-
镍(Ni)元素是人体及多数生物体所必需微量营养元素,但大量摄入对人体具有毒性[1]。在正常情况下,成人体内含镍约为10 mg,血液中正常浓度[2]为0.11 μg·mL−1,世界卫生组织国际癌症研究机构在2017年10月27日公布的初步整理参考致癌物清单中,镍化合物属于一类致癌物[3]。在水体中,Ni 主要通过沉淀和共沉淀等方式在沉积物中沉降,因此Ni在多数情况下主要富集在沉积物中[4]。但当水环境条件发生变化时(如pH或Eh),沉积物中吸附的镍又会向水体再次释放,进而造成水体的二次污染[5]。
沉积物重金属质量基准(sediment quality guidelines,SQGs)通常是指确保与沉积物表层的底栖生物或上覆水生物直接接触并不引起生物毒害效应的有害重金属元素危害的临界最高水平,也是重金属元素在沉积物中的最高允许含量,设置这样的基准可以反映重金属元素与底栖生物或上覆水生物之间的剂量-效应关系[6],它代表了底栖生物不发生不良生物效应时,沉积物中所允许重金属元素的最高含量[7-8]。近年来,国内学者针对不同地区的特点也采用不同沉积物质量基准法(SQGs)进行重金属污染的风险评价。沉积物重金属风险评价基准的阈值有很多,如陈云增等推算的滇池的重金属SQG值[9]以及邓保乐等推算的太湖沉积物质量基准(CSQC)推荐值[10],对流域沉积物中的重金属进行了生态风险评估。阳金希等同样利用生物效应数据库法对5种重金属(Cu、Cd、Pb、Zn、Ni)的淡水水体沉积物质量基准值[11],推算的中国淡水水体重金属SQG值。然而,近年来也有研究结果表明,单纯的利用总浓度不能反映沉积物中重金属的生物利用度和释放及迁移过程 [12] 。因此,对于沉积物重金属的形态及释放迁移过程需要结合其他方法来进一步评估和分析。
众多研究指出连续提取法(sequential extraction)可有效用于区分重金属的形态分析。目前国内外较为常用的连续提取方法为欧共体标准物质局在1992 年提出BCR连续提取技术,将重金属在沉积物中的存在状态划分为:弱酸提取态/可交换态(F1)、可还原态(F2)、可氧化态(F3)及残渣态(F4)4种。该方法虽然可以较好地分析沉积物中重金属形态特征,然而化学浸提方法仍是异位分析后而非原位的研究。若想更为明确地阐明原位重金属在沉积物与水相之间的再转移过程,需要结合具有能够微观表征重金属在沉积物-水界面(SWI, sediment-water interface)迁移转化的采样技术。薄膜扩散梯度技术(DGT, diffusive gradient in the thin films technique)于 1994 年由英国兰卡斯特大学的 Davison 和Zhang发明,用于测定溶液中微量金属的浓度[13]。该技术在原位重金属污染的环境监测和高分辨表征污染物有效态方面具有显著优势[14]。Søndergaard等[15]通过利用DGT表征锌铅矿附近的海洋底层沉积物中铅的生物有效性,发现DGT与部分藻类等指示性生物体内的铅吸收量呈现出高度的正相关(R2=0.79—0.94)。Schintu等[16]也在利用DGT技术评价地中海中贻贝中重金属含量的工作中发现了DGT测定的有效态铅镉与贻贝中铅镉含量呈现出高度相关。DGT采样器所积累的金属以通量的形式进行表示,反映了孔隙水浓度的变化,以及从沉积物到溶液的移动及再补给过程。DGT技术的主要优点是可以在亚毫米尺度上对垂直的沉积物进行微观观测[17]。Zhang等[18]通过对嘉陵江下游地区柱状沉积物取样分析后发现了Ni元素在5 mm的微观尺寸条件下从沉积物向水迁移的证据,其文中也指出了相比于传统方法,DGT技术在表征重金属在沉积物-水界面的迁移扩散过程具有原位和更加精准的优势。因此,利用DGT技术作为本研究中的环境监测手段对于进一步揭示镍元素在嘉陵江流域的垂向分布规律和迁移特征具有十分重要的意义。
嘉陵江目前是长江支流中流域面积最大、长度第三的河流,其干流流经陕西省、甘肃省、四川省及重庆市,在重庆市朝天门汇入长江。全长1345 km ,干流流域面积3.92万km2,总流域面积16万km2。嘉陵江的中上游地区流流经陕西省汉中市和四川省广元市。由于该地区长期的有色金属和煤矿的开采和冶炼史,随着矿区大量含有冲洗矿渣的废水向嘉陵江流域的排放,导致沉积物中的Ni的含量逐年增加,具有潜在的环境生态风险问题。因此,本文的主要利用连续提取法测定沉积物中Ni的形态分布,同时利用DGT技术分析镍在沉积物-水界面(SWI)的迁移特征,通过对二者结果的相关性比较分析,进一步探究在该研究区域内影响镍在沉积物中释放的因素。相关研究结果将为揭示镍元素在嘉陵江中上游流域的形态分布特征及其在沉积物水界面的迁移释放机制有十分重要的意义。
嘉陵江中上游段沉积物中镍的形态分布及其在沉积物-水界面迁移特征
The study of Ni fraction in the sediment and mitigation characteristics of Ni cross the sediment-water interface in the mid-upstream of Jialing River
-
