液相萃取-气相色谱-质谱法快速分析血清中有机磷酸酯类三(2,4-二叔丁基苯基)-磷酸酯(AO168O)和2,4-二叔丁基苯基(2,4DtBP)

卢柏灵, 蔡利梅, 刘思, 郭丽琼, 彭子娟, 王晓丽, 宋善军, 李彭辉. 液相萃取-气相色谱-质谱法快速分析血清中有机磷酸酯类三(2,4-二叔丁基苯基)-磷酸酯(AO168O)和2,4-二叔丁基苯基(2,4DtBP)[J]. 环境化学, 2023, 42(4): 1128-1136. doi: 10.7524/j.issn.0254-6108.2021111902
引用本文: 卢柏灵, 蔡利梅, 刘思, 郭丽琼, 彭子娟, 王晓丽, 宋善军, 李彭辉. 液相萃取-气相色谱-质谱法快速分析血清中有机磷酸酯类三(2,4-二叔丁基苯基)-磷酸酯(AO168O)和2,4-二叔丁基苯基(2,4DtBP)[J]. 环境化学, 2023, 42(4): 1128-1136. doi: 10.7524/j.issn.0254-6108.2021111902
LU Boling, CAI Limei, LIU Si, GUO Liqiong, PENG Zijuan, WANG Xiaoli, SONG Shanjun, LI Penghui. Rapid determination of tris(2,4-di-tert-butylphenyl)-phosphate (AO168O) and 2,4-di-tert-butylphenyl (2,4DtBP) in human serum by liquid phase extraction - gas chromatography - mass spectrometry[J]. Environmental Chemistry, 2023, 42(4): 1128-1136. doi: 10.7524/j.issn.0254-6108.2021111902
Citation: LU Boling, CAI Limei, LIU Si, GUO Liqiong, PENG Zijuan, WANG Xiaoli, SONG Shanjun, LI Penghui. Rapid determination of tris(2,4-di-tert-butylphenyl)-phosphate (AO168O) and 2,4-di-tert-butylphenyl (2,4DtBP) in human serum by liquid phase extraction - gas chromatography - mass spectrometry[J]. Environmental Chemistry, 2023, 42(4): 1128-1136. doi: 10.7524/j.issn.0254-6108.2021111902

液相萃取-气相色谱-质谱法快速分析血清中有机磷酸酯类三(2,4-二叔丁基苯基)-磷酸酯(AO168O)和2,4-二叔丁基苯基(2,4DtBP)

    通讯作者: Tel:010-64524787,022-60214996; E-mail:songsj@nim.ac.cn lipenghui406@163.com
  • 基金项目:
    国家自然科学基金(21806158),中国计量科学研究院基本科研业务费(AKY1720),博士后基金(2020M670667),Environmental and Lifestyle in Metabolic Health Throughout Life-Course Trajectories (ELEFANT, No. TmuhMEC2016022)和中新天津生态城2019年度科技型中小企业升级专项项目资助.

Rapid determination of tris(2,4-di-tert-butylphenyl)-phosphate (AO168O) and 2,4-di-tert-butylphenyl (2,4DtBP) in human serum by liquid phase extraction - gas chromatography - mass spectrometry

    Corresponding authors: SONG Shanjun, songsj@nim.ac.cn ;  LI Penghui, lipenghui406@163.com
  • Fund Project: The National Natural Science Foundation of China (21806158), Fundamental Research Funds of National Institute of Metrology, China (AKY1720), China Postdoctoral Science Foundation (2020M670667), Environmental and Lifestyle in metabolic health throughout life-course trajectories (ELEFANT, No. TmuhMEC2016022) and China-Singapore Tianjin Eco-City 2019 Project for Technological Enterprises Upgrading.
  • 摘要: 本研究建立了液相萃取-气相色谱-质谱法快速测定血清中三(2,4-二叔丁基苯基)-磷酸酯(tris(2,4-di-tert-butylphenyl)-phosphate, AO168O)和2,4-二叔丁基苯基(2,4-di-tert-butylphenyl, 2,4DtBP)。血清样品经乙腈提取,离心分离,浓缩定容后进行仪器分析。采用DB-5MS(30 m × 0.25 mm, 0.25 μm)色谱柱进行分离,多重反应监测模式(MRM)进行测定。结果表明,AO168O在0.8—100 ng·mL−1范围内线性关系良好,2,4DtBP在0.6—100 ng·mL−1范围内线性关系良好,相关系数R2分别为0.9992和0.9995;方法检出限分别为0.4 ng·mL−1和0.2 ng·mL−1;加标回收率分别为103%和95%,相对标准偏差(n=5)分别为8.9%和4.7%。采用本方法对天津市青年人群的66份血清样品进行检测,AO168O的检出率为33%,2,4DtBP的检出率为98%,浓度范围分别为ND(未检出)—492.33 ng·mL−1和ND—21.63 ng·mL−1。本研究所建立的方法适用于快速测定血清中的AO168O和2,4DtBP,对进一步评估AO168O和2,4DtBP的人体暴露风险具有重要意义。
  • 溶解空气气浮(DAF)已经被广泛应用于给水处理、废水处理和中水回用过程[1-2]。虽然DAF对COD、BOD5和TSS有一定程度的去除,但其限制了溶解性有机物的去除[3-4]。由于臭氧具有较强的氧化性,故其作为消毒剂和氧化剂也被广泛的应用于给水和废水处理中[5-6],臭氧氧化的主要目的是脱色和去除天然难降解有机物[7-8]。相比传统的深度处理工艺(混凝+沉淀+过滤),DOF工艺有着较高的脱色、脱臭和有机物去除率[9]。同时,由于DOF工艺将混凝、分离、脱色、除臭和消毒等多个过程集中于同1个操作单元[3],比常规深度处理工艺具有低于4倍的水力停留时间[9],节省了建设费用和土地成本。但臭氧气浮工艺对溶解性有机物的去除效果仍有一定的局限性,未能高效去除二级出水中的残余有机物。

    目前,有关气浮工艺的研究大多仍处于基础操作条件的优化[10-11]和气泡大小的改变对气浮工艺去除性能的影响[12-14]。为了进一步提高气浮工艺的去除特性,之前的研究[15-18]着重于溶气水中气泡电荷性质及表面性质的改性对污染物去除特性的影响。ARABLOO等[19]和PASDAR等[20]分别研究了不同浓度表面活性剂和高分子聚合物对气泡理化性质及大小分布的影响。RAO等[21-22]从气泡Zeta电位和PAM剩余浓度等角度对比了聚合物甲基丙烯酸二甲胺基乙酯(N,N-dimethylaminoethyl methacrylate)和N,N-二烯丙基-N,N-二甲基氯化铵(N,N-diallyl-N,N-dimethylammonium chloride)对气泡表面电荷性质改善的效果,并揭示了PAM和微气泡的作用机理。

    先前的研究对絮体表面性质的改性,依然停留在不同价态电解质对表面的改性阶段[23-24]。高分子聚合物PAM应用于气浮工艺中大多是改性气泡表面的性质[17-25],很少涉及对絮体表面特性改善的研究。而且,在气浮工艺中微气泡和絮凝体的结合特性通常用去除性能、接触角及絮体形态特征等表征[26-27],尚未从气载絮体的尺寸大小、形态特征等角度阐明气浮效果。本研究探究了阴阳离子型PAM对以腐殖酸为代表的天然有机物在DOF工艺中去除特性的影响,从去除性能、气载絮体大小及分形维数和接触角等多角度阐明污染物和微气泡的结合特性,揭示絮体表面性质对溶解性有机物去除性能的影响。

