-
石油烃污染地块主要是石油在开采、运输、使用和储存过程中泄露而造成的[1],据相关资料显示,我国采油区点位超标率已达23.6%[2],随着交通基础设施发展,加油站的泄露成为主要污染源之一[3]。石油类污染成分复杂,通常有几十、上百种成分,按结构可分为烷烃、环烷烃、芳香烃和烯烃[4]。这些物质进入到土壤、地下水、地表水和大气中都会给人体健康及生态环境安全造成威胁。
建设用地在开展修复活动之前,需要评估其可能会对环境和人体造成的危害程度。依据风险程度不同制定相应的管理方法[5]。石油烃由于成分复杂,各组分毒理性质不同,如何科学、准确的开展评估工作成为了国内外有关学者的关注问题。1995年美国材料与试验协会(ASTM)出台了《石油泄漏场地基于风险的纠正行动标准导则》等相关技术导则,美国GSI公司基于该系列准则开发了RBCA商用模型,目前已成为广泛应用的风险评估模型之一[6-7]。我国的风险评估工作起步较晚,目前出台的国家导则规定了石油烃(C10~C40)的相关限值,但没有规定具体的风险评估模型和方法[8-9]。依据上海市的相关技术文件[10],本研究使用分段评估的方法,以某石油烃污染地块为例,利用《建设用地土壤污染风险评估技术导则:HJ25.3—2019》(简称“RAG-C”模型)和RBCA模型分别进行人体健康风险评估,分析了两者的异同,以期为石油烃的风险评估技术提供借鉴。
-
该石油烃污染地块位于我国某工业百强市,由于曾作为油品加工企业生产用地,企业在环保整治专项行动中关停,经若干年的生产活动所产生的石油类物质进入环境,存在污染风险。
-
依据本地块地质探勘资料,除表层杂填土外,主要地层结构由黏土组成。潜水含水层埋深约1.5 m,土壤相关理化参数,见表1。
-
初步调查阶段采用专业判断法在原厂的生产区域内进行布点采样,详细调查阶段在初步调查的超标点位附近按照20 m×20 m的网格进行加密布点,在厂区其余区域按照40 m×40 m的网格布设采样点位,最大采样深度达12 m。在S1~S25点位采集土壤样品、SW1~SW8采集土壤及地下水样品,W2-1~W3-8采集地下水样品,共计采集土壤样品216个,地下水样品20个,地块中石油烃污染分析数据,见表2。
-
RBCA模型的评价方法是将石油烃分成若干馏分,依据分段的毒性参数开展风险评估。石油烃属于非致癌物质,模型计算其危害商,判定标准为1[11]。非致癌物质的危害商(HQ)计算,见式(1):
式中:IR为摄入比例;EF为暴露频率;ED为暴露持续时间;BW为受体质量;AT为平均暴露时间;RfD为参考剂量。下标oral、dermal、inh分别为经口摄入、皮肤接触和呼吸吸入。
-
我国在借鉴美国等发达国家经验的基础上编制了《污染场地风险评估技术导则:HJ 25.3—2014》,并于2019年更新为《建设用地土壤污染风险评估技术导则: HJ 25.3—2019》[9],其核心理念是基于风险地块管理。计算非致癌风险危害商时,参考上海市相关技术文件中规定的石油烃的毒性参数,对石油烃进行分段评估,见式(2):
式中:Ernc为非致癌暴露量;OIS、DCS、PIS、IOV、IIV分别为经口、皮肤接触和吸入土壤颗粒,室外吸入蒸汽,室内吸入蒸汽;c为污染物浓度;下标sur、sub分别表示表层土、下层土;RfD为参考剂量;SAF为参考计量分配系数。
-
RBCA模型与RAG-C相似处居多,尤其在评估程序、多层次评估架构和风险计算方法等方面[12]。但由于两国国情不同,在计算时仍有诸多差异。如RBCA不考虑室内土壤灰尘的暴露途径,RAG-C不考虑土壤淋溶到地下水中对地表水环境质量的影响。RAG-C的敏感人群包含儿童与成人,RBCA另外考虑了对建筑工人及青年的影响。
-
模型参数包括:1)污染区参数、土壤参数、建筑物参数和暴露参数,依据本地块的土壤类型、实测水文地质参数和导则相关规定参数输入;2)石油烃分段比例及毒理参数,见表3,取自上海市相关技术文件附件2~附件4;3)敏感受体及暴露参数,本地块后续作为第二类用地,不考虑对儿童作为敏感受体。暴露参数,见表4。
-
在计算风险时,以稳定地下水埋深作为划分表层与深层土壤的依据。当各层存在多个样品时取较大值进行风险计算。当石油烃进行分段计算时,各馏段的风险总和为该物质的风险值[13]。