摘要: 本研究使用沉积物柱状采样器对嘉陵江中上游废弃工矿区附近的沉积物进行采样,利用连续提取法和薄膜扩散梯度技术(diffusive gradient in the thin film technique, DGT)研究嘉陵江中上游段沉积物中镍元素(Ni)的在沉积物中赋存形态及其在沉积物-水界面的迁移扩散规律和释放机制。结果表明,各样点表层沉积物中总Ni含量均超过了我国水系沉积物的低标准物质值(GBW07311, 14.3 mg·kg−1),并有3个工矿区附近的点位超过了高标准物质值(GBW07309, 32 mg·kg−1),表明曾经的工矿作业等人为活动所引起的含Ni废水排放已经对当地水生生态系统构成严重的威胁。但连续提取各位点的主要存在形态为残渣态(F4),而最弱的结合态(F1,酸可交换态)的在所有采样点位的平均占比不足10%表明Ni对周边水体生态系统的实际环境风险可能并不高。DGT结果显示,CDGT-Ni浓度在S1和S2点位的深层沉积物(−9 cm—−12 cm)显著升高,在这两个采样点位表现出明显的释放趋势。通过对Ni在沉积物-水界面的扩散通量进一步计算发现Ni具有潜在内源释放风险,具有从沉积物向水的迁移趋势,会对研究区域水体形成潜在的污染。通过对连续提取中Ni的各个形态与DGT有效态Ni相关性分析发现沉积物中Ni在深层沉积物的释放过程主要受到铁、锰氧化物和含硫化合物等潜在因素的影响。Abstract: This study used sediment core samplers to collect core sediments near the region of abandoned industrial mine along the mid-upstream of Jialing River. The fraction of Ni in the sediment was studied by sequential extraction. The mitigation characteristics and release mechanism of Ni at the sediment water interface (SWI) were analyzed by diffusive gradient in the thin films technique (DGT). The results showed that total concentration of Ni in all sites exceeded the low sediment reference material (GBW07311, 14.3 mg·kg−1) of China and three sites near the mining areas even exceeded high sediment reference material (GBW07309, 32 mg·kg−1). This indicates that Ni contained effluent discharged by past mining industry and other anthropogenic activities may pose a serious environment risk to aquatic ecosystem. However, the main fraction of Ni was bounded in residue fraction while the acid/changeable fraction was no more than average 10%, which indicated that Ni had little environmental risk to local water ecosystem. DGT results showed that CDGT-Ni significantly increased at the bottom sediment (−9 cm to −12 cm) presenting an obvious release trend at this depth. Further calculation of Ni diffusion flux at the sediment water interface shows that Ni can be released into the sediment and pass through sediment-water interface, which will cause potential pollution of overlying water. The correlation analysis between the different Ni fractions and DGT labile Ni shows that the release process of Ni in deep sediment was mainly controlled by potential factors such as iron, manganese oxides and sulfur compounds.