    原水用商品腐殖酸配制,称取10 g商品腐殖酸在pH=12的强碱条件溶解于5 L水中,充分搅拌24 h后,用0.45 μm的滤膜过滤保证水样中的有机物为溶解态。实验时水样的腐殖酸浓度为5 mg·L−1 TOC左右。

    实验所用的主要试剂包括聚合氯化铝(PAC)和阴、阳离子型聚丙烯酰胺(ployacrylamide,PAM),电荷密度用电离度表示。阳离子型聚合物FO 4125 SSH分子质量为7×106 Da,电荷密度为2%;阴离子型聚合物AN 905 SH分子质量为11×106 Da,电荷密度为9%。

    臭氧气浮工艺的实验装置见图1,主要由进水系统和溶气水系统2个部分组成。原水加入PAC后在管道混合器中充分混合,经快速混凝后进入接触区底部。回流水在溶气泵、溶气罐的作用下充分溶解臭氧气体,在接触区压力的释放产生大量的微气泡,与原水中的微小絮体结合形成气载絮体,到达分离区后继续上升至顶部形成浮渣。其中,DOF工艺中最重要的一部分是气载絮体的表征技术,利用抽吸装置将气载絮体溶液通过长45 cm和内径5 cm的有机玻璃圆柱体上升管缓慢抽吸到上部观察容器(10 cm×10 cm×15 cm),Nikon SMZ1270i体视显微镜放置在其上表面的正上方。单孔双光纤卤素灯冷光源(21 V,150 W)分别放置在CCD相机的对面和侧面,为图像捕捉提供合适的对比度。实验过程中DOF工艺的运行参数见表1

    图 1  臭氧气浮体系的实验装置图
    Figure 1.  Experiment setup for DOF system
    表 1  臭氧气浮装置的操作条件
    Table 1.  Standard operational condition for DOF reactor
    运行参数 数值 运行参数 数值
    原水进水流速/(L·h−1) 120 分离区高度/m 1.5
    管道混合时间/s 30 直径/m 0.3
    臭氧投加量/(mL·min−1) 60 表面流速/(m·h−1) 2.21
    回流水的流速/(L·h−1) 36 水力停留时间/min 40
    压力/MPa 0.4 总体积/m3 0.10
     | Show Table
    DownLoad: CSV

    本实验涉及的测定项目主要包括Zeta电位、色度、UV254、TOC、气载絮体的尺寸大小、二维分形维数和接触角。其中,Zeta电位采用马尔文Zeta电位分析仪(Zetasizer Nano ZS90型,英国马尔文仪器有限公司)测定;色度用分光光度铂钴比色法测定(UV-4802型,UNIC);UV254采用紫外分光光度计(UV-4802型,UNIC)在254 nm下的吸光度值;TOC采用日本岛津公司生产的TOC-VCPH分析仪直接分析总有机碳浓度;采集的图像借助图像分析测量软件(NIS-Elements D 3.2)测量气载絮体粒径、特征长度、接触角等参数,气载絮体平均粒径(d50)按等面积圆直径求得;根据气载絮体的投影面积A与其最大长度L的函数关系lnA=D2 lnL+lnα,在对数坐标上作图,所得直线的斜率即为气载絮体的二维分形维数;接触角描述多相体系中絮凝体和微气泡间结合特性,采集的图片根据杨氏方程手动测量,如图2所示。在实验过程中,400多个气载絮体被用于尺寸大小、二维分形维数和接触角等分析。

    图 2  絮凝体和微气泡间的接触角示意图
    Figure 2.  Schematic diagram of contact angle between floc and microbubbles

    为了考察混凝剂投加量对DOF工艺中絮体Zeta电位及去除性能的影响,调节混凝剂投加量为0~470 mg·L−1,结果如图3所示。随着PAC投加量的增加,Zeta电位呈升高趋势,TOC、UV254和色度去除率在低PAC投加量下显著升高,在高PAC投加量下趋于稳定趋势。UV254反映的是能够吸收紫外光的有机物,如含有不饱和键和芳香结构的有机物,一般认为色度是由C=C、苯环物质及金属离子等引起的真实色度。在低PAC投加量下,处于亚稳定状态的絮体与微气泡碰撞、结合,但由于带负电的絮体与带负电的微气泡间存在静电排斥力,使得气浮效果并未达到最优。随着PAC投加量的增加,同一混合体系中混凝剂和臭氧之间的互促增效作用产生了具有强氧化性的羟基自由基[28],其可氧化降解大分子有机化合物,从而形成了更多的小分子有机化合物[29],通过微气泡的上升带动污染物的去除,从而实现TOC、UV254和色度的去除。当PAC投加量高于130 mg·L−1时,絮凝体以网扫卷捕的混凝机理脱稳,形成较大的絮体,需要大量微气泡的粘附,故存在微气泡的结合,致使其破灭,不利于气浮,从而导致TOC、UV254和色度的变化呈稳定趋势。这与腐殖酸在混凝过程中最佳混凝剂投加量[30]相一致,即在等电点附近,这表明混凝预处理对DOF工艺去除性能起着重要作用。

    图 3  混凝剂投加量对气浮效果的影响
    Figure 3.  Effect of coagulant dosage on removal performance in DOF

    为了探究不同种类的PAM投加量对气浮效果的去除性能,对比了不同PAC投加量下对腐殖酸的去除效果及气载絮体的微观拍摄图(图4)。结果表明,PAC投加量小于50 mg·L−1未形成气载絮体,PAC投加量大于130 mg·L−1形成较大的气载絮体,不利于气浮工艺。因此,选择使絮体处于亚稳定状态的PAC投加量50 mg·L−1和最佳脱稳状态的PAC投加量130 mg·L−1,研究了不同种类的PAM投加量对DOF工艺中溶解性有机物去除性能的影响,结果如图5所示。对于2种不同类型的PAM来说,PAM的投加均有利于TOC的去除,在达到最佳投加量后,变化趋势并不明显。在相同的PAC投加量下,阳离子PAM在最佳剂量下的去除效果高于阴离子PAM最佳剂量下的去除效果。针对阳离子型PAM,在PAC投加量为50 mg·L−1、PAM投加量为2 mg·L−1时,腐殖酸去除效果最佳;而对于PAC剂量为130 mg·L−1、PAM投加量为1 mg·L−1时,腐殖酸去除效果总体达到最优。对于阴离子型PAM,不论哪种PAC投加量,PAM投加量均为1 mg·L−1时腐殖酸去除效果均达到最优。这与絮凝体、PAM和微气泡间静电引力有着密切的关系。阳离子PAM的投加,通过电荷中和作用,利于污染物的气浮分离。而阴离子PAM的投加,覆盖在微气泡表面形成的气泡群利于絮体的气浮分离[31],同时絮凝体、PAM和微气泡间强的静电斥力不利于微气泡和絮体间的结合,因此,低PAM投加量下微气泡群占主导优势,腐殖酸去除性能呈增加趋势,而高投加量下强负电荷间的静电排斥力也占重要作用,使腐殖酸去除效果变化不明显。

