-
目前全球染料年产量超过700×104 t,染料品种已经超过10×104余种,常用染料有2 000种以上,而且每年人工合成的新型染料也层出不穷,各地的江河湖泊都受到不同程度的污染[1-2]。而且这些染料大多为酚类化合物、苯类化合物[3],其结构复杂、难以生物降解、对生态环境危害极大[4-5]。因此,处理有机废水中的染料大分子是当前必须解决的热点问题。目前常用于有机废水治理的方法主要有物理吸附法、化学法、生物处理法、膜分离技术等[6-7]。但是这些方法往往对系统条件要求苛刻,成本和能耗高,需要二次维护[8-9]。与上述处理方法相比,光催化技术具有操作简单、成本低廉、循环性好等优点[10-11]。
g-C3N4作为一种通过π-π共轭形成的可见光响应型催化剂,通过范德华力作用堆砌形成二维层状结构,与石墨烯的层状结构类似,其具有优异的光稳定性和热稳定性[12]、良好的生物相容性、合适的能带结构以及优异的光电转化性能,常用于光催化分解水制氢[13-15]、二氧化碳还原[16-17]、有机污染物降解[18-19]等。然而,g-C3N4也有不可避免的缺陷,如比表面积小导致对有机污染物的吸附性能差[20];光生电子-空穴对复合率高导致催化活性差等,严重限制了其对有机污染物的降解性能[21-22]。目前,有研究者通过制备三维多孔氮化碳改善了上述问题。LIU等[23]以三聚氰酸-三聚氰胺超分子和离子液体分别做为前体和模板,合成了三维多孔超薄g-C3N4纳米片。其中,3D多孔结构增大了g-C3N4的比表面积,暴露了更多的活性位点,超薄结构的纳米片降低了载流子传输距离,抑制了载流子的复合率。WANG等[24]在软模板P-123存在下对超分子前驱体进行水热处理,制备出由空心气泡组成的三维g-C3N4催化剂。硬模板法[25]在控制造孔孔径大小和孔径分布上具有明显优势,但脱除模板的过程中要用到强酸或强碱进行处理,容易使氮化碳的—N—、═NH和—NH2官能团发生质子化作用,最终破坏其缩聚结构,且模板脱除过程产生的废酸、废碱过多[26-27]。软模板法可选择大多数表面活性剂以及低沸点分子充当模板,但是实验过程中需要调控的因素很多,生成的孔不如硬模板法整齐,并且表面活性剂可能不随高温完全分解从而残留于样品表面[28]。与上述方法相比,NH4Cl作为气体模板辅助造孔,无需在后续过程中去除模板,实验操作步骤更加简便,且不容易改变g-C3N4的基本结构。此外,以NH4Cl为模板辅助制备多孔g-C3N4不仅有利于对污染物的吸附[29],还可在煅烧前驱体的过程中促进CN−的生成,进而抑制光生电子空穴对的复合,提高对有机污染物的降解性能。
本研究采用气体模板NH4Cl辅助制备出多孔g-C3N4,通过XRD、FT-IR、UV-vis和XPS等表征研究样品的化学结构和晶相结构,通过SEM和TEM表征样品的表面形貌和微观结构,通过光催化降解水中RhB评价样品的光催化性能和循环性能,利用荧光光谱仪、瞬态荧光光谱仪和电化学工作站研究光生电子与空穴的复合和迁移状况,最后通过自由基捕获实验和高分辨质谱仪测试分析其光催化降解机理,旨在为开发新型光催化剂和建立RhB的降解方法提供参考。
-
实验所用的药品均为分析级试剂,使用前无需纯化。三聚氰胺和RhB购自天津科密欧科技有限公司,NH4Cl购自上海麦克林生化科技有限公司,对苯醌购自上海麦克林生化科技有限公司,三乙醇胺购自天津市大茂化学试剂公司,无水乙醇和异丙醇购自天津富宇精细化工有限公司,去离子水由超纯水仪处理所得。
-
马弗炉(KSL-1400X-A1,合肥科晶材料技术有限公司),X射线衍射仪(D2 PHASER,德国Bruker公司),X射线光电子衍射仪(ESCALAB 250XI,美国Thermo Fisher Scientific Inc公司),场发射扫描电镜(SU5000,日本Hitachi公司),透射电子显微镜(FEI Tecnai G2 F20 S-TWIN,美国FEI公司),紫外-可见分光光度计(UV-2600,日本岛津公司),傅里叶红外光谱仪(INVENIO,德国Bruker公司),BET比表面积测试仪(Autosorb-IQ-II,陕西盖卓电子科技有限公司),荧光光谱仪(FS5,英国爱丁堡公司),电化学工作站(CHI600E,上海辰华仪器有限公司),氙灯光源(CEL-HXF300-T3,北京中教金源有限公司),总有机碳分析仪(vario TOC cube,Elemental仪器公司),高分辨质谱仪(Thermo Scientific Q Exactive,美国Thermo Scientific公司)。
-
1) g-C3N4的制备。以三聚氰胺为前驱体,通过高温煅烧法制备g-C3N4。取1.5 g三聚氰胺,用锡箔纸包裹后,置于有盖坩埚中,在马弗炉以550 ℃煅烧3 h。自然冷却所得黄色即为g-C3N4,研磨后进行光催化性能测试。
2) 多孔g-C3N4的制备。采用高温煅烧三聚氰胺和NH4Cl混合物的方法制备多孔g-C3N4。将1.5 g三聚氰胺分别与相应质量(0.675、0.75、0.825、0.9、0.975 g)的NH4Cl溶于50 mL去离子水中,磁力搅拌4 h,放入70 ℃烘箱中,蒸干水分。随后用锡箔纸包裹后,放入有盖的坩埚内,在马弗炉以550 ℃煅烧3 h,自然冷却所得黄色固体即为x%-PCN(x%表示前驱体中NH4Cl的质量分数),研磨后进行光催化性能测试。
-
1) 各项表征和测试。XRD测试:以Cu Kα为辐射源,扫描范围为2θ=5°~80°,扫描速度为2(°)·min−1。FT-IR测试:样品与KBr以1:100质量比混合研磨,压成半透明薄片测样,波数为400~4 000 cm−1。SEM测试:取少量样品贴于黑色导电胶上,真空喷金后测样。TEM测试:将样品溶于无水乙醇,超声混匀后滴在铜网上,装样测试。BET测试:样品以150 ℃脱气6 h。UV-vis测试:采用紫外-可见分光光度计,扫描波长为200~800 nm。PL测试:以波长为385 nm的激发光测量样品波长为390~640 nm的发射光谱。光电流-阻抗测试:采用三电极体系,0.1 g催化剂溶于10 mL溶剂(V水∶V无水乙醇=9∶1),超声后取上清液涂膜于FTO玻璃上,以此作为工作电极,参比电极为饱和甘汞电极,铂片电极为对电极,电解液为0.5 mol·L−1的Na2SO4溶液。高分辨质谱:取1.5 mL降解后RhB液体,甲醇为溶剂,EIS为离子源。
