-
近年来,我国矿冶、机械制造、化工、电子、仪表等行业高速发展,相关企业的生产过程中几乎都会产生重金属废水。由于部分工矿企业的不达标排放,造成了严重的重金属污染[1]。大多数重金属都具有毒性,如果直接排放到水环境中,会通过食物链富集对水生生物和人类健康造成威胁[2]。目前,国内外关于重金属废水的处理方法主要包括生物絮凝法、吸附法、化学沉淀法、电化学法、絮凝法等[3]。其中吸附法和絮凝法作为传统且成熟的方法应用极为广泛,经济、高效且环境友好是评价吸附剂和絮凝剂的主要指标[4]。寻找具有广泛pH适应性且能够对抗实际复杂环境中不利影响的絮凝吸附药剂,是提高该方法处理重金属废水效率的关键[5]。
在重金属废水处理中,使用的材料必须易于获得、制备容易、投加操作简单、成本低,才可能被广泛推广应用[6]。许多建筑材料易于获得且价格相对较低,具有用于处理重金属废水的潜力[7]。在这类材料之中,水泥类材料生产技术成熟、产量高[8] (2020年我国水泥产量达15×109 t左右[9]),且和其他同类材料相比具有生产容易、经济高效等优点。目前,已经有用水泥类材料处理废水中重金属的报道。陈怡等[10]采用普通硅酸盐水泥和石灰的混合物对酸性重金属废水进行处理,通过石灰提供Ca2+和碱度来提高重金属离子的去除率,发现在弱酸条件下水泥能较好去除废水中Cu2+、Pb2+。樊志金[11]采用水泥+石灰、水泥+石灰+絮凝剂2种方案,在未考虑重金属离子间的相互影响下对比了2种方案下金属离子的沉淀效果。李国新等[12]使用硫铝酸盐水泥-膨润土制备了一种复合材料用于重金属废水的处理,该材料对辅料配比要求严格,制备较为复杂,普遍适用性有待进一步提高。在水泥材料用于重金属废水处理的相关研究中,一般都需要加入其他辅料来改善水泥的性能,还需要根据不同来水水质采用不同的配比。而水泥材料本身具有良好的重金属去除性能,兼具了经济性和安全性,如何在不添加其他辅料的情况下放大水泥基材料自身的优势,使其能够在实际复杂环境中适应广泛的pH条件,对抗不利影响,提高处理效率,还需要进一步探究。
硫铝酸盐水泥是 20 世纪 80 年代出现的水泥品种,以硫铝酸钙矿物与铁相矿物为主要成分。其水化物液相pH较高,为12.0~12.5[13],水化活性显著高于普通硅酸盐水泥,能够提供强碱度中和金属离子废水的酸度并生成难溶性沉淀;另外,硫铝酸盐水泥水化可产生的大量铁胶与铝胶[14],而铁系和铝系絮凝剂是目前应用广泛、工艺成熟的无机金属盐絮凝剂[3],可以通过絮凝作用促进重金属离子的网捕沉淀去除。此前,课题组在对湖库中低浓度磷的去除实验中发现硫铝酸盐水泥能在pH为5.0~8.0时形成絮凝体[15],可较好地吸附磷。一般来说,絮凝体对废水中的金属阳离子具有较好的去除效果。为进一步增加材料的应用场景,基于上述研究,本研究选择硫铝酸盐水泥(L)及其改性材料(LA)为重金属离子清除剂,以Cu2+、Pb2+、Zn2+、Cd2+为研究对象,考察了清除剂投加量、废水初始pH、重金属离子初始浓度、振荡时间等因素对L和LA去除重金属的影响,优化了最佳应用条件,通过竞争吸附和分析动力学原理,研究了不同重金属离子间的相互影响,解析了硫铝酸盐水泥及其改性材料去除重金属的机理,以期为该类型材料的推广应用提供参考。
硫铝酸盐水泥及其改性材料对典型重金属的去除性能
Performance on typical heavy metals removal by sulphoaluminate cement and its modified material
-
摘要: 应用经济高效的材料和简易的方法去除水中重金属已成为当前的研究热点。选择硫铝酸盐水泥(L)及其改性材料(LA)为清除剂,以Cu2+、Pb2+、Zn2+、Cd2+ 4种典型的重金属离子为研究对象,通过考察L和LA去除重金属过程中单因素的影响,对去除条件进行了优化,此外,通过竞争吸附实验及吸附动力学模型探究了对金属离子的去除机理。结果表明,L和LA可以有效地去除废水中的重金属离子,在pH为3.0~10.0条件下能够以较少的投加量(0.05~3 g·L−1)使目标离子达到94%以上的去除率,30 min内表观吸附速率可降到零。相比之下,LA对金属离子的去除率略高于L。在最佳应用条件下,金属离子的去除率基本在90%以上。在竞争吸附实验中Cu2+的竞争性最强,且其能够促进其他离子被吸附。吸附动力学分析表明,L和LA对重金属的吸附是以化学吸附为主,去除机理以水解沉淀为主。以上研究结果可为该类材料对重金属的处理提供参考。