由表层土壤的非致癌危害商,见图1。所有点位的非致癌危害商均低可接受水平1,81.8%点位的风险水平低于0.04。2个模型的计算结果有所差异,但处于同一数量级之内。RBCA的风险值相对较高,原因在于RBCA在计算时考虑了建筑工人的暴露风险,建筑工人对非致癌危害商的贡献率占比达到51.15%,见图2,而RAG-C则仅考虑了成人作为敏感受体时的情形。
66.7%点位的风险水平低于0.04,2个模型计算结果显示深层土壤的人体健康风险在可接受水平之内。虽然仍然考虑了对建筑工人的影响,但其贡献率占比缩减至4.6%,见图2,导致RBCA计算的整体风险低于RAG-C,其计算结果占后者的比例为64.72%。
深层土壤的非致癌危害商大于表层土壤,见图3。
由地下水的非致癌危害商,见图4。
2个模型中超风险点位率均为65%。SW4点位的非致癌风险均为最高,在RBCA和RAG-C模型的计算结果分别超过可接受水平的129、229倍。RBCA模型由于在地下水风险表征中未考虑对建筑工人的影响,因此计算结果低于RAG-C模型,其计算风险占后者比例约56.65%。
-
暴露途径是依据实际情况选取污染物迁移和暴露于人体的方式,2种模型的暴露途径相近,但不同途径的风险贡献率差别较大。表层土壤中的风险贡献率在2个模型中的排序为皮肤接触土壤>经口摄入土壤>吸入室外空气中来自表层土壤的污染物>吸入土壤颗粒物。在吸入土壤颗粒物这一暴露途径上存在数量级的差别,原因在于2个模型的评估所采用的特征参数不同,RAG-C模型以实测依据环境空气中颗粒物含量来评估呼吸吸入颗粒物风险,RBCA模型则是以颗粒物释放因子为关键参数[14]。
深层土壤的暴露途径相对表层较少,吸入室内空气来自下层土壤的污染物大于吸入室外空气中来自下层土壤的污染物所带来的风险。原因在于敏感受体在室内的暴露频率大于室外,更易受到室内污染物的影响。在具体到不同碳链时,芳香烃(C13~C16)风险贡献率在2个模型中的差异最大,RBCA模型是RAG-C的3.26倍。
地下水中暴露途径与深层土壤类似,吸入室内空气中地下水气态污染物大于吸入室外空气中地下水气态污染物所造成的风险。2个模型在关键参数的选取上存在差异,RAG-C模型采取默认亨利常数,RBCA模型采取有效亨利常数用于计算气态污染物的扩散因子[15],见表5。
-
2个模型对各馏段在土壤中的风险贡献率基本一致,在表层土壤中芳香烃(C22~C40)>脂肪烃(C13~C16)>芳香烃(C17~C21)>脂肪烃(C10~C12)>芳香烃(C13~C16)>芳香烃(C10~C12)>脂肪烃(C22~C40)>脂肪烃(C17~C21)。深层土壤中脂肪烃(C10~C12)>脂肪烃(C13~C16)>芳香烃(C10~C12)>芳香烃(C13~C16)。
RAG-C模型在地下水风险计算中的主要风险来源于脂肪烃(C10~C12)及脂肪烃(C13~C16),分别占比10.14%和89.85%。RBCA模型则与之相反,分别占比63.66%和29.71%。芳香烃(C10~C12)和芳香烃(C13~C16)的占比约0.01%和0.004%,远小于RBCA模型中的4.46%和2.17%。石油烃各馏段的非致癌风险贡献率,见图5。
-
利用Surfer 15.3中的克里金(Kriging)插值法对石油烃的风险空间分布情况进行了模拟,见图6。
图6可知,虽然最大风险值有所不同,但2个模型所表征的风险分布范围并无明显差异。在表层土壤中,污染指数在地块东北侧最大,西北侧次之,南侧最小。在深层土壤中,东北侧最大,南侧次之,西北侧最小。地下水中的风险指数分布与深层土壤相近,污染物存在由土壤向地下水中迁移的可能性,进而导致地下水的污染。其风险指数亦为东北侧大于南侧,西北侧最小。
从地下水中的超风险的范围来看,RAG-C模型计算出的结果比RBCA模型大1.98%,见表6。
同时,由于的非致癌危害商存在明显差异,RAG-C模型计算出的污染程度更大。以上2个因素导致通过RAG-C模型进行模拟计算的地块在后期地下水修复中成本会相对更高。
-
(1)研究地块的关注污染物为石油烃,采用分段的方法开展评估工作,各馏段含量占比依据污染类型分配。计算结果可知石油烃在土壤中的非致癌风险未超过可接受水平,在地下水中的非致癌危害商存在超标现象,需开展后续修复及管控工作。