2) 催化剂降解性能测试。取0.1 g催化剂,加入100 mL质量浓度为30 mg·L−1的RhB溶液中,在黒暗环境下磁力搅拌20 min,以达到吸附-脱附平衡。随后用300 W氙灯模拟太阳光照射,每隔10 min取5 mL溶液,离心后取上清液,用UV-vis分光光度计测试吸光度。将使用过后的催化剂用水和乙醇洗至中性,烘干后按照上述步骤重复4次,以考察催化剂的稳定性。
-
1) XRD分析。由图1可以看出,g-C3N4在13.5°和27.5°处有2个特征衍射峰,13.5°处的峰是面内三嗪环之间相互连接的特征峰,对应g-C3N4的(100)晶面,27.5°处的峰是环状芳香物层与层之间的堆积特征峰,对应g-C3N4的(002)晶面。与g-C3N4相比,PCN的2个特征峰均未发生明显改变,说明以气体模板法辅助制备PCN没有改变g-C3N4的晶相结构。此外,55%-PCN与g-C3N4相比,27.5°处的峰向左偏移至27.16°,根据布拉格公式(2dsinθ=nλ)[30]计算g-C3N4和55%-PCN的晶面层间距,分别为0.324 nm和0.329 nm,说明层间距变大。这可能是由于,三聚氰胺在高温下团聚脱氨的过程中,NH4Cl同时受热分解为NH3和HCl气体,导致生成的g-C3N4层与层之间的堆积作用变弱[31]。以上分析表明,气体模板的加入可以使g-C3N4片层与片层之间分离开来,从而进一步影响样品的性能。
2) 形貌分析。由图2(a)和图2(b)可以观察到g-C3N4整齐的片层堆叠,由图2(e)也可以观察到其表面光滑完整的大块结构。由图2(c)可以看出,55%-PCN的形貌与g-C3N4相比发生很大的改变,大片层破裂为小碎片,并且由图2(d)也可以看到样品表面产生很多孔径为50~100 nm的介孔。由图2(f)也可以看出孔的生成。
3) FT-IR分析。如图3所示,在g-C3N4的FT-IR光谱中,3 000~3 500 cm−1的宽峰为前驱体中未聚合的氨基(—NH2或═NH)的伸缩振动峰,1 200~1 640 cm−1对应于三嗪环间C—N和C═N键的特征峰,位于810 cm−1附近的吸收峰对应三嗪环的伸缩振动。与g-C3N4相比,PCN在1 200~1 600 cm−1和810 cm−1处的特征峰没有发生明显的变化,表明以NH4Cl为模板并未破坏g-C3N4的主体结构,在3 000~3 500 cm−1处的吸收峰变宽,可能是NH4Cl分解时的氨基与g-C3N4边缘位置未聚合的氨基或羟基结合,导致吸收范围变宽。值得注意的是,PCN在2 173 cm−1处出现1个明显的吸收峰,此为—C≡N的特征吸收峰[32]。并且随着前驱体中NH4Cl添加量的增多,峰强度越强,说明改性后的多孔结构有利于氰基的形成,使g-C3N4的面内形成更多的孔道结构。
4) UV-vis表征。如图4(a)所示,g-C3N4在波长小于470 nm处的蓝紫光和紫外光区吸收较强,可见光区的吸收较弱。55%-PCN在紫外光区和可见光区的吸收明显增强。此外,禁带宽度可利用UV-vis光谱数据、按照Kubelka-Munk函数由式(1)计算获得。
式中:α为吸光度;h代表普朗克常数;ν为频率;Eg为禁带宽度;A为常数。以(αhν)2为纵坐标,hν为横坐标作图,对所得曲线取切线,切线与横坐标的交点即为Eg,即所对应的样品的禁带宽度[33]。由图4(b)可以看出,55%-PCN的禁带宽度为2.73 eV,与g-C3N4禁带宽度(2.78 eV)相似。这说明改性后的PCN具有较强光吸收性能且带隙宽度变化不大。
5) XPS分析。由图5(a)可以看出,g-C3N4和55%-PCN的C1s、N1s、O1s峰均出现在285、400、520 eV左右,表明二者的元素组成一致。在图5(b)中,284.8、286.6、288.3 eV的3个峰分别是g-C3N4的C—C键、C—O键和N═C—N键的特征峰。这表明,以NH4Cl为模板,只在g-C3N4中产生了较多的孔道结构,没有影响到C的键合状态。在图5(c)中,g-C3N4和55%-PCN在398.7、399.5、401.1 eV处的3个峰,分别对应三嗪环内C═N—C键、环与环之间的H—N—(C)3键和末端氨基上的C—N—H键,表明N的键合状态也未受到气体模板的影响。由图5(d)可以看出,g-C3N4和55%-PCN的价带电位分别为+1.14 eV和+0.88 eV。采用文献中的方法[34]计算出g-C3N4和55%-PCN的导带电位,分别为−1.64 eV和−1.85 eV。这表明多孔结构不仅有利于提高g-C3N4的光吸收性能,还使导带上电子的还原电势更负。
6) BET分析。如图6(a)所示,二者的曲线趋势为Ⅳ型等温曲线,表明g-C3N4和55%-PCN均为中孔材料。另外,测试结果显示,55%-PCN的比表面积(28.548 m2·g−1)与g-C3N4(13.878 m2·g−1)相比有所提高,55%-PCN的孔体积(0.143 cm3·g−1)与g-C3N4(0.046 cm3·g−1)相比也有所提高。这表明PCN的表面性能得到了改善。由图6(b)可以看出:g-C3N4的孔径集中分布于5 nm左右;55%-PCN的孔径分布比较宽泛,增加了10 nm左右和10~80 nm孔道结构。这表明以NH4Cl为模板可增加g-C3N4的孔道结构,有利于提高催化剂对有机污染物的吸附性能。
-
1) 光致发光(PL)光谱和瞬态荧光光谱分析。PL峰强度越强表明光生电子空穴对的复合率越高。由图7(a)可以看出,55%-PCN的发射峰强度较g-C3N4明显降低,表明光生电子空穴对的复合率受到一定程度的限制,有利于光催化性能的提升。图7(b)是g-C3N4和55%-PCN的瞬态荧光光谱图。当荧光强度衰减到最大值的1/e时所用的时间为荧光寿命,即光生电子的平均寿命,其寿命越长,越有利于光催化性能的提升。可以看出,55%-PCN的平均寿命为1.42 ns,接近g-C3N4的7倍(0.21 ns),表明55%-PCN中载流子具有较长的寿命来参与光催化反应。氰基是一种常见的吸电子基团,可以更好地使55%-PCN表面的光生电子和空穴分离[32],提升载流子的寿命,最终影响其光催化性能。
