-
石油、化工、印刷、制药等工业生产会产生大量含芳香族化合物废气[1]。苯是一种芳香族化合物,是大气光化学污染的重要反应物,亦是臭氧和二次有机气溶胶(secondary organic aerosols,SOA)的关键前体物[2]。生物技术因其绿色安全、处理效果好、运行费用低、操作简单等优点,已成为近年来大气污染控制技术的研究热点[3-4]。相比于生物滴滤和生物过滤技术,生物洗涤技术具有压降小、驯化周期短、不易酸化、不易堵塞、高污染物负荷、抗负荷冲击能力强等优点[5-8]。生物洗涤器内含微生物的活性污泥对降解污染物起关键作用。将活性污泥驯化后可提升其降解能力,然而针对目标污染物的有效微生物比例和活性一般较低,缓慢的演替过程亦会导致反应器启动时间长、处理难降解物质的能力有限[9]。因此,筛选高效降解菌株,探究其降解能力、适宜条件及代谢途径十分重要。
目前,已发现Pseudomonas sp.,Rhodococcus sp.,Klebsiella sp.,Alcaligenes xylosoxidans Y234.和Pseudomonas putida.等菌株对苯具良好的降解能力[10-13]。然而,在单一苯降解高效菌株降解复杂疏水性化合物时,由于代谢途径单一、反应速率有限,积累的中间代谢产物易毒害微生物[14-15]。混合菌群内的不同种群间代谢酶与代谢途径互补,可减少中间产物的积累效应,且污染物易矿化完全[16-18],从而使得复合菌系统具有降解效率高、抗冲击能力强、可实现多元污染物共处理等优势[19-20]。因此,可研究复合菌系统降解苯的菌落结构及降解条件,为苯的生物法处理提供参考。
在有氧情况下,好氧菌对苯系物代谢途径一般为,先在氧分子及加氧酶的作用下形成邻苯二酚或其衍生物的代谢中间体,然后在过氧分子及开环酶的作用下进行邻位切割或间位切割,使其形成直链分子,最后再进入三羧酸(tricarboxylic acid,TCA)循环[21]。在降解较复杂化合物时,中间代谢产物容易积累,降低反应速率且易对微生物造成毒害[14-15]。本研究拟通过筛选出高效苯降解优势菌,考察其最佳苯降解条件,探究其降解能力与代谢途径,以配制人工复合菌剂,并研究复合菌剂对活性污泥以及本实验室设计的泡沫生物洗涤反应器的影响,达到缩短反应器启动时间、提高去除效率、优化运行参数等目的,以期为人工复合菌剂强化生物洗涤法处理含苯废气提供参考。
生物洗涤塔内产漆酶苯降解菌的分离鉴定及菌剂制备应用
Isolation, identification and preparation of laccase benzene degrading bacteria in biological scrubber tower
-
摘要: 从生物洗涤塔内循环洗涤液中分离鉴定得到3株苯降解菌Kocuria rosea sp. R(玫瑰色考克氏菌属)、Bacillus sp. W(芽孢杆菌属),以及Arthrobacter sp. Y(节杆菌属),通过研究其苯降解动力学,确定苯降解优势菌为Bacillus sp. W,优化其降解条件并探究其代谢途径。结果表明,添加皂角苷可促进苯的生物降解,但根据不同细菌的代谢特点,其影响存在显著差异。在产漆酶菌Bacillus sp. W的降解下,苯的半衰期为8.08 h,而皂角苷与苯共代谢时,苯的半衰期缩短为4.90 h。在最优条件下,即pH为7、起始苯浓度为50 mg·L−1、皂角苷添加量为75 mg·L−1,Bacillus sp. W的漆酶酶活最高为490.21 U·L−1。在漆酶等参与下苯存在独特苯降解通路,苯在加氧酶作用下转化为邻苯二酚,漆酶可催化酚羟基邻位发生甲氧基取代,进而分子内加成为呋喃衍生物,再经一系列下游酶的作用降解成小分子。在生物反应器中添加由分离得到3株菌株复合而成的菌剂,苯去除效率在第5 d达最高81.21%,比常规驯化活性污泥提前了17 d,还增强了反应器的抗冲击能力。将菌剂接种到实验室的泡沫生物洗涤反应器中,实现了反应器快速启动,启动期仅为5 d。本研究可为生物技术治理疏水性和难降解性VOCs提供参考。Abstract: Three strains of benzene degrading bacteria, Kocuria rosea sp. R, Bacillus sp. W and Arthrobacter sp. Y were isolated from the circulating scrubbing liquid in a bioscrubber. Bacillus sp. W was identified as the highly efficient strain for benzene-degrading by studying the kinetics of benzene degradation. the degradation conditions of wich were optimized and the metabolic pathways were explored. The results showed that the existence of saponin could promote benzene biodegradation, but the effects were significantly different depending on the metabolic properties of different bacteria. The half-life of benzene was 8.08 h under degradation by laccase producing bacteria Bacillus sp. W, while the half-life of benzene was shortened to 4.90 h under the cometabolism of saponin and benzene. Bacillus sp. W showed a maximum laccase enzyme activity of 490.21 U·L−1 under optimal conditions with the pH at 7, an initial benzene concentration of 