    图 4  不同PAC投加量下的气载絮体微观拍摄图
    Figure 4.  Microphotography of aerated flocs at different PAC dosages
    图 5  不同种类PAM对气浮效果的影响
    Figure 5.  Effect of different types of polymer on removal performance

    比较不同种类PAM剂量下气载絮体的粒径变化,结果如图6所示。对于不同种类的PAM,与PAC投加量为50 mg·L−1时形成气载絮体的尺度相比,PAC投加量为130 mg·L−1时形成的气载絮体粒径较大,这与混凝过程中絮体的脱稳状态相关。在PAC投加量为130 mg·L−1时,颗粒处于最佳的脱稳状态,颗粒间和微气泡的碰撞几率较大,利于气载絮体的形成,则粒径较大。此外,不论哪种PAC投加量,在最佳PAM投加量之前,随着PAM剂量的增加,气载絮体粒径呈先增大后稳定的趋势,这表明在絮体表面PAM适量的吸附利于气载絮体的长大。阳离子型PAM最佳剂量下对应形成的气载絮体粒径大于阴离子型PAM最佳剂量下的粒径。即:在PAC投加量50 mg·L−1时,d阳离子(0.51 mm)>d阴离子(0.46 mm),如图7所示;在PAC投加量为130 mg·L−1时,阴、阳离子型PAM最佳剂量下形成的气载絮体粒径差异较小,如图8所示。这与PAM在颗粒表面的吸附方式有关。PAM剂量对气载絮体粒径的影响可从絮体、PAM高分子和微气泡间的相互作用关系解释。在PAC投加量为50 mg·L−1时,带负电的絮体间存在较强的静电斥力。加入阳离子型PAM后,一方面,带负电的腐殖酸颗粒被电中和进一步脱稳,粒间距离缩短;另一方面,表面吸附的PAM可电中和带负电的微气泡,利于气浮分离。在PAC投加量为130 mg·L−1时,等电点絮体间的静电力可忽略不计,通过氢键作用吸附在颗粒表面的阳离子型PAM可进一步中和微气泡的电荷,以此增加了颗粒和微气泡的碰撞和结合效率。有研究[32]表明,絮体和微气泡结合形成气载絮体的Zeta电位越接近等电点,越有利于气浮分离。这也解释了达到最佳气浮效果时,PAC投加量50 mg·L−1所需的阳离子型PAM剂量高于PAC投加量为130 mg·L−1时的PAM剂量。当PAM浓度较高时,高分子PAM在颗粒表面的覆盖率接近100%,颗粒表面已无吸附空位,架桥作用无法实现,颗粒因位阻效应较大而分散,絮体粒径反而减小,但微气泡的吸附使得气载絮体的粒径并未减小(P>0.05)。同样,对于阴离子型 PAM来说,吸附PAM的微气泡群利于在颗粒表面黏附,利于气浮分离,但颗粒、PAM 和微气泡间存在强的静电斥力,不利于气浮分离,是否有利于气浮分离主要取决于PAM的剂量。

    图 6  不同种类PAM对气载絮体大小的影响
    Figure 6.  Effect of different types of polymer on aerated floc size.
    图 7  PAC投加量为50 mg·L−1,最佳PAM投加量下的气载絮体微观拍摄图
    Figure 7.  Microphotography of aerated flocs at 50 mg·L−1 PAC dosage and optimum PAM dosage
    图 8  PAC投加量为130 mg·L−1,最佳PAM投加量下的气载絮体微观拍摄图
    Figure 8.  Microphotography of aerated flocs at 130 mg·L−1 PAC dosage and optimum PAM dosage

    图9反映了二维分形维数随不同种类PAM投加量变化的关系。王晓昌等[33-34]认为絮凝体分形维数与密度呈正相关,即分形维数越大,絮凝体越密实。由此可以推断,在DOF工艺中,气载絮体的分形维数越小,越利于气浮分离。对于同一类型PAM,2种PAC投加量对应的分形维数的大小与气载絮体尺度的变化相一致。即:在PAC投加量为130 mg·L−1时,絮体完全脱稳,形成致密的絮体,分形维数较大;而对于PAC剂量为50 mg·L−1时,絮体处于亚稳定状态,形成疏松的絮体,相应的分形维数较小。对于不同类型PAM,最优剂量选取变化曲线与二维分形维数变化曲线趋势相同。但对于阳离子型PAM、PAC投加量为50 mg·L−1的分形维数,在最佳PAM剂量时,气载絮体的分形维数并不是最小的,而随着PAM投加量的增加呈增加趋势,这与在颗粒表面通过强的静电引力吸附了大量的PAM有关,使得分形维数较大。

    图 9  不同种类PAM对气载絮体二维分型维数的影响
    Figure 9.  Effect of different types of polymer on the fractal dimension of aerated flocs

    上述实验结果仍归因于絮体、PAM高分子与气泡间的相互作用。PAM剂量为0 mg·L−1时,絮体的生长主要靠电中和机理,易形成较致密的絮体,分形维数较大。对于阳离子型PAM,随着PAM投加量的增加,通常由于高分子伸展的链状吸附及远距离胶体间的架桥作用形成疏松的絮体结构,但由于絮体和微气泡在强静电引力的作用力下彼此靠近、结合,形成致密的气载絮体,分形维数增大;对于阴离子型PAM,颗粒、PAM高分子与微气泡间强的静电斥力使的少量微气泡的黏附,因此,较阳离子型PAM形成的气载絮体分形维数较大。

    多相混合体系中微气泡和絮凝体间接触角随PAM剂量变化的关系如图10所示。图中反映的是颗粒表面的亲疏水性质。通常,接触角越大,表面的疏水性越强,气泡附着在表面的效果越好,则气浮效果越好[35]。对比去除性能曲线与接触角变化曲线可发现,接触角的变化趋势与去除效果呈正相关关系,即在PAC投加量不变时,随着PAM投加量的增加,存在最佳接触角。在低PAM投加量时,PAM的亲水基团以相互作用力吸附在絮体表面,疏水端远离水溶液,利用微气泡的上升力带动絮凝体远离水溶液,利于气载絮体的形成,从而利于污染物分离;随着PAM投加量增加,由于空间位阻的原因,根据热力学定律,絮体表面的PAM处于压缩状态,不利于微气泡和PAM的相互作用,则絮凝体和微气泡间的接触角降低。同样,固定PAC投加量时,阳离子PAM的接触角大于相同投加量阴离子PAM剂量下的接触角,这与颗粒、阳离子型PAM和微气泡间强静电吸附密切相关。

    图 10  不同种类PAM对接触角的影响
    Figure 10.  Effect of different types of polymer on the contact angle

    1)与PAC投加量50 mg·L−1相比,在PAC投加量为130 mg·L−1时,溶解性有机物的去除率较高,气载絮体的粒径、分形维数和接触角均较大。

    2)PAM的投加提高了DOF工艺中的去除性能,且气载絮体尺寸、分形维数和接触角均较大。在PAC投加量为50 mg·L−1时,阴离子型PAM和阳离子型PAM最佳投加量分别为1 mg·L−1和2 mg·L−1;在PAC投加量130 mg·L−1时,阴离子型PAM和阳离子型PAM最佳投加量均为1 mg·L−1