(2)从风险计算的角度分析,2种模型在风险计算结果上存在差异,但没有数量级区别。RBCA模型考虑到了对建筑工人的影响,在表层土风险计算时风险大于RAG-C模型。在深层和地下水风险计算时RAG-C模型相对保守,计算所得风险值更大。
(3)不同暴露途径在2个模型中的贡献序列基本一致,但部分途径如吸入土壤颗粒物在2个模型中差异很大,部分馏段如芳香烃(C13~C16)在2个模型中亦差异明显。
(4)2种模型内不同馏段的风险贡献率在土壤中基本一致。但在地下水中则相反,芳香烃(C10~C12)及芳香烃(C13~C16)的贡献率存在数量级差别。
(5)从风险的空间分布来看,深层土壤与地下水较为接近。2种模型所得超风险范围差异较小,由于RAG-C模型在地下水的模拟中更加保守,导致后期地下水修复工作量及修复成本均大于RBCA。
RAG-C及RBCA模型在污染地块风险评估中的应用比较
——以石油烃(C10~C40)的分段评估为例Comparison of application of RAG-C and RBCA models for risk assessment in a contaminated site
-
摘要: 通过RAG-C及RBCA 2个模型比较分析,采用分段评估的方法对石油烃污染地块展开风险评估工作。不同模型的风险计算结果有所不同,但仍处于同一数量级之内,仅针对成人受体而言,RAG-C计算结果是RBCA的1.7倍左右。从暴露途径来看,吸入土壤颗粒物途径贡献率相对较小,但在2个模型中存在数量级差异。石油烃不同馏段在土壤中的风险贡献率基本一致,在地下水中的最大贡献率不同,脂肪烃(C13~C16)在RAG-C模型中占比89.85%,脂肪烃(C10~C12)在RBCA模型中占比63.66%。从空间分布来看RAG-C模拟计算的超风险范围比RBCA大1.98%左右。Abstract: Risk assessments of petroleum hydrocarbon contaminated site were performed by the fractionation assessment method, based on the comparative analysis of RAG-C and RBCA models. The risk calculation results of two models were different. However, it still existed within the same order of magnitude. The RAG-C calculation results were about 1.7 times than those of RBCA for adults. From the perspective of exposure pathways, the contribution rate of inhalation of soil particulates was relatively small. There was a difference between the two models for the order of magnitude. The risk contribution rates of different fractions of petroleum hydrocarbons in soil were basically comparable, and the maximum contribution rates in groundwater were different. Aliphatic hydrocarbons(C13~C16) accounted for 89.85% in the RAG-C model, and aliphatic hydrocarbons(C10~C12) accounted for 63.66% in the RBCA model. In terms of spatial distribution, unacceptable risk range of RAG-C was about 1.98% larger than that of RBCA.