50 mg·L−1 and a saponin addition of 75 mg·L−1 . There was a unique benzene degradation pathway with the participation of laccase. Benzene was converted to catechol by the action of oxygenase, and laccase catalyzed methoxy substitution of phenol hydroxyl ortho positions, and then furan derivatives were generated by intramolecular addition, which were then degraded to small molecules by the action of a series of downstream enzymes. With the addition of microbial agent compounded with 3 strains, the removal efficiency of benzene reached 81.21 % on the fifth day, which was 17 days earlier than the conventional domesticated activated sludge, the shock resistance of the reactor was also enhanced . A rapid reactor start-up with a start-up period of only 5 d was achieved by inoculation of the bacterial agent into the laboratory foam bioscrubber reactor. This study can provide a reference for biotechnological treatment of hydrophobic and non-degradable VOCs.
-
Key words:
- saponin /
- laccase /
- Bacillus /
- degradation /
- metabolic pathway /
- microbial agent
-
表 1 正交实验的因素与水平的设置
Table 1. Factors of orthogonal experiment and level Settings
水平 因素 皂角苷添加量/(mg·L−1) pH 苯质量浓度/(mg·L−1) 1 25 5 20 2 50 6 50 3 75 7 100 4 100 8 200 表 2 动力学拟合结果对比表
Table 2. Comparison of kinetic simulation Results
菌株 体系 模拟方程 比降解速率|K| R2 半衰期/h R R2 lnc=−0.073 8t+0.090 7 0.073 8 0.931 6 9.39 R1 lnc=−0.116 1t+0.106 6 0.116 1 0.984 6 5.97 W W2 lnc=−0.085 8t+0.004 1 0.085 8 0.974 6 8.08 W1 lnc=−0.141 6t+0.233 9 0.141 6 0.944 2 4.90 Y Y2 lnc=−0.054 5t+0.040 3 0.054 5 0.976 5 12.72 Y1 lnc=−0.063 8t+0.066 6 0.063 8 0.958 8 10.86 表 3 正交实验结果分析表
Table 3. Analysis table of orthogonal experiment results
序号 皂角苷添加量/
(mg·L−1)pH 苯质量浓度/
(mg·L−1)去除效率% 实验1 100 6 50 78.98 实验2 50 6 20 78.80 实验3 100 8 20 62.59 实验4 25 7 50 79.98 实验5 75 7 20 80.10 实验6 100 5 100 70.62 实验7 25 5 20 72.02 实验8 50 5 200 68.26 实验9 100 7 200 71.75 实验10 75 5 50 74.70 实验11 50 8 50 69.76 实验12 75 8 200 62.74 实验13 25 6 200 73.68 实验14 50 7 100 80.42 实验15 25 8 100 66.82 实验16 75 6 100 80.63 -
[1] 杨会玲. 我国VOC废气治理的现状及展望[J]. 化工管理, 2017(16): 135. [2] JI Y Y, GAO F H, WU Z H, et al. A review of atmospheric benzene homologues in China: Characterization, health risk assessment, source identification and countermeasures.[J]. Journal of Environmental Sciences, 2020, 95(9): 225-239. [3] 张昊. 挥发性有机物废气处理技术进展与前瞻[J]. 环境与发展, 2019, 31(6): 80. [4] 吴成强, 桂湘也, 邵倩, 等. 生物净化装置现场处理汽车轮毂涂装车间的VOCs[J]. 环境工程学报, 2021, 15(3): 1060-1066. [5] NISOLA G M, CHO E, ORATA, et al. NH3 gas absorption and bio-oxidation in a single bioscrubber system[J]. Process Biochemistry, 2009, 44(2): 161-167. doi: 10.1016/j.procbio.2008.10.004 [6] KANG J, WANG T, XIN H, et al. A laboratory study of microalgae-based ammonia gas mitigation with potential application for improving air quality in animal production operations[J]. Journal of the Air & Waste Management Association. 