-
高炉煤气是炼铁行业的主要副产物,是钢铁企业重要的二次能源,已成为钢铁企业节能降耗及达标排放的关键[1-3]。高炉煤气气量大,每炼1 t铁可生产1 700~2 500 m3高炉煤气。目前,我国高炉煤气的产量高达2.33×109~2.67 ×109 m3·d−1,为将其净化并后续应用,主要采用重力除尘器联用袋式除尘器以去除颗粒物。在其经余压发电后送往高炉热风炉、轧钢加热炉、煤气发电等用户单元作为燃料使用,但未经脱硫净化处理的高炉煤气在燃烧后会产生SO2。这使得烟气的SO2质量浓度无法满足国家超低排放限值50 mg·m−3,故亟待治理[4]。
高炉煤气成分与高炉所用燃料、所炼生铁的品种和冶炼工艺有关[5-6],主要成分包括CO、CO2、N2、O2、H2,以及少量硫化物。其中,硫化物包括羰基硫(carbonyl sulfide,COS)、H2S、二硫化碳(CS2)、硫醇、硫醚和噻吩等,以COS、H2S为主。COS约占总硫的80%。H2S易与碱性物质发生中和反应而去除,而有机硫COS相对比较稳定,用常规方法难以直接脱除。这亦成为高炉煤气精脱硫技术的主要对象和技术突破点[7-8]。
高炉煤气精脱硫是一项正研发试用中的新兴技术。目前,高炉煤气脱硫主要工艺路线为:高炉煤气
$ \to $ 重力除尘$ \to $ 袋式除尘$ \to $ 有机硫水解转化$ \to $ 余压透平发电系统(blast furnace top gas recovery turbine unit,TRT)$ \to $ 干法或湿法脱除硫化氢$ \to $ 管网。此工艺包含水解和H2S脱除两段工序。工艺尚存在投资高、水解催化剂技术不成熟、使用寿命短等问题;在有机硫水解转化后高炉煤气中H2S增多,H2S处于高温高压环境中并溶于煤气冷凝水,会形成氢硫酸并对TRT设施和附属管道带来腐蚀作用[4]。脱硫设备阻力会提高TRT背压,从而影响TRT的发电量[9-10]。为简化脱硫工艺、解决脱硫系统对除尘系统和TRT的发电量影响、反应器和附属管道的腐蚀等问题,本研究提出一种电化学协同增效湿法吸收精脱硫工艺:高炉煤气
$ \to $ 重力除尘$ \to $ 袋式除尘$ \to $ 余压透平发电系统(TRT)$ \to $ 电化学协同湿法吸收脱硫$ \to $ 管网。基于电化学协同湿法吸收精脱硫工艺方法,得到复合吸收剂(Na2CO3+EDTA+EDTA-2Na)的最佳组分配比、脱硫性能规律及机理,以期为高炉煤气精脱硫技术发展及关键工艺参数的确定提供参考。
高炉煤气电化学协同湿法精脱硫复合吸收剂Na2CO3+EDTA+EDTA-2Na的脱除效果及工艺条件
Removal effect and process conditions of composite absorbent Na2CO3+EDTA+EDTA-2Na for wet desulfurization of blast furnace gas by electrochemical synergistic method
-
摘要: 针对钢铁行业全流程超低排放改造要求,结合当前高炉煤气精脱硫技术不成熟、需求迫切的现状,提出了电化学催化氧化协同增效湿法吸收精脱硫方法,考察了Na2CO3+EDTA+EDTA-2Na复合吸收剂脱除羰基硫(COS)的性能,对其工艺条件进行了优化。通过对脱硫产物及反应前后脱硫液进行表征检测,分析了电化学协同湿法吸收脱硫机制。结果表明:在反应温度30 ℃、空塔气速0.25 cm·s−1、工作电压3 V及电流密度2.5 A·mm−2的条件下,配比为15%Na2CO3+15%(EDTA+ EDTA-2Na)、(n (EDTA)∶ n (EDTA-2Na)=1∶1)的复合吸收剂的COS脱除效率可达76.98%;复合吸收剂通过电化学催化协同吸收COS,不仅可有效避免副产物产生,且溶剂具有良好的稳定性和可行性。本研究提出的高炉煤气电化学协同湿法精脱硫技术可为钢铁行业开展全流程超低排放改造提供参考。Abstract: In response to the ultra-low emission transformation requirements of the entire process of the steel industry, combined with the current immature and urgent needs of blast furnace gas fine desulfurization technology, this paper proposed an electrochemical catalytic oxidation assisted synergistic wet absorption fine desulfurization method, and investigated the performance of the composite absorbent (Na2CO3+EDTA+EDTA-2Na) to remove carbonyl sulfide (COS), and optimized its process conditions. And the electrochemical cooperative wet absorption desulfurization mechanism was analyzed by characterizing the desulfurization product and the desulfurization solution before and after the reaction. The results showed that the removal rate of COS in desulfurization liquid with a ratio of 15%Na2CO3+15% EDTA and EDTA-2Na (n(EDTA): n(EDTA-2Na)=1:1) could reach 76.98%, when the reaction temperature was 30 ℃, the empty tower flow rate of 0.25 cm·s−1, the working voltage was 3 V and the current density was 2.5 A·mm−2. The composite absorbent synergistically absorbed COS through electrochemical catalysis, in which the production of by-products could be effectively avoided, and the solvent also possessed good stability and feasibility. It can provide a reference for the optimization of the electrochemical synergistic wet fine desulfurization technology of blast furnace gas.