2) 光电性能。虽然通过PCN的制备可以抑制光生电子空穴对的复合,但光生电子-空穴对参与到光催化反应的数量尚不清楚。采用瞬态光电流强度和电化学阻抗谱研究光生电子的迁移效率和迁移阻力,结果如图8所示。在图8(a)中,光电流强度越大,表示催化剂中的激发电子向导电玻璃表面的迁移效率越高,越有利于光催化性能的提升,PCN-55%的光电流强度最大,是g-C3N4的2.5倍,表明其电子迁移效率最高。电化学阻抗谱的圆弧半径越小,电阻越小,电荷转移效率更高效。由图8(b)同样可以看出,55%-PCN的电子迁移阻力最小,可提高光生电子向催化剂表面的迁移效率。综合以上分析,55%-PCN样品中的电子迁移阻力较小,有利于激发电子的迁移。
3) 光催化降解罗丹明B性能。在图9(a)中,−20~0 min表示催化剂在黑暗环境下对RhB的吸附过程,0~50 min表示光照下光催化降解RhB的过程。可以看出,不加催化剂时,RhB在光照50 min后的自去除率只有7.4%,g-C3N4的暗吸附率为2.8%,而45%-PCN、50%-PCN、55%-PCN、60%-PCN和65%-PCN的暗吸附率分别为5.2%、7.7%、8.9%、10.3%、11.5%。这表明,PCN中的孔道随气体模板NH4Cl的增加而增多,同时对RhB的吸附性能也越强。55%-PCN在50 min内即可将RhB完全降解,而在相同时间内g-C3N4的降解率只有50%左右。
为了更直观地比较样品在光照下降解RhB溶液的光催化性能,可根据拟合伪一级动力模型[35]计算反应的表观速率常数。光催化降解RhB的伪一级动力学速率常数和降解率关系如式(2)所示。
式中:k为表观速率常数,min−1;C0和C分别为RhB的初始质量浓度和光照时间t时的质量浓度,mg·L−1。由于0~40 min的降解数据更符合伪一级动力学方程,故选择此范围数据,根据文献中的方法[32]作图。以ln(C0/C)为纵坐标,t为横坐标做图,斜率为k,计算所得的k值标记于图9(b)中。g-C3N4的k值为1.23×10−2 min−1,55%-PCN的k值最大(6.07×10−2 min−1),是g-C3N4的5倍。
根据有机碳含量计算g-C3N4和55%-PCN降解RhB的TOC去除率,g-C3N4为85.7%,55%-PCN为95.8%(图9(c)和图9(d)),所以RhB有机物大分子基本被全部分解为无机物小分子。55%-PCN与g-C3N4相比,去除率升高,说明其可以更好地将RhB大分子吸附并降解。
-
以上研究表明,55%-PCN具有对RhB优异的吸附性能和降解性能,但催化剂的稳定性是限制其能否工业化应用的又一关键指标。由图10(a)可以看出,55%-PCN在相同循环时间内重复使用4次的降解率分别为97.4%、95.4%、93.6%、92.7%,对水中RhB的降解率未发生明显变化。由图10(b)可以看出,55%-PCN使用前后的XRD图谱出峰位置不变,说明反应前后样品的结构和化学组成也没有发生改变。以上均表明55%-PCN具有稳定的光催化活性。
-
为了研究55%-PCN光催化降解RhB过程中的主要物种,分别用三乙醇胺(TEOA)、苯醌(BQ)和异丙醇(IPA)作为光催化降解体系中空穴(h+)、超氧自由基(·O2−)、羟基自由基(·OH)的捕获剂[36]来进行实验,结果如图11所示。当加入TEOA后,降解率未发生明显变化,即h+被捕获后催化活性变化不大,表明h+不是RhB降解的主要活性物种;在降解体系中加入IPA后,降解率下降明显,说明·OH对RhB的降解具有一定的促进作用;当加入BQ后,光降解效率明显下降,光催化活性被抑制的最明显,表明·O2−是RhB降解时最主要的活性物种。基于以上分析,在RhB降解时,最主要的活性物种是·O2−,其次是·OH,h+的活性可忽略不计。
本研究对降解后RhB溶液进行高分辨质谱测试,以探究55%-PCN光催化降解RhB的具体过程。在图12(a)中,m/z=444表示RhB的阳离子峰;m/z=416、388、359、331表示RhB脱去1、2、3、4个乙基的分子离子峰;m/z=399表示RhB脱去1个羧基的离子峰;m/z=302可能是脱去4个乙基和1个羧基后被1个·OH羟基化所得产物的离子峰;m/z=319可能是脱去4个乙基和1个羧基后被2个·OH羟基化获得产物的离子峰[37];推测其余离子峰也是各个大分子不断被·OH多次氧化后的产物。由图12(b)可以看出,m/z>150的各处离子峰强度都有一定程度上的降低,而m/z<150的各个离子峰强度明显升高。这说明55%-PCN光催化降解RhB的过程是一个随着光照时间的升高,RhB开始脱乙基和羧基,同时·OH不断进攻苯环使其断裂、氧化,最终经过多次氧化反应生成各个小分子的过程。
基于以上结果,推测55%-PCN光催化降解RhB的机理如图13所示。可以看出55%-PCN的价带主要由N原子的N2p轨道构成[32,38]。在光照射下,N原子上的电子充当电子供体被激发到导带生成光生e−,价带上留下大量h+(式(3))。导带上e−的还原电势较E(O2/·O2−)=−0.046 eV更负,与水中溶解的O2反应生成·O2−(式(4)),超氧自由基进一步反应生成过氧氢根(HOO·)和过氧化氢(H2O2)(式(5)和式(6)),接下来继续又被还原成具有强氧化性的·OH[32](式(7))。55%-PCN的孔结构给RhB的降解反应提供了更多边缘反应位点,RhB在脱乙基和脱羧基过程中不断与·OH接触,发生羟基化氧化反应。另外,氰基是常见的吸电子基团,常被用作电子受体[39]。当g-C3N4的结构中存在氰基时,氰基与相邻的N原子之间会形成局部分子内供体-受体(D-A)体系。D-A体系可以有效转移分子内的电荷,使光生e−和h+分离开来,从而降低载流子重组率[40]。故55%-PCN中的氰基的引入进一步给光催化降解RhB提供更多的活性位点,最终使RhB被氧化为NH4+、CO2、H2O等小分子。