2014, 64(3): 330-339. [7] BARBUSINSKI K, KALEMBA K, KASPERCZYK D, et al. Biological methods for odor treatment-A review[J]. Journal of Cleaner Production, 2017, 152: 223-241. doi: 10.1016/j.jclepro.2017.03.093 [8] SAN-VALERO P, PENYA-ROJA J M, ÁLVAREZ-HORNOS F J, et al. Fully aerobic bioscrubber for the desulfurization of H2S-rich biogas[J]. Fuel, 2019, 241: 884-891. doi: 10.1016/j.fuel.2018.12.098 [9] 刘建伟, 马文林, 王志良. 废气生物处理微生物学研究进展[J]. 环境科学与技术, 2012, 35(8): 74. [10] SINGH D, FULEKAR M H, Benzene bioremediation using cow dungmicroflora in two phase partitioning bioreactor[J], J. Hazard[J]. Mater, 2010, 175(1/2/3): 336-343. [11] SARA B, MASSIMO M, LORENZO B, et al. , Microbial succession in a compost-packed biofilter treating benzene-contaminated air[J]. Biodegradation, 2006, 17(2): 181-191. [12] SUNG Y H, YOUNG Y J. Removal of benzene in a hybrid bioreactor[J]. Process Biochemistry, 1999, 34(3): 281-288. doi: 10.1016/S0032-9592(98)00094-6 [13] SUNG-HO Y, ANDREW D J, Benzene degradation in a two-phase partitioning bioreactor by Alcaligenes xylosoxidansY234[J]. Process Biochemistry, 2001, 36(8/9): 765–772. [14] SCHIAVON M, RAGAZZI M, RADA E C, et al. Air pollution control through biotrickling filters: A review considering operational aspects and expected performance[J]. Critical Reviews in Biotechnology, 2016, 36(6): 1143-1155. doi: 10.3109/07388551.2015.1100586 [15] 李远啸, 郭斌, 刘烁. 微生物生物技术处理气态污染物的研究进展[J]. 微生物学通报, 2019, 46(12): 3475-3482. [16] 张秀芳, 陈翰琳, 李哲, 等. 不动杆菌与假单胞菌对17β-雌二醇的协同降解特性[J]. 吉林大学学报(理学版), 2017, 55(6): 1631-1636. [17] 刘鸿泉,张桓,廖雷,等. 活性污泥洗涤净化餐饮油烟VOCs及其生物降解过程[J]. 环境工程学报, 2022, 16(4): 1111-1122. doi: 10.12030/j.cjee.202106120 [18] 罗霂. 高效降解高分子量多环芳烃的混合菌剂的开发[D]: 北京: 轻工业环境保护研究所, 2013. [19] 周月明. 耐低温高效复合苯系物、硝基苯、苯胺降解菌剂的研制[D]. 长春: 吉林大学, 2012. [20] 张燕可. 苯系物降解菌及生物除苯初步研究[D]. 无锡: 江南大学, 2017. [21] 刘远峰, 孔令迎, 耿凤华, 等. 生物法处理甲苯和二甲苯废气研究[J]. 青岛科技大学学报(自然科学版), 2018, 39(3): 89-96. [22] 刘庆辉, 李剑, 杨航, 等. 高效苯酚降解菌Bacillus sp. L5-1的分离及其降解特性[J]. 中国环境科学, 2021, 41(5): 2441-2448. [23] 肖建军, 李亚龙, 杨琦. 苯降解菌的筛选及其对苯的降解研究[J]. 环境工程, 2018, 36(6): 159-162. [24] 张燕可, 冯守帅, 杨海麟, 等. 苯系物降解菌PseudomonasputidaSW-3的筛选及其降解苯的研究[J]. 微生物学通报, 2017, 44(9): 2096-2103. [25] 门娟. 高效降解菌对典型苯系物的降解特性研究[D]. 天津: 天津大学, 2012. [26] 胡忠, 吴奕瑞, 徐艳, 等. 海洋苯酚降解菌 Candida sp. P5 的分离鉴定及其降解特性[J]. 应用与环境生物学报, 2007, 13(2): 243-247. [27] 胡献国, 丁恒, 徐玉福, 等. 生物油降解菌的分离鉴定及其在土壤中的降解特性[J]. 环境科学研究, 2008, 21(6): 182-186. [28] KUREEL M K, GEED S R, GIRI B S, et al. Biodegradation and kinetic study of benzene in bioreactor packed with PUF and alginate beads and immobilized with, Bacillus sp. M3[J]. Bioresource Technology, 2017, 242: 92-100. doi: 10.1016/j.biortech.2017.03.167 [29] 马若兰. 