-
Key words:
- blast furnace gas /
- carbon oxide sulfide(COS) /
- EDTA /
- wet desulfurization /
- electrochemistry
-
表 1 实验气体中各组分的含量
Table 1. The content of each component in the experimental gas
H2 CO CO2 N2 O2 COS 1.99% 26.62% 11.77% 余 0.32% 280.0 mg·m−3 注:H2、CO、CO2、O2的百分数均为体积分数;体系载气为N2,故体系内除其他气体组分外,其余均为N2。 -
[1] 上官方钦, 干磊, 周继程, 等. 钢铁工业副产煤气资源化利用分析及案例[J]. 钢铁, 2019, 54(7): 114-120. doi: 10.13228/j.boyuan.issn0449-749x.20190034 [2] 郭玉华. 高炉煤气净化提质利用技术现状及未来发展趋势[J]. 钢铁研究学报, 2020, 32(7): 525-531. doi: 10.13228/j.boyuan.issn1001-0963.20190274 [3] 孙加亮, 杨伟明, 杜雄伟. 高炉煤气脱硫现状及技术路线分析[J]. 冶金动力, 2020(10): 13-18. doi: 10.13589/j.cnki.yjdl.2020.10.006 [4] 魏振浩. CODS溶剂脱除高炉煤气中有机硫性能考察[J]. 中国冶金, 2020, 30(10): 87-91. doi: 10.13228/j.boyuan.issn1006-9356.20200111 [5] 李均, 陈志炜. 高炉煤气精脱硫技术的研究与应用[N]. 世界金属导报, 2019-07-30(B06). [6] 张波, 薛庆斌, 牛得草, 等. 高炉煤气利用现状及节能减排新技术[J]. 炼铁, 2018, 37(2): 51-55. [7] 李翔, 王学谦, 李鹏飞, 等. 高炉煤气特征组分分析及其对脱硫过程的影响[J]. 化工进展, 2021, 40(12): 6629-6639. doi: 10.16085/j.issn.1000-6613.2021-0081 [8] 周守毅. 钢铁企业副产煤气中硫化物的测定[J]. 环境科学与技术, 2017, 40(S1): 252-254. [9] 贾彩清, 谢建. 高炉煤气干法脱硫系统及方法: 中国, CN110387270A[P]. 2019-10-29. [10] 魏振浩, 章昌兵, 龙志峰, 等. 用于高有机硫浓度的高炉煤气湿法脱硫系统及工艺: 中国, CN110776961A[P]. 2020-02-10. [11] IGNASI S, ENNRIC B, A MEHMET O, et al. Electrochemical advanced oxidation processes: today and tomorrow. A review[J]. Environmental Science and Pollution Research, 2014, 21(14): 8336-8367. doi: 10.1007/s11356-014-2783-1 [12] 王玉芝, 于天霞, 邢宇. 加入EDTA改进硫化氢吸收液的方法探讨[J]. 化学与黏合, 2011, 33(3): 77-79. [13] 张少杰, 李斌, 赵光明. Na2CO3+EDTA+EDTA-2Na吸收剂对湿法烟气深度脱硫性能的实验研究[J]. 山东化工, 2017, 46(7): 193-194. doi: 10.3969/j.issn.1008-021X.2017.07.075 [14] 张爽. 直接催化氧化法脱除酸性气体中硫化氢工艺研究[D]. 长春: 东北师范大学, 2016. [15] 刘雪珂. 有机介质脱硫体系的构建及其氧化羰基硫工艺[D]. 北京: 北京化工大学, 2020. [16] PRAKASH D V, EUGENY Y K. Kinetics of carbonyl sulfide reaction with alkanolamines: A review[J]. Chemical Engineering Journal, 2009, 148(2/3): 207-211. [17] 马少宁, 王智. 精馏过程中气-液比条件的工程意义[J]. 化工时刊, 2014, 28(8): 36-39. doi: 10.3969/j.issn.1002-154X.2014.08.013 [18] 周向, 陈燕, 陈瑜, 等. 吸收烟气中低浓度CO2的操作条件分析[J]. 中国冶金, 2019, 29(7): 61-65. [19] 李胜利, 胡胜, 冯求宝, 等. 脉冲放电条件下用高炉煤气洗涤水脱硫的研究[J]. 环境科学学报, 2011, 31(1): 186-192. doi: 10.13671/j.hjkxxb.2011.01.006 [20] YADOLLAH T, MOHAMMAD S, FATOLA F. Electrochemical oxidative desulfurization for high sulfur content crude gas oil[J]. Separation and Purification Technology, 2020, 248: 117117. doi: 10.1016/j.seppur.2020.117117 [21] 田建勋, 祁贵生, 刘有智, 等. 碳酸钠溶液吸收硫化氢富液的直接电解工艺[J]. 化工进展, 2015, 34(2): 325-329. doi: 10.16085/j.issn.1000-6613.2015.02.005 [22] 罗万江, 兰新哲, 宋永辉. 煤的电化学脱硫技术研究及进展[J]. 选煤技术, 2009(3): 64-67. doi: 10.3969/j.issn.1001-3571.2009.03.026 [23] TANG X D, HU T, LI J J, et al. Desulfurization of kerosene by the electrochemical oxidation and extraction process[J]. Energy Fuels, 2015, 29(4): 2097-2103. doi: 10.1021/ef502437m [24] 苗沛然, 杨晓东, 王永敏. 直接碱催化水解法脱除羰基硫的技术经济分析[J]. 中国冶金, 2019, 29(1): 77-82. doi: 10.13228/j.boyuan.issn1006-9356.20180142