-
1) 气体模板NH4Cl的引入可以在不破坏g-C3N4基本结构的基础上制备PCN,表面介孔数量增多,大大增加其比表面积和孔体积,给后续反应提供更多的活性位点。同时有利于提高吸光性能,经过测试其可见光吸收范围相比g-C3N4变宽。
2) 当前驱体中NH4Cl添加量为55%时所制备样品降解性能最佳。55%-PCN在50 min内对RhB的降解率为98%,伪一级动力学速率常数为6.07×10−2 min−1,是g-C3N4的5倍;并且其对RhB的TOC去除率比g-C3N4高,说明其可以更好地将RhB大分子吸附并降解。
3) 自由基捕获实验表明,在RhB降解时,·O2−和·OH参与了反应,在反应中,·O2−为最主要的活性物种。吸电子基团氰基与相邻的N原子之间会形成局部分子内D-A体系,使光生电子和空穴更好地分离,增加载流子寿命。55%-PCN的孔结构以及氰基的引入,均给RhB的降解反应提供了更多反应活性位点,在脱乙基和羧基过程中不断与·OH发生氧化反应,最终产物为NH4+、CO2、H2O等小分子。
基于气体模板法制备的多孔g-C3N4对罗丹明B的降解效果及机理
Degradation effect and mechanism of rhodamine B by porous g-C3N4 prepared by gas template method
-
摘要: 为了处理废水中的染料大分子有机污染物,以NH4Cl为气体模板,通过高温煅烧法制备多孔氮化碳(PCN),使用XRD、SEM、TEM、FT-IR、UV-vis、XPS和BET等分析方法对催化剂进行了表征,并以水中罗丹明B(RhB)的降解率为评价标准,考察了样品的光催化性能和活性物种。结果表明:PCN在不改变氮化碳(g-C3N4)基本结构的基础上显著提高其光吸收能力和光催化活性;与g-C3N4相比,当前驱体中NH4Cl添加量为55%时,样品的比表面积由13.878 m2·g−1增至28.548 m2·g−1,TOC去除率由85.7%增至95.8%,降解速率和光电流密度分别是g-C3N4的2倍和2.5倍;在光催化降解RhB的过程中,·O2−是起主要作用的活性物种。多孔结构有利于提高比表面积以吸附更多的有机物大分子,并且为光催化反应提供更多的活性位点。煅烧过程中氰基的生成减少了光生电子和空穴的复合,载流子的寿命变长,二者的共同作用使PCN的光催化性能大幅提升。本研究成果可为开发新型光催化剂和建立RhB的降解方法提供参考。Abstract: In order to treat the dye macromolecular organic pollutants in wastewater, porous g-C3N4 (PCN) was prepared by the high temperature calcination method using NH4Cl as gas template. The photocatalysts were characterized by XRD, SEM, TEM, FT-IR, UV-vis, XPS, BET and other analytical methods. Photocatalytic performance and active species were investigated based on the degradation rate of rhodamine B (RhB) in water. The results showed that PCN could greatly enhance light absorption ability and photocatalytic activity of g-C3N4 without changing its basic structure. Compared with g-C3N4, when the addition amount of NH4Cl in precursor was 55%, the specific surface area of PCN sample increased from 13.878 m2·g−1 to 28.548 m2·g−1, TOC removal rate increased from 85.7% to 95.8%, degradation rate and photocurrent density were 2 times, 2.5 times of g-C3N4, respectively. In the process of photocatalytic degradation of RhB, ·O2− was the main active species. Porous structure was beneficial to increase specific surface area, adsorb more organic macromolecules and provide more active sites for photocatalytic reactions. The generation of cyano groups during calcination process reduced recombination of photogenerated electrons and holes, and extended the lifetime of carrier. Their combined effect could greatly improve the photocatalytic performance of PCN. The results of this study can provide a reference for the development of new photocatalysts and the establishment of RhB degradation methods.