    3)在最佳PAM投加量下,与阴离子PAM相比,阳离子型PAM形成气载絮体的大小和接触角较大,分形维数较小,且去除效果较好。

  • 图 1  AO168O和2,4DtBP的化学结构式

    Figure 1.  Structures of AO168O and 2,4DtBP

    图 2  液相萃取的回收率和基质效应

    Figure 2.  Recoveries and matrix effects of liquid phase extraction

    图 3  HLB萃取柱甲醇润洗体积优化(n=5)

    Figure 3.  Optimization of methanol rinse volume for HLB (n=5)

    图 4  SPE过程空白的本底值(n=3)

    Figure 4.  Concentrations of SPE procedural blank (n=3)

    图 5  血清中AO168O和2,4DtBP的浓度

    Figure 5.  The concentration of AO168O and 2,4DtBP in human serum

    表 1  3种目标化合物的质谱参数

    Table 1.  GC - MS /MS conditions for 3 analytes

    序号No.化合物Analytes保留时间/minRetention time定性离子Qualitative ion(m/z定量离子Quantitative ion(m/z碰撞能/VCE
    12,4DtBP7.8191.1/163.2191.1/57.210
    2AO168O20.7662.2/647.3662.2/316.335
    3TPHP-d1512.4341.1/339.2341.1/243.210
      2,4DtBP:2,4-二叔丁基苯酚(2,4-di-tert-butylphenyl);AO168O:三(2,4-二叔丁基苯基)-磷酸酯(tris(2,4-di-tert-butylphenyl)-phosphate);TPHP-d15:磷酸三苯酯-d15(Triphenyl phosphate-d15)
    序号No.化合物Analytes保留时间/minRetention time定性离子Qualitative ion(m/z定量离子Quantitative ion(m/z碰撞能/VCE
    12,4DtBP7.8191.1/163.2191.1/57.210
    2AO168O20.7662.2/647.3662.2/316.335
    3TPHP-d1512.4341.1/339.2341.1/243.210
      2,4DtBP:2,4-二叔丁基苯酚(2,4-di-tert-butylphenyl);AO168O:三(2,4-二叔丁基苯基)-磷酸酯(tris(2,4-di-tert-butylphenyl)-phosphate);TPHP-d15:磷酸三苯酯-d15(Triphenyl phosphate-d15)
    下载: 导出CSV

    表 2  AO168O和2,4DtBP的全称、缩写、CAS号、相对分子质量、沸点和lg Kow

    Table 2.  Full name, abbreviation, CAS number, molecular weight, boiling point, and lg Kow of AO168O and 2,4DtBP

    序号No.化合物AnalytesCAS号CAS No相对分子质量Molecular weight沸点/℃Boiling point a辛醇/水分配系数lg Kowa
    12,4DtBP96-76-4206.33263.55.19
    2AO168O95906-11-9662.9448016.16
      a由EPI Suite 4.1计算得出。aCalculated by EPI Suite 4.1
    序号No.化合物AnalytesCAS号CAS No相对分子质量Molecular weight沸点/℃Boiling point a辛醇/水分配系数lg Kowa
    12,4DtBP96-76-4206.33263.55.19
    2AO168O95906-11-9662.9448016.16
      a由EPI Suite 4.1计算得出。aCalculated by EPI Suite 4.1
    下载: 导出CSV

    表 3  方法性能参数

    Table 3.  Method performance parameters

    化合物Analytes线性范围/(ng·mL−1)Linear range相关系数(R2检出限/(ng·mL−1)LOD定量限/(ng·mL−1)LOQ回收率/%Recovery相对标准偏差/%RSD(n=5)
    2,4DtBP0.6—1000.99950.20.6954.7
    AO168O0.8—1000.99920.40.81038.9
    化合物Analytes线性范围/(ng·mL−1)Linear range相关系数(R2检出限/(ng·mL−1)LOD定量限/(ng·mL−1)LOQ回收率/%Recovery相对标准偏差/%RSD(n=5)
    2,4DtBP0.6—1000.99950.20.6954.7
    AO168O0.8—1000.99920.40.81038.9
    下载: 导出CSV
  • [1] TOLINSKI M. Antioxidants and heat stabilization[M]. Additives for Polyolefins, Amsterdam: Elsevier, 2015: 19-31.
    [2] DOPICO-GARCÍA M S, LÓPEZ-VILARIÑÓ J M, GONZALEZ-RODRÍGUEZ M V. Antioxidant content of and migration from commercial polyethylene, polypropylene, and polyvinyl chloride packages [J]. Journal of Agricultural and Food Chemistry, 2007, 55(8): 3225-3231. doi: 10.1021/jf070102+
    [3] 付建英, 张忠东, 赵伟, 等. 中国塑料抗氧剂行业现状和研究进展及发展建议 [J]. 塑料助剂, 2021(2): 14-19,65.

    FU J Y, ZHANG Z D, ZHAO W, et al. Plastic antioxidant industry in China: Current situation analysis and research progress & development proposals [J]. Plastics Additives, 2021(2): 14-19,65(in Chinese).

    [4] LIU R Z, MABURY S A. Printing ink related chemicals, including synthetic phenolic antioxidants, organophosphite antioxidants, and photoinitiators, in printing paper products and implications for human exposure [J]. Environment International, 2021, 149: 106412. doi: 10.1016/j.envint.2021.106412
    [5] YANG Y P, HU C Y, ZHONG H N, et al. Effects of ultraviolet (UV) on degradation of irgafos 168 and migration of its degradation products from polypropylene films [J]. Journal of Agricultural and Food Chemistry, 2016, 64(41): 7866-7873. doi: 10.1021/acs.jafc.6b03018
    [6] SHI J C, XU C H, XIANG L, et al. Tris(2, 4-di- tert-butylphenyl)phosphate: An unexpected abundant toxic pollutant found in PM 2.5 [J]. Environmental Science & Technology, 2020, 54(17): 10570-10576.
    [7] LIU R Z, MABURY S A. Unexpectedly high concentrations of a newly identified organophosphate ester, tris(2, 4-di- tert-butylphenyl) phosphate, in indoor dust from Canada [J]. Environmental Science & Technology, 2018, 52(17): 9677-9683.
    [8] LIU R Z, MABURY S A. Single-use face masks as a potential source of synthetic antioxidants to the environment [J]. Environmental Science & Technology Letters, 2021, 8(8): 651-655.
    [9] TANG S Q, CHEN Y K, SONG G X, et al. A cocktail of industrial chemicals in lipstick and nail Polish: Profiles and health implications [J]. Environmental Science & Technology Letters, 2021, 8(9): 760-765.
    [10] VENIER M, STUBBINGS W A, GUO J H, et al. Tri(2, 4-di-t-butylphenyl) phosphate: A previously unrecognized, abundant, ubiquitous pollutant in the built and natural environment [J]. Environmental Science & Technology, 2018, 52(22): 12997-13003.
    [11] WU Y, MILLER G Z, GEARHART J, et al. Children's car seats contain legacy and novel flame retardants [J]. Environmental Science & Technology Letters, 2019, 6(1): 14-20.
    [12] 钱建华, 刘琳, 刘春生. 亚磷酸三(2, 4-二叔丁基苯基)酯的合成 [J]. 精细石油化工, 2001, 18(6): 37-38. doi: 10.3969/j.issn.1003-9384.2001.06.010

    QIAN J H, LIU L, LIU C S. Synthesis of TRIS(2, 4-DI-tert-BUTYL phenyl) phosphite [J]. Speciality Petrochemicals, 2001, 18(6): 37-38(in Chinese). doi: 10.3969/j.issn.1003-9384.2001.06.010