-
Key words:
- petroleum fractionation /
- risk assessment /
- RAG-C model /
- RBCA model
-
-
表 1 土壤理化性质参数汇总表
类型 含水率
/%比重 重度/
KN·m−3孔隙比 Kv/
cm·s−1Kh/
cm·s−1有机质/
g·kg−1黏土 28.5 2.75 19.0 0.826 3.29E-07 4.82E-07 15.8 注:Kv为垂直渗透系数,Kh为水平渗透系数。 表 2 关注污染物分析结果
污染物 介质 样品数量
/个检出率
/%浓度范围 超标率
/%最大值 平均值 石油烃
(C10~C40)土壤/ mg·kg−1 216 98.6 4.3~43 500 7.4 43 500 1 566 地下水/ mg·L−1 20 100 0.42~950 90.9 950 190.9 注:土壤标准参考《土壤环境质量建设用地土壤污染风险管控标准(试行):GB36600—2018》中第二类筛选值,地下水评价标准《上海市建设用地地下水污染风险管控筛选值补充指标》(沪环土〔2020〕62号)。 表 3 石油烃分段毒性参数
污染物 碳段分配比例/% RfDo/mg·(kg·d)−1 RfC/mg·m−3 SAF 无量纲 ABSgi无量纲 ABSd无量纲 脂肪烃(C10~C12) 6.6 1.00E-01 5.00E-01 5.00E-01 5.00E-01 1.00E-01 脂肪烃(C13~C16) 13.5 1.00E-01 5.00E-01 5.00E-01 5.00E-01 1.00E-01 脂肪烃(C17~C21) 25.4 2.00E+00 / 5.00E-01 5.00E-01 1.00E-01 脂肪烃(C22~C40) 40.2 2.00E+00 / 5.00E-01 5.00E-01 1.00E-01 芳香烃(C10~C12) 1.1 4.00E-02 2.00E-01 5.00E-01 5.00E-01 1.00E-01 芳香烃(C13~C16) 2.0 4.00E-02 2.00E-01 5.00E-01 5.00E-01 1.00E-01 芳香烃(C17~C21) 4.2 3.00E-02 / 5.00E-01 5.00E-01 1.00E-01 芳香烃(C22~C40) 7.0 3.00E-02 / 5.00E-01 5.00E-01 1.00E-01 注:RfDo为经口摄入参考剂量; RfC为呼吸吸入参考浓度; SAF为参考剂量分配比例; ABSgi为消化道吸收因子; ABSd为皮肤吸收效率因子。 表 4 第二类用地类型下暴露参数
暴露参数 非致癌效应
平均时间
ATnc/a成人平均
体重
BWa/kg成人
暴露期
EDa/a气态污染物入
侵持续时间
t/a成人暴露
频率
EFa/d•a−1皮肤暴露
频率
EFd/d•a−1皮肤接触
面积
SAEa/cm2成人皮肤表面
土壤粘附系数
SSARa/mg•cm−2成人每日摄
入土壤量
OSIRc/mg•d−1第二类用地 成人 25 61.8 25 25 250 250 3 023 0.2 100 施工人员(RBCA) 1 61.8 1 25 180 180 3 023 0.5 100 表 5 不同暴露途径的非致癌风险贡献率分析
% 模型 馏段 表层土壤 深层土壤 地下水 经口
摄入皮肤接
触吸入
颗粒物室外表
层土壤室外
下层室内
下层室外
蒸汽室内
蒸汽RAG
-C
模型1 32.29 39.04 0.20 28.47 8.54 91.46 2.65 97.35 2 37.91 45.84 0.23 16.03 8.54 91.46 2.64 97.36 3 45.27 54.73 - - - - - - 4 45.27 54.73 - - - - - - 5 39.60 47.88 0.24 12.28 8.62 91.38 3.40 96.60 6 42.52 51.41 0.26 5.81 8.75 91.25 3.93 96.07 7 45.27 54.73 - - - - - - 8 45.27 54.73 - - - - - - RBCA模型 1 37.61 45.48 0.000036 16.90 4.42 95.58 0.92 99.08 2 41.35 50.00 0.000040 8.66 9.03 90.97 0.92 99.08 3 45.27 54.73 - - - - - - 4 39.82 60.18 - - - - - - 5 41.16 49.77 0.000039 9.08 12.92 87.08 1.12 98.88 6 42.73 51.67 0.000041 5.59 28.56 71.44 1.43 98.57 7 45.27 54.73 - - - - - - 8 45.27 54.73 - - - - - - 注:馏段中1、2、3、4、5、6、7和8分别代表脂肪烃(C10~C12)、脂肪烃(C13~C16)、脂肪烃(C17~C21)、脂肪烃(C22~C40)、芳香烃(C10~C12)、芳香烃(C13~C16)、芳香烃(C17~C21)和芳香烃(C22~C40)。 表 6 地下水中超风险范围