-
Key words:
- sediment /
- nickel /
- sequential extraction /
- DGT /
- Jialing River
-
表 1 DGT有效态镍与几种连续提取形态的镍相关性分析
Table 1. Correlation analysis of DGT available nickel and several continuous extraction forms of nickel
F1-Ni F2-Ni F3-Ni F1-Ni+F2-Ni F1-Ni+F2-Ni+F3-Ni CDGT-Ni 0.844** 0.719* 0.733* 0.746* 0.683* 注:** 表示在 P<0.01水平上极显著相关; * 在p<0.05水平上显著相关.
Note: ** Correlation is significant at 0.01 level; * Correlation is significant at 0.05 level. -
[1] 张伟杰, 殷淑华, 徐东昱, 等. 三峡库区沉积物中镍污染特征评价 [J]. 环境科学, 2018, 39(12): 5464-5472. ZHANG W J, YIN S H, XU D Y, et al. Pollution characteristic of Ni in sediments in the Three Gorges reservoir [J]. Environmental Science, 2018, 39(12): 5464-5472(in Chinese).
[2] 杨明. 大宝山矿区重金属元素(Zn, Ni, Cr)和氟环境地球化学效应研究[D]. 广州: 华南理工大学, 2010. YANG M. Study on environmental geochemical effects of heavy metals (Zn, Ni, Cr) and fluorine in Dabaoshan mining area. Guangzhou: South China University of Technology, 2010.
[3] 陈静生. 水环境化学[M]. 北京: 高等教育出版社, 1987. CHEN J S. Water environmental chemistry [M]. Beijing: Higher Education Press, 1987(in Chinese).
[4] TIAN K, HUANG B, XING Z, et al. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China [J]. Ecological Indicators, 2017, 72: 510-520. doi: 10.1016/j.ecolind.2016.08.037 [5] KELEPERTZI E, GALANOS E, MITSIS I. Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva Valley (central Greece) [J]. Journal of Geochemical Exploration, 2013, 125: 56-68. doi: 10.1016/j.gexplo.2012.11.007 [6] 陈云增, 杨浩, 张振克, 等. 淡水沉积物环境质量基准差异分析 [J]. 湖泊科学, 2005, 17(3): 193-201. doi: 10.3321/j.issn:1003-5427.2005.03.001 CHEN Y Z, YANG H, ZHANG Z K, et al. The difference and cause analyses of freshwater sediment quality guidelines [J]. Journal of Lake Sciences, 2005, 17(3): 193-201(in Chinese). doi: 10.3321/j.issn:1003-5427.2005.03.001
[7] 钟文珏, 曾毅, 祝凌燕. 水体沉积物质量基准研究现状 [J]. 生态毒理学报, 2013, 8(3): 285-294. doi: 10.7524/AJE.1673-5897.20111113003 ZHONG W J, ZENG Y, ZHU L Y. Current research status of sediment quality criteria [J]. Asian Journal of Ecotoxicology, 2013, 8(3): 285-294(in Chinese). doi: 10.7524/AJE.1673-5897.20111113003
[8] 高博, 李强, 周怀东, 等. 水体沉积物重金属质量基准研究综述 [J]. 中国水利水电科学研究院学报, 2013, 11(2): 99-106. doi: 10.3969/j.issn.1672-3031.2013.02.004 GAO B, LI Q, ZHOU H D, et al. Review of heavy metal quality criteria in river sediments [J]. Journal of China Institute of Water Resources and Hydropower Research, 2013, 11(2): 99-106(in Chinese). doi: 10.3969/j.issn.1672-3031.2013.02.004
[9] 陈云增, 杨浩, 张振克, 等. 滇池沉积物金属污染及环境质量评价 [J]. 湖泊科学, 2008, 20(4): 492-499. doi: 10.3321/j.issn:1003-5427.2008.04.013 CHEN Y Z, YANG H, ZHANG Z K, et al. Metal contamination and quality assessment of Lake Dianchi sediment [J]. Journal of Lake Sciences, 2008, 20(4): 492-499(in Chinese). doi: 10.3321/j.issn:1003-5427.2008.04.013
[10] 邓保乐, 祝凌燕, 刘慢, 等. 太湖和辽河沉积物重金属质量基准及生态风险评估 [J]. 环境科学研究, 2011, 24(1): 33-42. DENG B L, ZHU L Y, LIU M, et al. Sediment quality criteria and ecological risk assessment for heavy metals in Taihu lake and Liao river [J]. Research of Environmental Sciences, 2011, 24(1): 33-42(in Chinese).