-
Key words:
- g-C3N4 /
- gas template /
- porous /
- photocatalytic degradation /
- rhodamine B(RhB)
-
市政污泥是城市污水处理过程中不可避免的副产物,其含水率高、有机质含量高、成分复杂,并且含有大量的寄生虫卵、病原微生物和一定量的重金属[1]。近年来,市政污泥的产量也在不断增加,预计2025年我国污泥年产量将突破9×107 t,污泥处理处置已成为一项亟待解决的难题[2]。污泥的主要处置方式包括卫生填埋、农业利用、干化焚烧、建筑材料利用等,我国较大部分污泥采用填埋方式,约占我国污泥总处置量的65%[3]。
由于我国早期污水处理厂存在着“重水轻泥”的现象,导致已填埋污泥的含水率过高,力学性质较差。而填埋场的库容有限,随着污泥产量的逐年增加,目前国内许多城市的填埋场,例如上海老港、成都长安、深圳下坪、杭州天子岭的填埋场的库容已经严重不足[4-5],为此,许多填埋场要求将填埋污泥的含水率从80%降低至60%以下,这样可以增加至少50%的填埋库容[6]。但是,由于污泥有机质含量高、结合水含量高、亲水性强,单一的机械处理很难将污泥含水率降低至60%以下,需结合一定的预处理方法将污泥的胞外聚合物(EPS)破解,释放出自由水后再进行脱水减量处理[7]。当前填埋污泥的深度脱水通常采用“化学调理+板框压滤”的方法[8],该方法需将污泥从填埋库中挖出,运输到指定场地后再进行处理,存在着成本高、易对环境造成二次污染的问题,因此,需寻找一种高效、环保的污泥原位处理方法。
真空预压法具有施工工艺简单、成本低等优点,是软土地基原位处理的一种有效方法[9-11]。近年来,将化学预调理与真空预压相结合的工艺已逐渐被应用于填埋污泥原位处理[3,8,12-16],该工艺在一定程度上能够实现污泥的原位减量,但是仍存在易产生臭气污染、难以保证药剂调理均匀等问题。为了寻找更加环保高效的填埋污泥原位处理方法,有研究者提出了冻融联合真空预压填埋污泥原位处理技术[17-18]。冻融的原理是污泥被冷冻时,冷冻过程中不断生长的冰晶会破坏污泥细胞膜的完整性,使细胞脱水、收缩或溶解,使胞外聚合物释放到上清液中[19];同时,冻融后污泥中小颗粒团聚成大颗粒,能显著提高污泥的脱水性能,而且冻融循环可显著提高污泥的渗透系数[20-21]。
有研究表明,采用冻融联合真空预压法处理填埋污泥时,在出水量、出水速率、沉降量、减量比、含水率均优于药剂预调理方法[18],但其在实验过程中并没有使用实际真空预压过程中的塑料排水板;塑料排水板作为真空预压的负压传递通道和排水通道,其性能对真空固结效率和效果有着显著影响[22]。根据芯板与滤膜的复合方式不同,目前工程界常采用分离式和整体式2种塑料排水板,在普通土体真空预压中,已有这2种排水板类型的对比研究[10, 23-24]。但是,污泥作为一种胶体状生物固体,其工程性质显著不同于软土和吹填土,但目前鲜有考察不同排水板类型对填埋污泥真空固结效果的研究。
本研究开展了不同排水板类型填埋污泥冻融-真空对比研究。首先,对填埋污泥进行冻融预处理;随后进行室内真空预压模型实验,分别设置分离式排水板(SPVD)与整体式排水板(IPVD)对照组;最后,通过对比出水量、减量比、含水率等数据,探究该法处理填埋污泥的宏观效果,并且通过压汞、电镜扫描等微观实验,探究冻融后污泥在真空预压过程中微观结构变化特性。
1. 实验方案
1.1 实验污泥
供试污泥取自上海市某污泥填埋库区,污泥填埋龄期约为12 a,占用了大量土地和地下空间,亟需对填埋库中的污泥进行原位脱水减量处理。填埋污泥的基本物理性质如表1所示。可以看出,填埋污泥含水率高,有机质含量比新鲜污泥(60%左右)有所降低。这是因为,填埋污泥受填埋龄期及厌氧消化影响,发生了一定程度的降解。填埋污泥的液塑限较大,按照细粒土的分类应为高液限有机质粉土。
表 1 污泥基本物理指标Table 1. Basic physical indexes of sludge比重 含水率/% 密度/(g·cm−3) 有机质/% 液限/% 塑限/% 1.8 86 1.13 40 184 111 采用Mastersize2000激光粒度仪对原状填埋污泥及冻融后污泥进行了粒度分布测试,粒径分布曲线如图1所示。原状污泥d90为169.5 μm、d50为47.28 μm,而冻融后污泥d90为241.6 μm、d50为65.68 μm,经冻融后,污泥颗粒粒径显著增大。这主要是因为:在冻结过程中,污泥中的小颗粒被不断生长的冰晶推挤压密,污泥小颗粒团聚为大颗粒,显著提高了其脱水沉降能力。
1.2 真空预压模型实验
真空预压实验装置由真空泵、抽滤瓶、排水板和模型箱组成,具体如图2所示。模型箱由有机玻璃桶及密封盖组成,玻璃桶高500 mm、外径320 mm、内径300 mm,密封盖为20 mm厚的有机玻璃盖板。分别采用如图3所示的分离式排水板和整体式排水板,排水板通过土工布与排水管绑扎。分离式排水板属于分体式十字型塑料排水板,排水板滤膜包裹在塑料芯板的外侧,与芯板不黏接,滤膜被制作成略大于芯板尺寸的土工织布常套包裹于芯板四周,滤膜等效孔径为75 μm;整体式排水板芯板与滤膜通过热合紧贴在一起,两者间不可作相对移动,滤膜等效孔径为120 μm。
采用冰柜对污泥进行冻融处理,冻结温度设置为−15 ℃,待达到冻结温度后将污泥取出于室温(22 ℃)融化。每个模型箱污泥用量为约16 kg。整个实验期间真空度保持在85 kPa左右,实验过程中对累计出水量、累计沉降量以及真空度进行监测记录,实验完成后对模型箱内污泥取样测定含水率及取样进行压汞、电镜扫描微观测试。
2. 实验结果及分析
2.1 累积出水量
由累计出水量变化曲线(图4)可以看出,分离式排水板和整体式排水板两者最终出水量差别不大。整体式排水板的最终出水量为8 830 mL,而分离式排水板的最终出水量为8640 mL,二者仅相差190 mL。在实验初期,分离式排水板与整体式排水板的出水速率都很高,在前4 h的出水量可达总出水量的70%以上。这可能是因为污泥经冻融后,污泥细胞内外不断生长的冰晶使得污泥细胞破裂,导致污泥细胞膜的完整性被破坏,EPS被破解,从而释放细胞内外的物质,导致污泥絮体结构被破坏,释放出大量的结合水和间隙水,进而大幅提高了污泥的脱水性能[19]。冻融后污泥中含有大量的自由水,这导致前期出水速率及出水量都很高。
在前4 h,分离式排水板的累计出水量达7 050 mL,占总出水量的81.5%,而后出水速率突然变缓,后139 h的出水量仅为1 590 mL;而整体式排水板在前4 h累计出水量为6 410 mL,后139 h的出水量为2 420 mL。造成后期出水量差异的可能原因为,分离式排水板的等效滤膜孔径为75 μm,而整体式排水板的滤膜孔径为120 μm,在真空排水固结前期,渗流通道尚未形成,污泥颗粒在真空负压及孔隙水压力的作用下不断向排水板附近运移,由于分离式排水板等效滤膜孔径过小,部分细小颗粒未能穿过滤膜,从而影响排水板附近的渗流通道的通畅性,造成一定的淤堵。这也与已有研究[10, 25]的结果一致。但由于冻融后污泥颗粒粒径增大,小颗粒含量少,只造成部分淤堵,大部分排水通道仍保持通畅,所以二者最终出水量差异不大。
2.2 累计沉降量与减量比
