-
清洁水和卫生设备供应不足是全球性最大的挑战之一,特别是在中低收入国家和地区[1]。据报道,世界上有21亿人不能或难以获得清洁安全的供水[2—3]。氯化和臭氧化是最为广泛使用的化学消毒方法[4—5]。它们能够有效地杀死有害微生物,但仍存在一些问题。例如,氯化处理会导致致癌消毒副产物(disinfection byproducts , DBPs)的形成,甚至会引发军团杆菌等耐氯病原体的生长,以及在处理后的水中产生不良的气味[6—7]。臭氧化同样会产生有害的DBPs,在大规模臭氧生产、储存和运输过程中还体现出急性毒性和腐蚀性特征[8—10]。相对来讲,煮沸是一种有效常用且不会产生DBPs的家庭水处理方法[11—12],但由于其需要大量额外供能而不适于大规模水消毒。此外,与煮沸相比,使用免费阳光的SODIS技术更加具有可持续性。根据光热催化材料的存在与否,将SODIS分为光热催化杀菌和紫外线杀菌。紫外线杀菌是利用UVC和UVB(200—280 nm)来破坏DNA,形成胸腺嘧啶二聚体来阻断繁殖并灭活微生物[11]。然而,紫外线在太阳光谱中占比极低(约4 %),导致对水的消毒效率低下,尤其是对病毒。早期研究表明,需要超过30 h的太阳光照射,才能灭活99.9%的噬菌体MS2[13]。相比之下,光热催化杀菌主要通过光热催化材料产生热量和活性氧物种(ROSs)来协同灭菌,更加具有广谱灭菌性,包括对VBNC(viable but non-culturable)细菌以及病毒都有高灭活效率[14—15]。优良的光热催化材料对紫外光、可见光甚至红外光都能产生响应,从而充分利用太阳能。因此,光热催化消毒法在实际水杀菌,特别是在终端(point of use,POU)水处理中展现出强大的应用潜力。
太阳能光热催化消毒工艺研究进展
Recent advances of nanomaterial-enabled photothermalcatalysis enhanced solar water disinfection process
-
摘要: 水体中的病原微生物对人类健康构成了巨大威胁。传统太阳能水消毒(solar disinfection , SODIS)具有太阳能利用率不够高及杀菌效率低等缺陷,通过纳米光热催化材料为强化SODIS提供了一种具有前景的解决策略。本文系统总结了近年来光热催化剂的研究进展,介绍了多种光热催化材料的光热转换效率和杀菌性能, 并对其提高光热催化材料的光热转换和光热性能的方法原理进行了分析;进一步阐述了活性氧物种和热能的协同攻击对微生物的光热催化杀菌机制;概述了光热催化杀菌系统的未来问题与展望。Abstract: The pathogenic microorganisms in water pose a great threat to human health. Photothermacatalytic disinfection using nanomaterials has offered a promising and effective strategy to address the challenges in solar water disinfection (SODIS). This review systematically summarized recent advances in developing photothermal catalysts, the light-to-heat conversion and disinfection performance of a variety of photothermalcatalytic nano-materials were presented, and how to improve the photothermal conversion and photothermal performance of nano-materials was also analyzed; the photothermalcatalytic disinfection mechanism of microorganisms by the coordinated attack of reactive oxygen species (ROSs) and thermal energy was further elaborated; future challenges and opportunities associated with the development of cost-effective photothermal disinfection systems were also outlined.
-
Key words:
- photothermalcatalysis /
- ROSs /
- heat /
- nanomaterials /
- disinfection mechanisms
-
图 1 (a) 在光照射下不同GO-NH2的升温曲线;(b) GO-NH2作用 2min前后金黄色葡萄球菌和大肠杆菌的图像;(c)不同浓度的GO-NH2对金黄色葡萄球菌和大肠杆菌的灭活[29]
Figure 1. (a) Heating curves of GO-NH2 with different catalyst concentrations irradiated by white light (159 mW·cm-2). (b) SEM images of (A, B) S. aureus and (C, D) E. coli before and after interaction with GO-NH2 for 2 min. (c) Growth inhibition of S. aureus and E. coli after the photothermal treatment by GO-NH2.