[11] 阳金希, 张彦峰, 祝凌燕. 中国七大水系沉积物中典型重金属生态风险评估 [J]. 环境科学研究, 2017, 30(3): 423-432. YANG J X, ZHANG Y F, ZHU L Y. Pollution and risk assessment of typical heavy metals in river sediments of seven major watersheds in China [J]. Research of Environmental Sciences, 2017, 30(3): 423-432(in Chinese).
[12] XU D Y, GAO B, GAO L, et al. Characteristics of cadmium remobilization in tributary sediments in Three Gorges Reservoir using chemical sequential extraction and DGT technology [J]. Environmental Pollution, 2016, 218: 1094-1101. doi: 10.1016/j.envpol.2016.08.062 [13] DAVISON W, ZHANG H. In situ speciation measurements of trace components in natural waters using thin-film gels [J]. Nature, 1994, 367(6463): 546. doi: 10.1038/367546a0 [14] TANKERE-MULLE S, ZHANG H, DAVISON W, et al. Fine scale remobilisation of Fe, Mn, Co, Ni, Cu and Cd in contaminated marine sediment [J]. Marine Chemistry, 2007, 106(1-2): 192-207. doi: 10.1016/j.marchem.2006.04.005 [15] SØNDERGAARD J, BACH L, GUSTAVSON K. Measuring bioavailable metals using diffusive gradients in thin films (DGT) and transplanted seaweed (Fucus vesiculosus), blue mussels (Mytilus edulis) and sea snails (Littorina saxatilis) suspended from monitoring buoys near a former lead-zinc mine in West Greenland [J]. Marine Pollution Bulletin, 2014, 78(1/2): 102-109. [16] SCHINTU M, DURANTE L, MACCIONI A, et al. Measurement of environmental trace-metal levels in Mediterranean coastal areas with transplanted mussels and DGT techniques[J]. Marine Pollution Bulletin, 2008, 57(6/7/8/9/10/11/12): 832-837. [17] ZHANG H, DAVISON W, MILLER S, et al. In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT [J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4181-4192. doi: 10.1016/0016-7037(95)00293-9 [18] ZHANG T, LI L J, XU F, et al. Assessing the environmental risk, fractions, and remobilization of copper and zinc in the sediments of the Jialing River—an important tributary of the Yangtze River in China [J]. Environmental Science and Pollution Research, 2020, 27(31): 39283-39296. doi: 10.1007/s11356-020-09963-y [19] 袁少芬, 弓晓峰, 江良, 章绍康. 鄱阳湖沉积物重金属生态风险评价: SQGs和AVS-SEM模型法 [J]. 土壤通报, 2020, 51(01): 234-240. YUAN S F, GONG X F, JIANG L, et al. Ecological risk assessment of heavy metals in sediments of Poyang Lake: SQGs and AVS-SEM Models [J]. Chinese Journal of Soil Science, 2020, 51(01): 234-240(in Chinese).