不同菌种对苯系气体处理效果的研究[D]. 天津: 河北工业大学, 2017. [30] 史可, 郭晨蕾, 马晓丹, 等. 一株氯霉素降解细菌的分离鉴定与代谢特性研究[J]. 生物工程学报, 2021, 37(10): 3653-3662. [31] WANG J, TIAN Z, HUO Y B, et al. Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes[J]. Journal of Environmental Sciences, 2018, 67(5): 309-317. [32] AIAD I, EL-SUKKARY M M, SOLIMAN E A, et al. Characterization, surface properties and biological activity of new prepared cationic surfactants[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1633-1640. doi: 10.1016/j.jiec.2013.08.010 [33] KACZOREK E, SMULEK W, ZDARTA A, et al. Influence of saponins on the biodegradation of halogenated phenols[J]. Ecotoxicology and Environmental Safety, 2016, 131: 127-134. doi: 10.1016/j.ecoenv.2016.05.015 [34] QIAN H, CHENG Y, YANG C, et al. Performance and biofilm characteristics of biotrickling filters for ethylbenzene removal in the presence of saponins[J]. Environmental Science and Pollution Research, 2018, 25(30): 30021-30030. doi: 10.1007/s11356-017-0776-6 [35] SARAYU K, SANDHYA S. Rotating biological contactor reactor with biofilm promoting mats for treatment of benzene and xylene containing wastewater[J]. Applied biochemistry and biotechnology, 2012, 168(7): 1928-1937. doi: 10.1007/s12010-012-9908-0 [36] 徐腾飞, 卢磊, 赵敏, 等. 一株产漆酶细菌的分离鉴定及酶学性质研究[J]. 微生物学通报, 2013, 40(3): 434-442. [37] 张磊. 高效苯系物降解菌强化生物滤池及其处理甲苯性能研究[D]. 上海: 华东理工大学, 2021. [38] 谭自航, 解庆林, 章春芳, 等. 4株正十六烷降解菌的降解能力及代谢动力学特性[J]. 化工环保, 2018, 38(1): 46-51. [39] 李远啸. 生物洗涤法净化含苯废气及其强化技术研究[D]. 石家庄: 河北科技大学, 2019. [40] MAJEAU J A, BRAR S K, TYAGI RD. Laccases for removal of recalcitrant and emerging pollutants[J]. Bioresource Technology, 2010, 101(7): 2331-2350. doi: 10.1016/j.biortech.2009.10.087 [41] 赵家贺. 环境条件对菊酯杀虫剂手性降解的影响[D]. 石家庄: 河北科技大学, 2014. [42] 吴应琴, 马明广, 张媛, 等. 皂角苷及腐殖酸对微生物降解蒽的影响[J]. 环境科学学报, 2007, 27(11): 1818-1822. [43] SHARMA P, GOEL R, CAPALASH N. Bacterial laccases[J]. World Journal of Microbiology and Biotechnology, 2007, 23(6): 823-832. doi: 10.1007/s11274-006-9305-3 [44] FANG Z M, LI T L, CHANG F, et al. A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability[J]. Bioresource Technology, 2012, 111: 36-41. doi: 10.1016/j.biortech.2012.01.172 [45] 贾晨波, 苏一黄, 马秀梅, 等. 端梗霉Z45产漆酶培养基的优化及其对染料的脱色[J]. 生物技术通报, 2022, 38(6): 252-260. [46] 栗君. 产漆酶细菌菌株的筛选及其应用[D]. 哈尔滨: 东北林业大学, 2013. [47] 李凡姝, 刘海洋, 戴绍军, 等. 高产漆酶菌株Bacillus sp. CLb的筛选及其对染料脱色效果的研究[J]. 安徽农业科学, 2014, 42(6): 1614. [48] LIU J H, MAITY J P, JEAN J S, et al. Biodegradation of benzene by pure and mixed cultures of Bacillus spp[J]. World Journal of Microbiology and Biotechnology, 2010, 26(9): 1557-1567. doi: 10.1007/s11274-010-0331-9 [49] HENTATI D, CHEBBI A, HADRICH F, et al. Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5[J]. Ecotoxicology and Environmental Safety, 2019, 167(1): 441-449. [50] REDDY M V, MAWATARI Y, YAJIMA Y, et al. Poly-3-hydroxybutyrate (PHB) production from alkylphenols, mono and poly-aromatic hydrocarbons using Bacillus sp. CYR1: A new strategy for wealth from waste[J]. Bioresource Technology, 2015, 192(9): 711-717. [51] LU Q Y, CHEN K Y, LONG Y, et al. Benzo(a)pyrene degradation by cytochrome P450 hydroxylase and the functional metabolism network of Bacillus thuringiensis[J]. Journal of Hazardous Materials, 2019, 366(3): 329-337. [52] BISHT S, PANDEY P, KAUR G, et al. Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system[J]. European Journal of Soil Biology, 2014, 60(2): 67-76. [53] HU W, MIN X, LI X, et al. Enhanced degradation of 1-naphthol in landfill leachate using Arthrobacter sp.[J]. Environmental Technology, 2019, 40(7): 835-842. doi: 10.1080/09593330.2017.1408695 [54] NOGUEIRA FELIX A K, MARTINS J J L, LIMA A, et al. Purification and characterization of a bio-surfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil[J]. Colloids and Surfaces B:Biointerfaces, 2019, 175: 256-263. doi: 10.1016/j.colsurfb.2018.11.062 [55] VANDERA E, SAMIOTAKI M, PARAPOULI M, et al. Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose[J]. Journal of Proteomics, 2015, 113(1): 73-89. [56] SHAH T A, LEE C C, WILLAM J O, et al. Biological pretreatment of rice straw by ligninolytic Bac-illus sp. strains for enhancing biogas production[J]. Environmental Progress & Sustainable Energy, 2019, 38(3): 288-296. [57] 王佳懿, 李泰仑, 王天女, 等. 短小芽孢杆菌LC01的鉴定及其芽孢漆酶性质的研究[J]. 南京林业大学学报(自然科学版), 2018, 42(5): 113-120. [58] RIESENMAN P J, NICHOLSON W L. Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation[J]. Applied and Environmental Microbiology, 2000, 66(2): 620-626. doi: 10.1128/AEM.66.2.620-626.2000 [59] 倪宇洋, 黄顺生, 张勇, 等. 苯系污染物微生物降解及其合成聚羟基脂肪酸酯的研究进展[J]. 上饶师范学院学报, 2017, 37(3): 96-102. [60] 陈明, 王林, 谭天, 等. 漆酶催化邻苯二酚开环的自由基反应机制(英文)[J]. 物理化学学报, 2017, 33(3): 620-626. [61] CATHERINE H, PENNINCKX M, FRÉDÉRIC D. Product formation from phenolic compounds removal by laccases: A review[J]. Environmental Technology & Innovation, 2016, 5: 250-266. [62] SU J, FU J J, SILVA C, et al. Can laccase-assisted processing conditions influence the structure of the reaction products[J]. Trends in Biotechnology, 2019, 37(7): 683-686. doi: 10.1016/j.tibtech.2019.03.006 [63] SEO J S, KEUM Y S, LI Q X. Bacterial degradation of aromatic compounds[J]. International Journal of Environmental Research and Public Health, 2009, 6(1): 278-309. doi: 10.3390/ijerph6010278