图 2 Ag/MnO2光热催化杀菌机理图[14]
Figure 2. Scheme of photothermalcatalytic inactivation over Ag/MnO2.
表 1 最近报道的纳米结构的光热细菌失活性能的比较
Table 1. Comparison of the photothermal bacterial inactivation by the recently reported nanostructures
催化剂
Catalysts辐照(强度)
Irradiation(intensity)催化剂浓度/(mg·mL−1)
Catalyst concentration光热杀菌性能
Photothermal disinfection performance参考文献
ReferencesAu纳米棒 模拟日光 4.93×10−3 100 min内,分别灭活5.6-lg CFU·mL−1、
5.5-lg CFU·mL−1和1.6-lg CFU·mL−1 左右的大肠杆菌K-12、MS2噬菌体和PR772噬菌体[1] Ni/rGO 808 nm 激光
(2 W·cm−2)0.025 8 min内,对2×106 CFU·mL−1的大肠杆菌和枯草芽孢杆菌分别达到99.6%和99.5%的灭活率 [28] GO-NH2 白光(0.159 W·cm−2) 0.032 10 min内,对107 CFU·mL−1大肠杆菌和金黄色葡萄球菌的灭活率超过90% [29] RP 模拟日光
(0.2 W·cm−2)0.2 20 min内,对5×106 CFU·mL−1金黄色葡萄球菌的灭活率达到99.98% [39] Ti-RP/GO 模拟日光
(0.2 W·cm−2)N.A. 15 min内,对107 CFU·mL−1的大肠杆菌的灭活率达到99.91% [40] WO3-x/C 带有700 nm截止滤光片的氙灯(0.2 W·cm−2) 1 40 min内,灭活了1.2×107 CFU·mL−1的大肠杆菌 [30] 碳化ZIF-8 808 nm 激光
(3 W·cm−2)0.16 10 min内,对107 CFU·mL−1的金黄色葡萄球菌的灭活率达到80%左右 [43] PB-PCN-224 600 nm LED
(0.3 W·cm−2)1 15 min内,对1×107 CFU·mL−1的金黄色葡萄球菌的灭活率达到99.84% [47] -
[1] LOEB S, LI C H, KIM J H. Solar photothermal disinfection using broadband-light absorbing gold nanoparticles and carbon black [J]. Environmental Science & Technology, 2018, 52(1): 205-213. [2] ZVOBGO L, DO P. COVID-19 and the call for ‘Safe Hands’: Challenges facing the under-resourced municipalities that lack potable water access-A case study of Chitungwiza municipality, Zimbabwe [J]. Water Research X, 2020, 9: 100074. doi: 10.1016/j.wroa.2020.100074 [3] RYBERG E C, KNIGHT J, KIM J H. Farm-to-tap water treatment: Naturally-sourced photosensitizers for enhanced solar disinfection of drinking water [J]. ACS ES& T Engineering, 2021, 1(1): 86-99. [4] ZHANG Y F, ANGELIDAKI I. Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges [J]. Water Research, 2014, 56: 11-25. doi: 10.1016/j.watres.2014.02.031 [5] HIRAI K, ANDO N, KOMADA H, et al. Investigation of the effective concentration of ozonated water for disinfection in the presence of protein contaminants [J]. Biocontrol Science, 2019, 24(3): 155-160. doi: 10.4265/bio.24.155 [6] 马健, 王俊杰, 胡绍洋, 等. 室内泳池水中8种芳香族氯/溴代消毒副产物的生成 [J]. 环境化学, 2019, 38(12): 2639-2648. doi: 10.7524/j.issn.0254-6108.2019010405 MA J, WANG J J, HU S Y, et al. Formation of eight aromatic chlorinated/brominated disinfection byproducts in indoor swimming pool water [J]. Environmental Chemistry, 2019, 38(12): 2639-2648(in Chinese). doi: 10.7524/j.issn.0254-6108.2019010405