    [13] KRISTON I, PÉNZES G, SZIJJÁRTÓ G, et al. Study of the high temperature reactions of a hindered aryl phosphite (Hostanox PAR 24) used as a processing stabiliser in polyolefins [J]. Polymer Degradation and Stability, 2010, 95(9): 1883-1893. doi: 10.1016/j.polymdegradstab.2010.04.017
    [14] FISCHER K, NORMAN V S, FREITAG D. Studies of the behaviour and fate of the polymer-additives octadecyl-3-(3.5-di-t-butyl-4-hydroxyphenyl)propionate and tri-(2.4-di-t-butylphenyl)phosphite in the environment [J]. Chemosphere, 1999, 39(4): 611-625. doi: 10.1016/S0045-6535(99)00127-7
    [15] CREUSOT N, BUDZINSKI H, BALAGUER P, et al. Effect-directed analysis of endocrine-disrupting compounds in multi-contaminated sediment: Identification of novel ligands of estrogen and pregnane X receptors [J]. Analytical and Bioanalytical Chemistry, 2013, 405(8): 2553-2566. doi: 10.1007/s00216-013-6708-5
    [16] OLSEN C M, MEUSSEN-ELHOLM E T M, HOLME J A, et al. Brominated phenols: Characterization of estrogen-like activity in the human breast cancer cell-line MCF-7 [J]. Toxicology Letters, 2002, 129(1/2): 55-63.
    [17] LIU X T, CHEN D, YU Y J, et al. Novel organophosphate esters in airborne particulate matters: Occurrences, precursors, and selected transformation products [J]. Environmental Science & Technology, 2020, 54(21): 13771-13777.
    [18] 顾俊婕, 胡曼, 张益宁, 等. 人血清中有机磷酸三酯和二酯的生物监测方法的建立 [J]. 分析化学, 2021, 49(8): 1384-1396. doi: 10.19756/j.issn.0253-3820.201541

    GU J J, HU M, ZHANG Y N, et al. Ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry for simultaneous determination of organophosphate triesters and diesters in serum for human biomonitoring study [J]. Chinese Journal of Analytical Chemistry, 2021, 49(8): 1384-1396(in Chinese). doi: 10.19756/j.issn.0253-3820.201541

    [19] 张宁. 食品接触材料中常见的塑化剂和抗氧化剂的检测方法研究[D]. 上海: 上海交通大学, 2018.ZHANG N. Studies on the determination method of common plasticizers and antioxidants in food contact materials[D]. Shanghai: Shanghai Jiao Tong University, 2018(in Chinese).
    [20] 谢家树, 葛庆华. LC/MS测定中生物样品的基质效应问题 [J]. 药物分析杂志, 2008, 28(8): 1386-1389. doi: 10.16155/j.0254-1793.2008.08.046

    XIE J S, GE Q H. Matrix effects in bioanalysis by LC/MS [J]. Chinese Journal of Pharmaceutical Analysis, 2008, 28(8): 1386-1389(in Chinese). doi: 10.16155/j.0254-1793.2008.08.046

    [21] 杨晨, 宋善军, 张玮庭, 等. 气相色谱/电感耦合等离子体质谱联用法测定儿童塑料玩具中多溴联苯醚及有机磷酸酯阻燃剂 [J]. 环境化学, 2020, 39(10): 2683-2692. doi: 10.7524/j.issn.0254-6108.2020032501

    YANG C, SONG S J, ZHANG W T, et al. Determination of polybrominated diphenyl ethers and organophosphate esters in children's plastic toys using gas chromatography-inductively coupled plasma mass spectrometry [J]. Environmental Chemistry, 2020, 39(10): 2683-2692(in Chinese). doi: 10.7524/j.issn.0254-6108.2020032501

    [22] SU G Y, LETCHER R J, YU H X. Determination of organophosphate diesters in urine samples by a high-sensitivity method based on ultra high pressure liquid chromatography-triple quadrupole-mass spectrometry [J]. Journal of Chromatography A, 2015, 1426: 154-160. doi: 10.1016/j.chroma.2015.11.018
    [23] GONG X Y, ZHANG W J, ZHANG S Y, et al. Organophosphite antioxidants in mulch films are important sources of organophosphate pollutants in farmlands [J]. Environmental Science & Technology, 2021, 55(11): 7398-7406.
    [24] 蒋友胜, 艾春艳, 刘源, 等. 人体血清二噁英化合物检测方法的建立 [J]. 卫生研究, 2021, 50(1): 104-110.

    JIANG Y S, AI C Y, LIU Y, et al. Establishment the method for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans determination in human serum [J]. Journal of Hygiene Research, 2021, 50(1): 104-110(in Chinese).

    [25] 王铮, 张济明, 郭剑秋, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法同时测定血清中12种全氟化合物 [J]. 环境与职业医学, 2021, 38(3): 238-244,253. doi: 10.13213/j.cnki.jeom.2021.20441

    WANG Z, ZHANG J M, GUO J Q, et al. Determination of 12 perfluoroalkyl substances in human serum by UPLC-Q-Orbitrap HRMS [J]. Journal of Environmental and Occupational Medicine, 2021, 38(3): 238-244,253(in Chinese). doi: 10.13213/j.cnki.jeom.2021.20441

    [26] 谢琳娜, 张海婧, 侯沙沙, 等. 人血清中18种全氟烷烃化合物 UPLC-MS/MS的测定 [J]. 环境卫生学杂志, 2019, 9(5): 494-501.

    XIE L N, ZHANG H J, HOU S S, et al. Determination of 18 perfluoroalkyl substances in human serum by UPLC-MS/MS [J]. Journal of Environmental Hygiene, 2019, 9(5): 494-501(in Chinese).

    [27] 王菀叶. 基于液相色谱-串联质谱平台测定血清皮质醇的实验方法与质量评估 [J]. 江苏大学学报(医学版), 2021, 31(5): 438-442. doi: 10.13312/j.issn.1671-7783.y200257

    WANG Y Y. Experimental method and quality assessment of serum cortisol determination based on liquid chromatography-tandem mass spectrometry platform [J]. Journal of Jiangsu University (Medicine Edition), 2021, 31(5): 438-442(in Chinese). doi: 10.13312/j.issn.1671-7783.y200257

    [28] 冯晓杰, 杜丽英, 冯章英, 等. LC-MS/MS法测定人血药浓度的基质效应研究进展 [J]. 中国新药杂志, 2015, 24(13): 1488-1492,1497.

    FENG X J, DU L Y, FENG Z Y, et al. Research progress of matrix effect in determining blood concentration by LC-MS/MS [J]. Chinese Journal of New Drugs, 2015, 24(13): 1488-1492,1497(in Chinese).

    [29] 刘明艳, 姚志红, 张依, 等. 两种前处理方法对LC-MS/MS测定家兔血清中淫羊藿黄酮类化合物基质效应的影响 [J]. 分析测试学报, 2011, 30(9): 1006-1012. doi: 10.3969/j.issn.1004-4957.2011.09.010

    LIU M Y, YAO Z H, ZHANG Y, et al. Impact of two pretreatment methods on the matrix effect of Epimedium-derived flavonoid compounds in rabbit serum by LC-MS/MS [J]. Journal of Instrumental Analysis, 2011, 30(9): 1006-1012(in Chinese). doi: 10.3969/j.issn.1004-4957.2011.09.010

    [30] 徐冉驰, 刘力, 徐德生. 四种前处理方法对LC-MS/MS测定大鼠血浆中复方鹿角颗粒多种成分基质效应的影响 [J]. 时珍国医国药, 2016, 27(4): 1017-1021.