Abstract: The application of cost-effective materials and simple methods to remove heavy metals from water has become a research hotspot. In this study, a type of sulphoaluminate cement (L) and its modified material (LA) were used to remove four typical heavy metal ions of Cu2+, Pb2+, Zn2+ and Cd2+ from the simulated wastewater. The removal conditions were optimized by investigating the effects of single factors on heavy metals removal by L and LA. In addition, the removal mechanism was analyzed by the competitive adsorption test and adsorption kinetic model. The results indicate that L and LA had a good performance on heavy metal ions removal from wastewater, under the conditions of pHs 3.0~10.0 and low dosages (0.05 g·L−1~3 g·L−1), the removal rate could reach higher than 94%, and the apparent adsorption rate decreased to zero within 30 minutes. The removal rate by LA was slightly higher than L. Under the best application conditions, the removal rates for these heavy metals were basically higher than 90%. In the competitive adsorption, Cu2+ showed the strongest competition and could promote the adsorption of other ions. The adsorption kinetics analysis shows that the heavy metals adsorption by L and LA was mainly dominated by chemical adsorption, and the mechanism of heavy metals removal was mainly dominated by hydrolytic precipitation. These results can provide a reference for heavy metals treatment in wastewater by this type of material.
-
Key words:
- sulphoaluminate cement /
- heavy metal wastewater /
- modification /
- removal mechanism
-
表 1 投加量的因素-水平表
Table 1. Factor of dosage - level table
g·L−1 重金属离子 材料 水平 1 2 3 Cu2+ L/LA 0.1 1 3 Pb2+ L/LA 0.03 0.05 0.1 Zn2+ L 0.03 0.05 0.1 LA 0.05 0.1 1 Cd2+ L 1 3 5 LA 0.5 3 5 注:水平1、2、3振荡时间因素-水平分别为15 min、30 min、45 min。 表 2 初始pH的因素-水平表
Table 2. Factors of initial pH - level table
重金属离子 材料 水平 1 2 3 Cu2+ L/LA 3.0 7.0 9.0 Pb2+ L 3.0 4.0 7.0 LA 4.0 7.0 9.0 Zn2+ L 5.0 7.0 9.0 LA 3.0 7.0 8.0 Cd2+ L/LA 2.0 3.0 7.0 注:水平1、2、3振荡时间因素-水平分别为15 min、30 min、45 min。 表 3 多组分模拟废水重金属离子组合情况
Table 3. Combination of heavy metal ions in the simulated wastewater with multicomponent
mg·L−1 组合方式 Cu2+ Pb2+ Zn2+ Cd2+ Cu2++Pb2+ 10 10 — — Cu2++Zn2+ 10 — 10 — Cu2++Cd2+ 10 — — 10 Pb2++Zn2+ — 10 10 — Pb2++Cd2+ — 10 — 10 Zn2++Cd2+ — — 10 10 Cu2++Pb2++Zn2+ 10 10 10 — Cu2++Pb2++Cd2+ 10 10 — 10 Cu2++Zn2++Cd2+ 10 — 10 10 Pb2++Zn2++Cd2+ — 10 10 10 Cu2++Pb2++Zn2++Cd2+ 10 10 10 10 表 4 正交实验重金属剩余浓度
Table 4. Residual concentration of heavy metals in the orthogonal experiment