由累计沉降量变化曲线(图5)可以看出,冻融污泥原始高度为20.5 cm,分离式排水板的最终高度为7.8 cm,整体式排水板的最终高度为8.55 cm,二者均下降50%以上。污泥在冻融时,污泥颗粒被不断生长的冰晶推挤压密,污泥小颗粒得以团聚为大颗粒,并显著提高了大中孔隙的分布,在真空预压固结时显著提高了其渗透固结性,从而提高了污泥的固结度。与分离式排水板相比,整体式排水板的高度变化却相对较小。这可能是因为:本次实验高度测量仅取实验模型箱两侧高度变化平均值记录,而取样后发现,整体式排水板处理后污泥在侧壁附近发生了1 cm左右的径向收缩,若考虑径向收缩的变化来计算实验后污泥体积,则分离式排水板污泥的最终体积为5 510 cm3,而整体式排水板最终体积为5 262 cm3,相比分离式排水板体积变化更大,这也与累计出水量变化规律相互印证。而整体式排水板最终出现了径向收缩现象,径向收缩是因为在真空排水固结过程中,在排水板远端的土颗粒在水力梯度的作用下不断向排水板中心处运移[26]。这也说明采用整体式排水板后冻融污泥整体的排水固结效果较好,整体渗流通道顺畅,真空负压影响范围可覆盖到远端土体,污泥整体固结度较好。
经计算,两种不同类型排水板的最终减量比均在60%以上,整体式排水板的减量比为63.6%,分离式排水板的减量比为61.9%。这表明整体式排水板减量比略优于分离式排水板,冻融联合真空预压法可有效实现填埋污泥的原位减量。
2.3 含水率
实验结束后,从排水板中心处开始,沿径向在0、15、30 cm处取污泥上、中、下3个位置,每个位置取3个样对照,测定不同位置处的含水率,结果如图6所示。
1) 原始污泥含水率为86%,经冻融联合真空预压处理后,其含水率大幅度下降,含水率最低可降至59.5%。
2) 沿半径方向污泥整体含水率分布呈现出逐渐增加的变化规律。径向上的差异主要是由于:离开排水板中心的距离和水力梯度的差异,排水板附近水力梯度大,水更容易渗流排出,而距离排水板较远处水力梯度小,水不易排出,所以靠近排水板中心处含水率更低。
3) 沿深度方向呈现出上部含水率低、底部含水率高的分布规律。这是因为:真空负压强度沿着排水板衰减,排水板周围土体水力梯度逐渐减小,对排水板的影响范围逐渐减小,影响范围沿着排水板呈现出倒锥形逐渐减小的趋势[24],这导致上部由于真空负压强度高,水力梯度大,水容易排出,而底部由于真空强度衰减,水力梯度减小,故形成底部含水率高、上部含水率低的分布规律。
4) 整体式排水板上部含水率在60%左右分布,中部在65%左右分布,底部在70%左右分布;而分离式排水板的上、中、下部均在65%~70%左右分布。可见,整体式排水板的整体处理效果更好,且靠近上、中部含水率明显优于分离式排水板。这可能是因为:一方面,分离式排水板滤膜孔径较小,易造成小颗粒淤堵,从而影响排水固结效果;另一方面,由于分离式排水板芯板是内包于滤膜的,在土体压力下不可避免地出现滤膜“陷入”排水通道的情况,从而减少排水面积,而整体式排水板滤膜是胶结于芯板竖齿上的,滤膜始终是“紧绷”状态,在土体压力下变形较小[27],从而造成含水率分布的差异。
2.4 压汞实验
实验结束后,分别在整体式排水板、分离式排水板模型箱中心位置处取样进行压汞(MIP)实验,分析不同冻结条件下冻融污泥径向真空排水的固结孔径的大小分布规律,结果如图7、图8所示。
整体式排水板与分离式排水板孔径分布有明显差异:分离式排水板主要以小孔分布为主,即以团粒内孔隙分布为主;而整体式排水板主要以微孔和介孔分布为主,即以颗粒间孔隙为主。其原因是,在真空预压过程中,真空度不断向污泥深度处传递,并以排水板为中心的径向上形成真空负压梯度,在该真空负压梯度的作用下形成真空渗流场[28]。排板周围土体首先开始渗流出水,孔隙水在负压的作用下不断向排水板方向渗流,而此时污泥中的细小颗粒也在渗流力的作用下不断向排水板中心运移,使得排水板附近土体渗透系数不断降低,使排水板中心处的土体首先发生径向固结,土体发生压缩。
污泥经冻融后,污泥大中孔隙数量分布大幅度提高,小、微孔隙数量减少;而在真空排水固结时,较大孔隙先被压缩成较小孔隙,较小孔隙后被压缩[29]。整体式排水板由于不易淤堵,在真空排水固结时渗流通道顺畅,固结程度高,大、中孔隙先不断被压缩为小孔隙,而后小孔隙被压缩为更小的介孔;而分离式排水板由于发生了部分淤堵,从而导致排水板中心处污泥固结程度对比整体式排水板低,主要以大、中孔隙压缩为小孔为主。这也与含水率分布规律互相印证,即整体式排水板由于固结程度高,在贴近排水板处污泥含水率低于分离式排水板。
2.5 电镜扫描
实验完成后,对不同排水板径向真空排水固结后靠近排水管中心处的污泥取微观样进行电镜扫描实验(SEM),观察其微观结构特性,如图9所示。可以看出,整体式排水板与分离式排水板真空排水固结后污泥整体结构致密均匀,呈现出有规律的网状结构。但整体式排水板对比分离式排水板结构更加致密,固结程度高,以颗粒间孔隙分布为主;而分离式排水板固结程度低,孔径相对更大,以团粒内孔隙为主。这也与MIP实验结果相印证。
3. 结论
1)分离式排水板和整体式排水板两者的最终出水量差别不大。两种不同类型排水板的最终减量比均在60%以上,整体式排水板的减量比为63.6%,分离式排水板的减量比为61.9%,整体式排水板减量比略优于分离式排水板。
2)原始污泥含水率为86%,经冻融联合真空预压处理后,其含水率大幅度下降,含水率最低可降至59.5%,符合我国填埋污泥的规范要求;其中,整体式排水板的整体处理效果更好。沿半径方向,污泥整体含水率分布呈现出逐渐增加的变化规律;沿深度方向,呈现出上部含水率低,底部含水率高的分布规律。
3)整体式排水板与分离式排水板孔径分布具有明显差异。分离式排水板主要以小孔分布为主,即以团粒内孔隙分布为主;而整体式排水板主要以微孔和介孔分布为主,即以颗粒间孔隙为主。整体式排水板对比分离式排水板结构更加致密,固结程度高,以颗粒间孔隙分布为主;而分离式排水板固结程度低,孔径相对更大,以团粒内孔隙为主。
-
-
[1] WANG T, SUN D L, ZHUANG Q, et al. China's drinking water sanitation from 2007 to 2018: A systematic review[J]. Science of the Total Environment, 2020, 757: 143923-143933. [2] MENON P, SINGH T A, PANI N, et al. Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater[J]. Chemosphere, 2021, 269: 128739-128750. doi: 10.1016/j.chemosphere.2020.128739 [3] SHI Y F, LI S N, WANG L Y, et al. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation[J]. Science of the Total Environment, 2021, 778: 146278-146287. doi: 10.1016/j.scitotenv.2021.146278 [4] LI J X, XU Y Q, DING Z Z, et al. Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: A thermodynamic and kinetic perspective[J]. Chemical Engineering Journal, 2020, 388: 124248. doi: 10.1016/j.cej.2020.124248 [5] YASEEN D A, SCHOLZ M. Treatment of synthetic textile waste water containing dye mixtures with microcosms[J]. Environmental Science and Pollution Research, 2018, 25(2): 1980-1997. doi: 10.1007/s11356-017-0633-7 [6] 姚悦, 李桂菊, 马万瑶. 