[20] PUEYO M, MATEU J, RIGOL A, et al. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils [J]. Environmental Pollution, 2008, 152(2): 330-341. doi: 10.1016/j.envpol.2007.06.020 [21] ŠČANČAR J, MILAČIČ R, HORVAT M. Comparison of various digestion and extraction procedures in analysis of heavy metals in sediments [J]. Water, Air, and Soil Pollution, 2000, 118(1/2): 87-99. doi: 10.1023/A:1005187602820 [22] WU Z, WANG S, JIAO L. Geochemical behavior of metals–sulfide–phosphorus at SWI (sediment/water interface) assessed by DGT (Diffusive gradients in thin films) probes[J]. Journal of Geochemical Exploration, 2015, 156: 145-152. [23] ZHAO X J, GAO B, XU D Y, et al. Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China: A review [J]. Environmental Science and Pollution Research International, 2017, 24(26): 20844-20858. doi: 10.1007/s11356-017-9874-8 [24] GUAN D X, WILLIAMS P N, XU H C, et al. High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique [J]. Journal of Hazardous Materials, 2016, 316: 69-76. doi: 10.1016/j.jhazmat.2016.05.026 [25] MACDONALD D D, INGERSOLL C G, BERGER T A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems [J]. Archives of Environmental Contamination and Toxicology, 2000, 39(1): 20-31. doi: 10.1007/s002440010075 [26] SHEN F, LIAO R M, ALI A, et al. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China [J]. Ecotoxicology and Environmental Safety, 2017, 139: 254-262. doi: 10.1016/j.ecoenv.2017.01.044 [27] ZHANG T, LI L, XU F, et al. Evaluation of the environment risk, fractions and mobilization of nickel (Ni) in sediments of the Jialing River by sediment quality guidelines, sequential extraction and Chelex-AgI gel DGT probe [J]. Applied Geochemistry, 2020: 118. [28] NASH P, NASH A. The Ni−Si (nickel-silicon) system [J]. Bulletin of Alloy Phase Diagrams, 1987, 8(1): 6-14. doi: 10.1007/BF02868885 [29] LIU H L, LI L Q, YIN C Q, et al. Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake [J]. Journal of Environmental Sciences (China), 2008, 20(4): 390-397. doi: 10.1016/S1001-0742(08)62069-0 [30] YUAN C G, SHI J B, HE B, et al. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction [J]. Environment International, 2004, 30(6): 769-783. doi: 10.1016/j.envint.2004.01.001 [31] TSAI L J, YU K C, CHANG J S, et al. Fractionation of heavy metals in sediment cores from the Ell-Ren River, Taiwan [J]. Water Science and Technology, 1998, 37(6-7): 217-224. doi: 10.2166/wst.1998.0755 [32] ROULIER J L, BELAUD S, C0QUERY M. Comparison of dynamic mobilization of Co, Cd and Pb in sediments using DGT and metal mobility assessed by sequential extraction [J]. Chemosphere, 2010, 79(8): 839-843. doi: 10.1016/j.chemosphere.2010.02.056 [33] TANG W Z, SHAN B Q, ZHANG H, et al. Heavy metal contamination in the surface sediments of representative limnetic ecosystems in Eastern China [J]. Scientific Reports, 2014, 4: 7152. [34] ZHANG T, LI L J, XU F, et al. Assessing the remobilization and fraction of cadmium and lead in sediment of the Jialing River by sequential extraction and diffusive gradients in films (DGT) technique [J]. Chemosphere, 2020, 257: 127181. doi: 10.1016/j.chemosphere.2020.127181 [35] SEIDEL H, WENNRICH R, HOFFMANN P, et al. Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments [J]. Chemosphere, 2006, 62(9): 1444-1453. doi: 10.1016/j.chemosphere.2005.06.003 [36] di TORO D M, MAHONY J D, HANSEN D J, et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments [J]. Environmental Science & Technology, 1992, 26(1): 96-101. [37] YIN H, FAN C X, DING S M, et al. Geochemistry of iron, sulfur and related heavy metals in metal-polluted Taihu Lake sediments[J]. Pedosphere, 2008, 18(5): 564-573. [38] GAO Y, VAN DE VELDE S, WILLIAMS P N, et al. Two-dimensional images of dissolved sulfide and metals in anoxic sediments by a novel diffusive gradients in thin film probe and optical scanning techniques[J]. TrAC Trends in Analytical Chemistry, 2015. 66: 63-71. [39] MOTELICA-HEINO M, NAYLOR C, ZHANG H, et al. Simultaneous release of metals and sulfide in lacustrine sediment [J]. Environmental Science & Technology, 2003, 37(19): 4374-4381.