    XU R C, LIU L, XU D S. Influence of four pretreatment methods on matrix effect of compound Lujiao Granules in rat plasma by LC- MS/MS [J]. Lishizhen Medicine and Materia Medica Research, 2016, 27(4): 1017-1021(in Chinese).

    [31] HOU M M, SHI Y L, JIN Q, et al. Organophosphate esters and their metabolites in paired human whole blood, serum, and urine as biomarkers of exposure [J]. Environment International, 2020, 139: 105698. doi: 10.1016/j.envint.2020.105698
    [32] LIU R Z, MABURY S A. Synthetic phenolic antioxidants and transformation products in human sera from United States donors [J]. Environmental Science & Technology Letters, 2018, 5(7): 419-423.
    [33] DU B B, ZHANG Y, LAM J C W, et al. Prevalence, biotransformation, and maternal transfer of synthetic phenolic antioxidants in pregnant women from South China [J]. Environmental Science & Technology, 2019, 53(23): 13959-13969.
    [34] ZHANG Q Y, LI X J, WANG Y, et al. Occurrence of novel organophosphate esters derived from organophosphite antioxidants in an e-waste dismantling area: Associations between hand wipes and dust [J]. Environment International, 2021, 157: 106860. doi: 10.1016/j.envint.2021.106860
    [35] DU B B, SHEN M J, CHEN H, et al. Beyond traditional organophosphate triesters: Prevalence of emerging organophosphate triesters and organophosphate diesters in indoor dust from a mega E-waste recycling industrial park in South China [J]. Environmental Science & Technology, 2020, 54(19): 12001-12012.
  • 加载中
图( 5) 表( 3)
计量
  • 文章访问数:  2963
  • HTML全文浏览数:  2963
  • PDF下载数:  162
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-19
  • 录用日期:  2022-01-26
  • 刊出日期:  2023-04-27
卢柏灵, 蔡利梅, 刘思, 郭丽琼, 彭子娟, 王晓丽, 宋善军, 李彭辉. 液相萃取-气相色谱-质谱法快速分析血清中有机磷酸酯类三(2,4-二叔丁基苯基)-磷酸酯(AO168O)和2,4-二叔丁基苯基(2,4DtBP)[J]. 环境化学, 2023, 42(4): 1128-1136. doi: 10.7524/j.issn.0254-6108.2021111902
引用本文: 卢柏灵, 蔡利梅, 刘思, 郭丽琼, 彭子娟, 王晓丽, 宋善军, 李彭辉. 液相萃取-气相色谱-质谱法快速分析血清中有机磷酸酯类三(2,4-二叔丁基苯基)-磷酸酯(AO168O)和2,4-二叔丁基苯基(2,4DtBP)[J]. 环境化学, 2023, 42(4): 1128-1136. doi: 10.7524/j.issn.0254-6108.2021111902
LU Boling, CAI Limei, LIU Si, GUO Liqiong, PENG Zijuan, WANG Xiaoli, SONG Shanjun, LI Penghui. Rapid determination of tris(2,4-di-tert-butylphenyl)-phosphate (AO168O) and 2,4-di-tert-butylphenyl (2,4DtBP) in human serum by liquid phase extraction - gas chromatography - mass spectrometry[J]. Environmental Chemistry, 2023, 42(4): 1128-1136. doi: 10.7524/j.issn.0254-6108.2021111902
Citation: LU Boling, CAI Limei, LIU Si, GUO Liqiong, PENG Zijuan, WANG Xiaoli, SONG Shanjun, LI Penghui. Rapid determination of tris(2,4-di-tert-butylphenyl)-phosphate (AO168O) and 2,4-di-tert-butylphenyl (2,4DtBP) in human serum by liquid phase extraction - gas chromatography - mass spectrometry[J]. Environmental Chemistry, 2023, 42(4): 1128-1136. doi: 10.7524/j.issn.0254-6108.2021111902

液相萃取-气相色谱-质谱法快速分析血清中有机磷酸酯类三(2,4-二叔丁基苯基)-磷酸酯(AO168O)和2,4-二叔丁基苯基(2,4DtBP)

    通讯作者: Tel:010-64524787,022-60214996; E-mail:songsj@nim.ac.cn;  lipenghui406@163.com
  • 1. 天津理工大学,天津,300384
  • 2. 中国计量科学研究院,北京,100029
  • 3. 天津大学,天津,300072
基金项目:
国家自然科学基金(21806158),中国计量科学研究院基本科研业务费(AKY1720),博士后基金(2020M670667),Environmental and Lifestyle in Metabolic Health Throughout Life-Course Trajectories (ELEFANT, No. TmuhMEC2016022)和中新天津生态城2019年度科技型中小企业升级专项项目资助.

摘要: 本研究建立了液相萃取-气相色谱-质谱法快速测定血清中三(2,4-二叔丁基苯基)-磷酸酯(tris(2,4-di-tert-butylphenyl)-phosphate, AO168O)和2,4-二叔丁基苯基(2,4-di-tert-butylphenyl, 2,4DtBP)。血清样品经乙腈提取,离心分离,浓缩定容后进行仪器分析。采用DB-5MS(30 m × 0.25 mm, 0.25 μm)色谱柱进行分离,多重反应监测模式(MRM)进行测定。结果表明,AO168O在0.8—100 ng·mL−1范围内线性关系良好,2,4DtBP在0.6—100 ng·mL−1范围内线性关系良好,相关系数R2分别为0.9992和0.9995;方法检出限分别为0.4 ng·mL−1和0.2 ng·mL−1;加标回收率分别为103%和95%,相对标准偏差(n=5)分别为8.9%和4.7%。采用本方法对天津市青年人群的66份血清样品进行检测,AO168O的检出率为33%,2,4DtBP的检出率为98%,浓度范围分别为ND(未检出)—492.33 ng·mL−1和ND—21.63 ng·mL−1。本研究所建立的方法适用于快速测定血清中的AO168O和2,4DtBP,对进一步评估AO168O和2,4DtBP的人体暴露风险具有重要意义。

English Abstract

  • 有机亚磷酸酯抗氧化剂(organophosphite antioxidants, OPAs)被广泛用于印刷油墨、塑料、石油、个人护理产品甚至食品中,以延缓氧化反应并延长其保质期[1]。其中,亚磷酸三(2,4-二叔丁基苯基)酯(tris(2,4-di-tert-butylphenyl) phosphite,AO168)能够显著提高聚合物的稳定性并延长使用寿命,被广泛应用于聚丙烯(PP)、聚乙烯(PE)、苯乙烯及其共聚物等高分子材料中[2-3]。在美国,AO168的年产量为4536—22680 t[4]。2020年,在中国的PP和PE塑料制品中,AO168的添加量为63 t[3]。研究表明,AO168的大鼠急性注射毒性LD50≥2000 mg·kg−1,并且在生产和使用过程中,AO168主要转化为三(2,4-二叔丁基苯基)-磷酸酯(tris(2,4-di-tert-butylphenyl)-phosphate,AO168O)和2,4-二叔丁基苯基(2,4-di-tert-butylphenyl,2,4DtBP)(结构式见图1[5]