[7] CERVERO-ARAGÓ S, RODRÍGUEZ-MARTÍNEZ S, PUERTAS-BENNASAR A, et al. Effect of common drinking water disinfectants, chlorine and heat, on free Legionella and amoebae-associated Legionella [J]. PLoS One, 2015, 10(8): e0134726. doi: 10.1371/journal.pone.0134726 [8] 张馨怡, 魏东斌, 杜宇国. 紫外-氯联合消毒处理及副产物生成特征研究进展 [J]. 环境化学, 2018, 37(9): 1950-1960. doi: 10.7524/j.issn.0254-6108.2017111302 ZHANG X Y, WEI D B, DU Y G. Ultraviolet-chlorine combination disinfection and formation of disinfection by-products: A review [J]. Environmental Chemistry, 2018, 37(9): 1950-1960(in Chinese). doi: 10.7524/j.issn.0254-6108.2017111302
[9] HUANG J J, HU H Y, TANG F, et al. Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant [J]. Water Research, 2011, 45(9): 2775-2781. doi: 10.1016/j.watres.2011.02.026 [10] LIU Z, LIN Y L, CHU W H, et al. Comparison of different disinfection processes for controlling disinfection by-product formation in rainwater [J]. Journal of Hazardous Materials, 2020, 385: 121618. doi: 10.1016/j.jhazmat.2019.121618 [11] WANG L, FENG Y J, WANG K Y, et al. Solar water sterilization enabled by photothermal nanomaterials [J]. Nano Energy, 2021, 87: 106158. doi: 10.1016/j.nanoen.2021.106158 [12] LANTAGNE D S, CLASEN T F. Use of household water treatment and safe storage methods in acute emergency response: Case study results from Nepal, Indonesia, Kenya, and Haiti [J]. Environmental Science & Technology, 2012, 46(20): 11352-11360. [13] FISHER M B, IRIARTE M, NELSON K L. Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: Effects of additives and alternative container materials [J]. Water Research, 2012, 46(6): 1745-1754. doi: 10.1016/j.watres.2011.12.048 [14] XIA D H, LIU H D, XU B H, et al. Single Ag atom engineered 3D-MnO2 porous hollow microspheres for rapid photothermocatalytic inactivation of E. coli under solar light [J]. Applied Catalysis B:Environmental, 2019, 245: 177-189. doi: 10.1016/j.apcatb.2018.12.056 [15] KACEM M, BRU-ADAN V, GOETZ V, et al. Inactivation of Escherichia coli by TiO2-mediated photocatalysis evaluated by a culture method and viability-qPCR [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 317: 81-87. doi: 10.1016/j.jphotochem.2015.11.020 [16] HWANG G B, HUANG H, WU G, et al. Photobactericidal activity activated by thiolated gold nanoclusters at low flux levels of white light [J]. Nature Communications, 2020, 11: 1207. doi: 10.1038/s41467-020-15004-6 [17] LOU Z Z, FUJITSUKA M, MAJIMA T. Pt-Au triangular nanoprisms with strong dipole plasmon resonance for hydrogen generation studied by single-particle spectroscopy [J]. ACS Nano, 2016, 10(6): 6299-6305. doi: 10.1021/acsnano.6b02494 [18] 陈妍希, 严登明, 朱明山. 外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展 [J]. 环境科学研究, 2022, 35(1): 131-140. CHEN Y X, YAN D M, ZHU M S. Recent progress in removal of organic pollutants by external-field effect enhanced persulfate oxidation processes [J]. Research of Environmental Sciences, 2022, 35(1): 131-140(in Chinese).