mg·L−1 因素组合 Cu2+ Pb2+ Zn2+ Cd2+ L LA L LA L LA L LA X1Y1Z1 2.939 3.088 8.464 2.976 8.010 8.290 9.580 9.770 X1Y2Z2 0.928 0.735 0.594 0.686 4.340 6.560 0.026 3.190 X1Y3Z3 0.028 0.037 0.274 0.503 0.044 0.079 0.029 0.127 X2Y1Z2 0.018 0.072 1.097 0.957 4.310 5.790 0.550 0.359 X2Y2Z3 0.009 0.037 0.274 0.411 0.267 0.668 0.020 0.133 X2Y3Z1 0.028 0.037 0.228 0.457 0.051 0.040 0.020 0.066 X3Y1Z3 0.028 0.035 0.274 0.728 0.056 0.018 0.159 1.034 X3Y2Z1 0.037 0.018 0.183 0.320 0.738 0.023 0.014 0.055 X3Y3Z2 0.037 0.037 0.274 0.320 0.054 0.023 0.011 0.043 注:X为投加量;Y为初始pH;Z为振荡时间,下标数字1、2、3为表1、表2中各因素3水平。 表 5 极差分析结果
Table 5. Range analysis results
-
[1] 张帆, 李菁, 谭建华, 等. 吸附法处理重金属废水的研究进展[J]. 化工进展, 2013, 32(11): 2749-2756. [2] SRIVASTAVA N K, MAJUMDER C B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater[J]. Journal of Hazardous Materials, 2008, 151(1): 1-8. doi: 10.1016/j.jhazmat.2007.09.101 [3] 杜凤龄, 徐敏, 王刚, 等. 絮凝剂处理重金属废水的研究进展[J]. 工业水处理, 2014, 34(12): 12-16. doi: 10.11894/1005-829x.2014.34(12).012 [4] 朱四琛, 孙永军, 孙文全, 等. 絮凝法在重金属废水处理中的研究进展与应用[J]. 净水技术, 2018, 37(11): 40-50. doi: 10.15890/j.cnki.jsjs.2018.11.008 [5] 李博文, 杨桂锦. 重金属废水处理技术研究进展[J]. 中国资源综合利用, 2021, 39(11): 87-92. doi: 10.3969/j.issn.1008-9500.2021.11.024 [6] JOSEPH L, JUN B M, FLORA J R V, et al. Removal of heavy metals from water sources in the developing world using low-cost materials: A review[J]. Chemosphere, 2019, 229: 142-159. doi: 10.1016/j.chemosphere.2019.04.198 [7] HASSAN S S M, AWWAD N S, ABOTERIKA A H A. Removal of chromium(VI) from wastewater using Sorel's cement[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006, 269(1): 135-140. doi: 10.1007/s10967-006-0242-2 [8] 姚燕, 王昕, 颜碧兰, 等. 水泥水化产物结构及其对重金属离子固化研究进展[J]. 硅酸盐通报, 2012, 31(5): 1138-1144. [9] 史伟, 王冬. 2009到2050年中国水泥产量预测//中国硅酸盐学会[J]. 2009中国水泥技术年会暨第十一届全国水泥技术交流大会论文集. 重庆, 2009: 18. [10] 陈怡, 肖迎旭, 樊志金, 等. 水泥-石灰对Cu2+、Pb2+废水处理研究[J]. 环境科学与技术, 2016, 39(2): 139-142. [11] 樊志金. 水泥处理重金属废水研究[D]. 成都: 西华大学, 2016. [12] 李国新, 牛梦蝶. 一种含重金属离子工业废水的处理方法及重金属离子-硫铝酸盐水泥-膨润土复合材料. CN110240456B[P], 2021-07-30. [13] 齐冬有, 王燕谋, 汪智勇, 等. 铁铝酸盐水泥有望破解水泥混凝土遭受海水腐蚀难题[N]. 2021-11-08. [14] 王亚丽, 崔素萍, 徐西奎. 铁铝酸盐水泥基材料吸附重金属离子规律的研究[J]. 混凝土, 2010(10): 8-9. [15] 杨蕤, 刘国, 黄艳采, 等. 硫铝酸盐水泥去除微污染水体中磷的性能及机理[J]. 湖泊科学, 2022, 34(3): 828-842 [16] 国家环境保护局. 水质 铜、锌、铅、镉的测定 原子吸收分光光度法: GB 7475-87 S].
