaN3使k从1.1×10−2 L·( mg·min) −1降至6.8×103 L·(mg·min)−1,NaN3与IPA的k差值为2.1×10−3 L·(mg·min)−1. 这进一步说明DBC对TC的降解由3DBC*起主导作用,·OH和1O2也促进了光解,但贡献较小[10].

      不同HTT下DBC的芳香性、分子量及FA和HA类物质的总含量均不同,为探究这些性质是否会影响DBC对TC光解的效果,进行了TC光解率与DBC的SUVA254、E2/E3、E4/E6、pH和HA和FA总含量的相关性分析(图5c). 结果表明TC光解率与pH呈显著正相关,说明pH很大程度上影响了DBC对TC的光解,可能是因为低pH时,DBC表面会形成致密的层,不易发生光反应[42];高pH时,DBC中HA和FA产生的小分子酸更容易被消耗,使化学平衡不断向RIS生成方向进行,增加了RIS含量[48]. 除pH外,DBC的芳香性(SUV254)也与TC的光解率呈显著正相关,这是因为芳香性物质是DBC吸收光子的主要组分,芳香性的升高会增加DBC光子的吸收进而促进RIS的产生[15]. 除pH和芳香性外,HA和FA含量与TC的光解率也呈正相关,也可能会影响DBC对TC的光解效果,但不是主要原因,DBC的分子量与光解率的相关性较低,对TC的光降解影响较小. 结果进一步说明,DBC促进TC的光降解主要是由于DBC具有的稠环芳烃类结构导致的RIS(3DBC*)的产生引起的(图6).

    • 本研究针对不同热解温度和生物质类型的DBC对水环境中ATs光降解影响效果不明确的问题,重点评估了不同原料和热解温度条件下制备的DBC的理化性质及结构特征,探究了不同制备条件的DBC对ATs光降解的影响和机制及关键水环境条件对ATs光降解的影响. 研究发现:

      (1)随着热解温度升高,DBC的TOC先上升后下降,分子量先降低后上升,芳香性逐渐增强,类FA和类HA相对含量增加.

      (2)DBC对TC的光降解均有促进作用. 随着热解温度升高,芦苇和芦竹DBC对TC光降解的促进作用增加,在相同热解温度下,芦竹DBC对TC光降解的促进效果较芦苇DBC更高.

      (3)水中常见阴离子(NO3、HCO3、SO42−、Cl)和阳离子(Fe3+、Ca2+)均对TC的光降解有抑制作用,抑制效果受离子种类和浓度的影响. DBC在碱性条件下对TC光降解的促进作用较酸性条件更高.

      (4)TC的光降解主要由DBC中的富里酸和腐殖酸类物质光转化产生的·OH、1O23DBC*等活性中间体诱发,其中TC的光降解由3DBC*主导,·OH、1O2对TC光降解的贡献较小.

    参考文献 (48)

返回顶部

目录

/

返回文章
返回