模型软件 可接受风险水平 污染类型 超风险范围/m2 RAG-C 1.0 地下水 14566.49 RBCA 14273.53 -
[1] 李辈辈. 石油污染土壤的生物修复[J]. 上海国土资源, 2018, 39(4): 55 − 57. doi: 10.3969/j.issn.2095-1329.2018.04.012 [2] 陈能场, 郑煜基, 何晓峰, 等. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10 − 11. [3] 王博. 加油站石油污染修复技术研究[D]. 北京: 清华大学, 2010. [4] 环境保护部自然生态保护司. 土壤修复技术方法与应用[M]. 北京: 中国环境科学出版社, 2011. [5] 周启星, 宋玉芳. 污染土壤修复原理与方法[M]. 北京: 科学出版社, 2004. [6] UK Environment Agency. Fact Sheet for the RBCA Tool Kit for Chemical Releases[EB/OL]. (2009-03-11)[2018-08-10]. http://www.environment-agency.gov.uk. [7] CHANG S H, KUO C Y, WANG J W, et al. Comparison of RBCA and Caltox for setting risk-based cleanup levels based on inhalation exposure[J]. Chemosphere, 2004, 56(4): 359 − 367. doi: 10.1016/j.chemosphere.2004.01.006 [8] 中华人民共和国生态环境部. 建设用地土壤污染状况调查技术导则: HJ 25.1—2019[S]. 北京: 中国环境出版集团, 2020. [9] 中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版集团, 2020. [10] 上海市生态环境局. 上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行) [EB/OL]. (2021-05-15)[2020-06-10]. https://sthj.sh.gov.cn/hbzhywpt6061/20200610/ebf9b3dc47c541a690e7bc813b19fea5.html. [11] US Environmental Protection Agency. Technical background document for the supplemental report to congress on remaining fossil fuel combustion wastes groundwater pathway human health risk assessment[EB/OL]. [2007-06-10]. http://www.epa.gov/epaoswer/other/fossil/ffc2_395.pdf. [12] 陈梦舫, 骆永明, 宋静, 等. 中、英、美污染场地风险评估导则异同与启示[J]. 环境监测管理与技术, 2011, 23(3): 14 − 18. doi: 10.3969/j.issn.1006-2009.2011.03.004 [13] US Environmental Protection Agency. Guidelines for the Health Risk Assessment of Chemical Mixtures[EB/OL]. [2007-06-10]. http://www.epa.gov/NCEA/raf/pdfs/chemmix/chemmix1986.pdf. [14] CONNOR J A, BOWERS R, MCHUGH T, et al. Software guidance manual RBCA tool kit for chemical releases[M]. Houston, Texas, USA: GSI Environmental Inc, 2007. [15] 张斌, 邹卉, 肖杰, 等. RAG-C和RBCA模型中场地特征参数的差异及其启示[J]. 环境工程, 2015, 33(9): 130 − 133. doi: 10.13205/j.hjgc.201509029 -