[17] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465. doi: 10.1016/S0032-9592(98)00112-5 [18] LAGERGREN S. Zur theorie der sogenannten adsorption geloster stoffe[J]. Kungliga Svenska Vetenskapsakademiens Handlingar, 1898(24): 1-39. [19] JIANG M Q, JIN X Y, LU X Q, et al. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay[J]. Desalination, 2010, 252(1-3): 33-39. doi: 10.1016/j.desal.2009.11.005 [20] 梁艳, 卢燕南, 唐艳葵, 等. 多组分重金属复合体系在高岭土中的吸附差异[J]. 广西大学学报(自然科学版), 2021, 46(1): 173-181. doi: 10.13624/j.cnki.issn.1001-7445.2021.0173 [21] 冯江涛, 王桢钰, 闫炫冶, 等. 吸附去除水体重金属离子的影响因素研究进展[J]. 西安交通大学学报, 2022, 56(2): 1-17. [22] GINEYS N, AOUAD G, DAMIDOT D. Managing trace elements in Portland cement - Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts[J]. Cement and Concrete Composites, 2010, 32(8): 563-570. doi: 10.1016/j.cemconcomp.2010.06.002 [23] 刘继芳, 曹翠华, 蒋以超, 等. 重金属离子在土壤中的竞争吸附动力学初步研究Ⅰ. 竞争吸附动力学的竞争规律与竞争系数[J]. 土壤肥料, 2000(2): 30-34. [24] 熊杰. 新型重金属捕集剂去除废水重金属离子研究[D]. 重庆: 重庆工商大学, 2021. [25] SONG L, FENG Y, ZHU C, et al. Enhanced synergistic removal of Cr(VI) and Cd(II) with bi-functional biomass-based composites[J]. Journal of Hazardous Materials, 2020, 388: 121776. doi: 10.1016/j.jhazmat.2019.121776 [26] ZHU C, LIU F, ZHANG Y, et al. Nitrogen-doped chitosan-Fe(III) composite as a dual-functional material for synergistically enhanced co-removal of Cu(II) and Cr(VI) based on adsorption and redox[J]. Chemical Engineering Journal, 2016, 306: 579-587. doi: 10.1016/j.cej.2016.07.096 [27] HUANG D, WU J, WANG L, et al. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water[J]. Chemical Engineering Journal, 2018, 358: 1399-1409. [28] 王培铭, 李楠, 徐玲琳, 等. 低温养护下硫铝酸盐水泥的水化进程及强度发展[J]. 硅酸盐学报, 2017, 45(2): 242-248. doi: 10.14062/j.issn.0454-5648.2017.02.10 [29] 王登权, 何伟, 王强, 等. 重金属在水泥基材料中的固化和浸出研究进展[J]. 硅酸盐学报, 2018, 46(5): 683-693. doi: 10.14062/j.issn.0454-5648.2018.05.11 [30] MIJNO V, CATALAN L J J, MARTIN F, et al. Compositional changes in cement-stabilized waste during leach tests-comparison of SEM/EDX data with predictions from geochemical speciation modeling[J]. Journal of Colloid and Interface Science, 2004, 280(2): 465-477. doi: 10.1016/j.jcis.2004.08.025 [31] POMIES M P, LEQUEUX N, BOCH P. Speciation of cadmium in cement Part I. Cd2+ uptake by C-S-H[J]. Cement and Concrete Research, 2001, 31(4): 563-569. doi: 10.1016/S0008-8846(00)00480-4 [32] ELLIOTT H A, LIBERATI M R, HUANG C P. Competitive adsorption of heavy metals by soils[J]. Journal of Environmental Quality, 1986, 15(3): 215-219.