电絮凝法深度处理制革废水的实验研究[J]. 天津科技大学学报, 2019, 34(6): 66-70. doi: 10.13364/j.issn.1672-6510.20180002 [7] AKARSU C, DEVEECI E U, GONEN C, et al. Treatment of slaughterhouse wastewater by electrocoagulation and electroflotation as a combined process: Process optimization through response surface methodology[J]. Environmental Science and Pollution Research, 2021, 28: 34473-34488. doi: 10.1007/s11356-021-12855-4 [8] JIANG T J, LUO C W, XIE C, et al. Synthesis of oxygen-doped graphitic carbon nitride and its application for the degradation of organic pollutants via dark Fenton-like reactions[J]. RSC Advances, 2020, 10: 32906-32918. doi: 10.1039/D0RA05202G [9] WANG W L, ZHAO J M, SUN Y Y, et al. Facile synthesis of g-C3N4 with various morphologies for application in electrochemical detection[J]. RSC Advances, 2019, 9: 7737-7746. doi: 10.1039/C8RA10166C [10] DONG C, QU Z P, JIANG X, et al. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation[J]. Journal of Hazardous Materials, 2020, 391: 122181. doi: 10.1016/j.jhazmat.2020.122181 [11] HUANG H R, ZHANG Z J, GUO S K, et al. Interfacial charge-transfer transitions enhanced photocatalytic activity of TCNAQ/g-C3N4 organic hybrid material[J]. Materials Letters, 2019, 255: 126546. doi: 10.1016/j.matlet.2019.126546 [12] YU Y, YAN W, WANG X F, et al. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4[J]. Advanced Materials, 2018, 30(9): 1705060. doi: 10.1002/adma.201705060 [13] YANG C, ZHANG S S, HUANG Y, et al. Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds[J]. Applied Surface Science, 2020, 505: 144654. doi: 10.1016/j.apsusc.2019.144654 [14] LI C M, WU H H, DU Y H, et al. Mesoporous 3D/2D NiCoP/g-C3N4 heterostructure with dual Co-N and Ni-N bonding states for boosting photocatalytic H2 production activity and stability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 12934-12943. [15] LIAO J Z, CUI W, LI J Y, et al. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4[J]. Chemical Engineering Science, 2020, 379: 122282. doi: 10.1016/j.cej.2019.122282 [16] SUN Z X, WANG H Q, WU Z B, et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction[J]. Catalysis Today, 2018, 300: 160-172. doi: 10.1016/j.cattod.2017.05.033 [17] LIU M J, WAGEH S, Al-GHAMDI A A, et al. Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Chemical Communications, 2019, 55: 14023-14026. doi: 10.1039/C9CC07647F [18] LI C M, YU S Y, ZHANG X X, et al. Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dual-doped graphitic carbon nitride for degrading various organic pollutants in water[J]. Journal of Colloid and Interface Science, 2019, 538: 462-473. doi: 10.1016/j.jcis.2018.12.009 [19] LI Y H, GU M L, SHI T, et al. Carbon vacancy in g-C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity[J]. Applied Catalysis B, 2020, 262: 118281. doi: 10.1016/j.apcatb.2019.118281 [20] LIU S H, LIN W X. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light responsive photocatalytic coatings for degradation of indoor formaldehyde hazard[J]. Journal of Hazardous Materials, 2019, 368: 468-476. doi: 10.1016/j.jhazmat.2019.01.082 [21] GUO F S, HU B, YANG C, et al. On-Surface polymerization of in-Plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas[J]. Advanced Materials, 2021, 33(42): 2101466. doi: 10.1002/adma.202101466 [22] XIAO Y T, TIAN G H, LI W. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019, 141(6): 2508-2515. doi: 10.1021/jacs.8b12428 [23] LIU Y P, ZHAO S, WANG Y Y, et al. Controllable fabrication of 3D porous carbon nitride with ultrathin nanosheets templated by ionic liquid for highly efficient water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(49): 25004-25014. doi: 10.1016/j.ijhydene.2021.05.018 [24] WANG X L, LIU Q, YANG Q, et al. Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline[J]. Carbon, 2018, 136: 103-112. doi: 10.1016/j.carbon.2018.04.059 [25] CHENG J S, HU Z, LI Q, et al. Fabrication of high photoreactive carbon nitride nanosheets by polymerization of amidinourea for hydrogen production[J]. Applied Catalysis B, 2019, 245: 197-206. doi: 10.1016/j.apcatb.2018.12.044 [26] DUAN Y Y, LI X F, LV K, et al. Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement[J]. Applied Surface Science, 2019, 492: 166-176. doi: 10.1016/j.apsusc.2019.06.125 [27] WANG J H, ZAHNG C, SHEN Y F, etal. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectro chemical activity[J]. Journal of Materials Chemistry A, 2015, 3(9): 5126-5131. doi: 10.1039/C4TA06778A [28] 巩正奇, 闫楚璇, 宣之易, 等. 制备类石墨相氮化碳多孔光催化剂的模板法发展[J]. 工程科学学报, 2021, 43(3): 345-354. [29] GUO Q Y, ZAHNG Y H, ZHANG H S. 3D foam strutted graphene carbon nitride with highly stable optoelectronic properties[J]. Advanced Functional Materials, 2017, 27(42): 1703711. doi: 10.1002/adfm.201703711 [30] 杨锋. CH3NH3PbI3钙钛矿材料的制备及性能研究[D]. 绵阳: 西南科技大学, 2017. [31] ZHOU B, WAQAS M, YANG B, et al. Convenient one-step fabrication and morphology evolution of thin-shelled honeycomb-like structured g-C3N4 to significantly enhance photocatalytic hydrogen evolution[J]. Applied Surface Science, 2020, 506: 145004. doi: 10.1016/j.apsusc.2019.145004 [32] LI F, YUE X Y, ZHOU H P, et al. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction[J]. Chinese Journal of Catalysis, 2021, 42(9): 1608-1616. doi: 10.1016/S1872-2067(20)63776-7 [33] 宁湘, 武月桃, 王续峰, 等. 石墨相氮化碳/二氧化锡复合材料的制备及光催化性能[J]. 无机化学学报, 2019, 35(12): 2243-2252. doi: 10.11862/CJIC.2019.272 [34] WEI W J, WANG Y B, HUANG Y F, et al. Constructing isotype CN/s-CN heterojunction with enhanced photocatalytic performance[J]. Diamond and Related Materials, 2020, 101: 107616. doi: 10.1016/j.diamond.2019.107616 [35] 陈甜. g-C3N4/活性炭复合材料中g-C3N4光催化活性和活性炭再生性能改善的研究[D]. 太原: 太原理工大学, 2020. [36] 王新哲. 多孔氮化碳制备及可见光催化增强的机制研究[D]. 吉林: 东北电力大学, 2021. [37] 刘华俊, 彭天右, 彭正合, 等. Dy/WO3光催化降解罗丹明B的反应机理[J]. 武汉大学学报, 2007, 53(2): 127-132. [38] HE Q C, ZHOU F, ZHAN S, et al. Enhancement of photocatalytic and photoelectrocatalytic activity of Ag modified Mpg-C3N4 composites[J]. Applied Surface Science, 2017, 391: 423-431. doi: 10.1016/j.apsusc.2016.07.005 [39] YAO C, YANG Y Z, LI L, et al. Elucidating the key role of the cyano (−C≡N) group to construct environmentally friendly fused-ring electron acceptors[J]. The Journal of Physical Chemistry C, 2020, 124(42): 23059-23068. doi: 10.1021/acs.jpcc.0c08022 [40] OU H H, CHEN X R, LIN L H, et al. Biomimetic donor-acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation[J]. Angewandte Chemie International Edition, 2018, 57(28): 8729-8733. doi: 10.1002/anie.201803863 -