    近年来,AO168O和2,4DtBP在大气颗粒物[6]、室内灰尘[7]和日常用品[8-9]中广泛检出,受到了越来越多的关注[10]。AO168作为抗氧化剂[11],在塑料生产过程使用过程中不断被消耗[12-13],AO168O的含量逐渐上升[14]。进入环境中的AO168也可能通过生物和非生物途径降解,导致AO168O和2,4DtBP在环境中检出[14]。毒理学研究表明,2,4DtBP能够与雌激素受体结合,减少17β-E刺激细胞的生长,具有内分泌干扰作用[15-16]。虽然AO168O的毒理学机理尚未明确,但通过呼吸暴露和皮肤暴露途径进入人体的每日摄入量(estimated daily intake, EDI)计算结果表明,其对人体健康产生的潜在风险仍不容忽视[4, 17]

    血清作为评估有机污染物人体内暴露的重要介质,可以反映污染物对人体长时间的暴露水平[18]。目前,有关血清中AO168O和2,4DtBP的研究较少,相应的分析方法及人体健康风险也未见报道。因此,开发血清中AO168O和2,4DtBP的分析方法,对评估AO168O和2,4DtBP人体暴露水平及潜在的健康风险具有重要意义。

    目前,AO168O和2,4DtBP的分析方法主要有气相色谱-质谱法(GC-MS/MS)[5-6]和液相色谱-质谱法(LC-MS/MS)[19]。本研究基于GC-MS/MS检测,通过对液相萃取和固相萃取方法的优化和比较,建立了血清中AO168O和2,4DtBP的前处理方法,并对采集自天津市部分青年人群的66份血清样品进行测定,验证了方法在实际样品分析中的可行性。该方法可为评估AO168O和2,4DtBP的人体健康风险提供技术支持。

    • 正己烷、二氯甲烷(色谱纯,美国Honeywell公司);甲醇、乙腈、乙酸乙酯(色谱纯,美国Merck公司);AO168O标准品(纯度:95%;加拿大Toronto Research Chemicals公司);2,4DtBP标准品(纯度:99%,美国Sigma-Aldrich公司);内标TPHP-d15(纯度:98.8%,天津阿尔塔科技有限公司);Oasis HLB固相萃取柱(200 mg,6 mL,美国Waters公司);Sprague Dawley大鼠血清(SD大鼠血清,上海研尊生物科技有限公司)。

    • 气相色谱-质谱仪(7890A-7000B,美国Agilent公司),配有电子轰击源(EI);固相萃取设备(美国Supelco公司);氮吹仪(美国Organomation公司);Milli-Q纯水仪(美国Barnsteead International公司);万分之一天平(瑞士Mettler Toledo公司)。

    • 样品采集:血清样品来源于天津市某医院的备孕男性体检人群,随机选取66份血清样品进行测定。受试者均自愿参与本研究项目并签署了《知情同意书》。将全血样品收集在不加抗凝剂的真空采血管中,以3000 r·min−1离心10 min,采集血清上清液。采集后的血清样品存放在-80 ℃冰箱中冷冻保存直至分析。

      前处理分析:将血清样品从-80 ℃冰箱中取出,先置于−20 ℃保存1 h,然后转移至4 ℃保存1 h,最后转移至25 ℃室温保存1 h。准确量取0.5 mL的血清样品并转移至10 mL玻璃离心管中,加入3 mL乙腈,振荡10 min,然后在3000 r·min−1条件下离心10 min,取出上清液至玻璃试管中,萃取过程重复3次。萃取完成后,合并上清液并氮吹浓缩。使用0.5 mL正己烷复溶并加入10 μL的内标TPHP-d15(1 ng·μL−1),使用GC-MS/MS进行测定。

    • 色谱条件:DB - 5MS 色谱柱(30 m × 0.25 mm × 0.25 μm);不分流进样模式;高纯氦气(99.999%)作为载气;载气流量为1.5 mL·min−1;进样量为2 μL;溶剂延迟为5 min;进样口温度为280 ℃;升温程序:起始温度80 ℃(保持1 min),升温(15 ℃·min−1)至200 ℃,然后升温(30 ℃·min−1)至300 ℃(保持15 min)。

      质谱条件:电子轰击(EI)离子源(70 eV);离子源和传输线温度均为280 ℃;检测方式为多重反应监测模式(MRM)(具体参数见表1)。

    • 本研究中使用SD大鼠血清进行空白及加标实验。为了避免本底污染,实验材料均使用玻璃容器。玻璃容器在使用前依次用超纯水、丙酮和正己烷润洗3次,120 ℃烘干后备用。仪器分析前,多次测定纯正己烷监测仪器本底值,确保目标物的本底值低于检出限后进行实际样品测定。对优化后的方法进行性能验证,包括线性范围、检出限、定量限、精密度等。

    • 基质效应(Matrix effect,ME)指前处理分离时共洗脱的基质成分影响待测组分的离子化效率,导致仪器分析信号的抑制或增强,影响实验测定结果的重复性和准确性[20-21]。由于AO168O和2,4DtBP没有相应的同位素内标,因此选择与其结构类似的TPHP-d15作为评估基质效应的内标。基质效应使用公式1进行计算:

      其中,A是纯溶剂中加入20 μL内标TPHP-d15(0.5 ng·μL−1)的峰面积,B是血清样品经过不同前处理步骤后加入20 μL内标TPHP-d15(0.5 ng·μL−1)的峰面积。ME为90%以下时,基质效应表现为抑制作用;ME为90%—110%时,基质效应适中,可忽略不计;ME为120%—150%时,基质效应表现为中等增强作用;ME大于150%时,基质效应表现为强基质作用[22]

    • 配制AO168O和2,4DtBP标准溶液并进行质谱参数优化,在电子轰击源(EI)模式下进行一级质谱扫描,选择各化合物丰度最高的特征离子碎片作为母离子;再进行二级质谱扫描,选择对应的特征碎片离子作为子离子。经过优化后,采用多重反应监测模式(MRM)对所有化合物进行检测,各目标物的检测参数见表1

    • 色谱条件基于目标物性质(表2)及文献[6]报道进行优化。2,4DtBP和AO168O均属于非极性化合物(lg Kow:5.19和16.16),实验采用非极性色谱柱DB-5MS(30 m × 0.25 mm,0.25 μm)进行分离,升温程序见“1.4”部分。结果表明,在此条件下,2,4DtBP和AO168O均能实现分离,且分析时间较短,没有目标物残留,能够应用于目标物的测定。

    • 目前,环境样品中(大气颗粒物、土壤等)对AO168O和2,4DtBP的前处理大部分采用超声萃取法[17, 23]。血清中主要的前处理方法包括液液萃取法和固相萃取法[24-27]。本研究通过在SD大鼠血清中加入10 μL的目标物(0.5 ng·μL−1),对液相萃取法和固相萃取法两种前处理方法分别进行实验,通过加标回收率等参数进行评估。

    • 在本研究中,重点评估了不同极性溶剂(正己烷、乙酸乙酯和乙腈)对血清中2,4DtBP和AO168O的提取效率。每种溶剂重复5次,并平行开展过程空白实验(n=3),对背景污染进行评估,结果见图2。对2,4DtBP和AO168O,乙腈的加标回收率分别为100%—132%和126%—189%;正己烷和乙酸乙酯对2,4DtBP的萃取效果较差,加标回收率分别为31%—98%和27%—58%,对AO168O的加标回收率最高可达200%以上。通过对比平行空白发现,并未发生过程污染,因此判断这可能与基质效应有关。

      进一步考察基质效应的影响(n=5),结果表明,乙腈和正己烷萃取物表现出中等基质增强作用[28],基质效应平均值分别为128%和122%。当乙酸乙酯作为萃取剂时,有强基质增强作用(217% ± 12%)。这可能是由于乙酸乙酯萃取血液样品(血清或血浆)时,共萃取物易在质谱检测中产生基质增强效应,Liu等[29]在测定血清中的淫羊藿黄酮类化合物时,同样发现乙酸乙酯作为萃取溶剂表现出基质增强的效果(ME:104%—187%)。Xu等[30]使用乙酸乙酯萃取大鼠血浆中的特女真苷和橙皮苷也表现出中等基质增强效应(ME:130%—137%)。本研究在经过乙腈前处理后的样品中加入10 μL的内标TPHP-d15(1 ng·μL−1),校正基质效应,达到对目标物准确定量的目的。

    • 基于文献[31]报道,本研究选择Oasis HLB柱(200 mg,6 mL)作为萃取柱。过程空白(n=3)结果表明,HLB柱存在明显的本底干扰,甲醇洗脱可检出高浓度的2,4DtBP和AO168O,浓度值分别为184.3—232 ng·mL−1和847.5—1604.6 ng·mL−1。在上样前采用甲醇对SPE柱进行润洗,以减少HLB柱本底引入。通过实验发现,当甲醇的润洗体积为27 mL时,并未在润洗液中发现目标物(图3)。

      因此,选用30 mL的甲醇对HLB柱润洗,以减少本底引入。进一步采用正己烷、正己烷-二氯甲烷(1∶1,体积比)、二氯甲烷、甲醇4种溶剂作为洗脱溶剂考察洗脱效率(n=3)。结果表明,采用甲醇洗脱时,2,4DtBP和AO168O的加标回收率分别为45%—98%和74%—112%。然而,正己烷、正己烷-二氯甲烷(1∶1,体积比)、二氯甲烷对目标物的回收率均高于200%,并且过程空白中仍存在较高的本底(见图4)。上述结果表明,固相萃取柱中的本底仍未能完全去除,即使经过甲醇润洗后仍存在本底干扰的风险。进一步对玻璃材质的固相萃取柱进行了考察,结果表明,AO168O和2,4DtBP加标回收率范围为82%—114%,定量限分别为0.6 ng·mL−1和0.3 ng·mL−1,过程空白未检出本底污染。

      综上,通过对比液相萃取法和固相萃取法,表明常用的塑料材质SPE柱可能造成过程污染,严重影响检测结果的准确性。采用玻璃材质的固相萃取柱以及液相萃取法可去除本底污染,其方法性能基本一致。但是采用玻璃固相萃取柱进行前处理时,其步骤相对复杂,耗时较长,检测成本高昂,液相萃取法与之相比操作更为简单快速,更加适用于大批血清样品的检测。因此,选择液相萃取法作为血清中2,4DtBP和AO168O的前处理方法,并采用此方法进行实际血清样品的分析。

    • 配制AO168O(0.8—100 ng·mL−1)和2,4DtBP(0.6—100 ng·mL−1)的标准溶液,直接进样测定,以化合物浓度为横坐标,样品峰面积为纵坐标,进行线性回归分析。AO168O和2,4DtBP在配制浓度范围内线性关系良好,相关系数R2分别为0.9992和0.9995。在SD大鼠血清中加入目标物,按照样品前处理方法进行分析,经过内标校正后,测定方法的检出限(LOD,S/N = 3)和定量限(LOQ,S/N = 10)。结果表明,AO168O的检出限和定量限分别为0.4 ng·mL−1和0.8 ng·mL−1,2,4DtBP的检出限和定量限分别为0.2 ng·mL−1和0.6 ng·mL−1(见表3)。在SD大鼠血清中加标10 μL(0.5 ng·μL−1)进行回收率实验并采用外标法计算加标回收率(见表3)。AO168O和2,4DtBP的平均回收率分别为103%和95%,相对标准偏差(RSD)分别为8.9%和4.7%,表明本方法具有较好的准确性和重复性。采用超纯水模拟血清,按照实际样品的操作步骤进行处理,过程空白中没有检测出AO168O和2,4DtBP。当前,生物样品(血清、尿液等)中AO168O和2,4DtBP同时检测的方法仍鲜有报道。Liu等[32]使用液液萃取法-UPLC-MS/MS法测定人体血清中2,4DtBP,其方法定量限为0.12 ng(血清:3 mL)。Du等[33]使用液液萃取法-LC-MS/MS法测定人体血浆中2,4DtBP,方法定量限为0.076 ng(血浆:2 g)。本研究在使用0.5 mL血清样品的条件下,2,4DtBP的灵敏度与已报道的方法基本相当。

    • 本研究应用液相萃取-气相色谱-质谱法对66份血清样品进行测定,每份血清样品量为0.5 mL。结果如图5所示,在血清中AO168O检出率为33%,2,4DtBP的检出率为98%。其中,AO168O是血清中检测出浓度最高的单体,浓度范围为ND(未检出)—492.33 ng·mL−1;2,4DtBP在血清中的浓度范围为ND—21.63 ng·mL−1。Liu等[32]在美国50名献血者的血清中发现,2,4DtBP在92%的血清样品中检出,平均浓度远高于其它的合成酚类抗氧化物,浓度范围为ND—14.8 ng·mL−1。尽管本研究测定的血清数量有限,但其检出率相对较高,表明天津市居民可能面临AO168O和2,4DtBP暴露风险。目前,在室内灰尘的报道中,AO168O和2,4DtBP的EDI远高于其他有机污染物[7, 34]。在室内环境中,儿童(14.8 ng·kg−1·d−1体重)的AO168O灰尘摄入量要远高于成年人(0.77 ng·kg−1·d−1体重)。在电子垃圾拆解地[35],职业工人(20.1 ng·kg−1·d−1体重)的暴露风险是当地居民(3.6 ng·kg−1·d−1体重)的5倍。而在电子垃圾拆解地的主要工作场所中,相比于灰尘摄入暴露,通过手对口接触的暴露风险更高,AO168O和2,4DtBP的EDI可达69 ng·kg−1·d−1体重和82.5 ng·kg−1·d−1体重[34]。以上研究表明,AO168O和2,4DtBP对人体具有较高的暴露风险,本研究通过人体血清分析进一步证实了该类物质在人体内的存在,所建立的方法可用于后续AO168O和2,4DtBP人体暴露的风险评估。

    • 本研究建立了液相萃取-气相色谱-质谱法同时测定血清样品中AO168O和2,4DtBP。该方法具有本底干扰少、灵敏度高、前处理简单等优点,能够满足测定血清中AO168O和2,4DtBP的需求。应用本方法对66个血清样品进行分析检测,同时检出高浓度的AO168O和2,4DtBP,验证了方法可行性。目前,关于血清中AO168O和2,4DtBP的赋存浓度研究较少,相应的测定方法还不完善。因此,本研究所建立的测定方法可为后续监测相关污染物的人体暴露风险提供方法支持。

    参考文献 (35)

返回顶部

目录

/

返回文章
返回