[19] ZHAO J, WANG A H, SI T Y, et al. Gold nanorods based multicompartment mesoporous silica composites as bioagents for highly efficient photothermal therapy [J]. Journal of Colloid and Interface Science, 2019, 549: 9-15. doi: 10.1016/j.jcis.2019.04.051 [20] HE S, HUANG J W, GOODSELL J L, et al. Plasmonic nickel-TiO2 heterostructures for visible-light-driven photochemical reactions [J]. Angewandte Chemie International Edition, 2019, 58(18): 6038-6041. doi: 10.1002/anie.201901987 [21] GU L, ZHANG C, GUO Y M, et al. Enhancing electrocatalytic water splitting activities via photothermal effect over bifunctional nickel/reduced graphene oxide nanosheets [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3710-3714. [22] NEUMANN O, URBAN A S, DAY J, et al. Solar vapor generation enabled by nanoparticles [J]. ACS Nano, 2013, 7(1): 42-49. doi: 10.1021/nn304948h [23] DEAN L M, RAVINDRA A, GUO A X, et al. Photothermal initiation of frontal polymerization using carbon nanoparticles [J]. ACS Applied Polymer Materials, 2020, 2(11): 4690-4696. doi: 10.1021/acsapm.0c00726 [24] HAN D X, MENG Z G, WU D X, et al. Thermal properties of carbon black aqueous nanofluids for solar absorption [J]. Nanoscale Research Letters, 2011, 6(1): 457. doi: 10.1186/1556-276X-6-457 [25] YUAN H F, LIU F, XUE G B, et al. Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device [J]. Applied Catalysis B:Environmental, 2021, 283: 119647. doi: 10.1016/j.apcatb.2020.119647 [26] BEHNAM M A, EMAMI F, SOBHANI Z, et al. Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photo thermal therapy in melanoma cancer model [J]. Advanced Pharmaceutical Bulletin, 2018, 8(1): 49-55. doi: 10.15171/apb.2018.006 [27] SUN D Y, MCLAUGHLAN J, ZHANG L, et al. Atmospheric pressure plasma-synthesized gold nanoparticle/carbon nanotube hybrids for photothermal conversion [J]. Langmuir, 2019, 35(13): 4577-4588. doi: 10.1021/acs.langmuir.8b03945 [28] ZHANG Z, SUN J Y, CHEN X, et al. The synergistic effect of enhanced photocatalytic activity and photothermal effect of oxygen-deficient Ni/reduced graphene oxide nanocomposite for rapid disinfection under near-infrared irradiation [J]. Journal of Hazardous Materials, 2021, 419: 126462. doi: 10.1016/j.jhazmat.2021.126462 [29] MEI L, LIN C L, CAO F Y, et al. Amino-functionalized graphene oxide for the capture and photothermal inhibition of bacteria [J]. ACS Applied Nano Materials, 2019, 2(5): 2902-2908. doi: 10.1021/acsanm.9b00348 [30] ZHANG R M, SONG C J, KOU M P, et al. Sterilization of Escherichia coli by photothermal synergy of WO3-x/C nanosheet under infrared light irradiation [J]. Environmental Science & Technology, 2020, 54(6): 3691-3701. [31] QI Y H, SONG L Z, OUYANG S X, et al. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black In2O3−x nanosheets with bifunctional oxygen vacancies [J]. Advanced Materials, 2020, 32(6): 1903915. doi: 10.1002/adma.201903915 [32] WANG L, DONG Y, YAN T, et al. Black indium oxide a photothermal CO2 hydrogenation catalyst [J]. Nature Communications, 2020, 11: 2432. doi: 10.1038/s41467-020-16336-z [33] SUN L H, JIAO X D, LIU W W, et al. Novel oxygen-deficient zirconia (ZrO2-x) for fluorescence/photoacoustic imaging-guided photothermal/photodynamic therapy for cancer [J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41127-41139. [34] ZHANG Y, LI D X, TAN J S, et al. Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots [J]. Small, 2021, 17(1): 2005739. doi: 10.1002/smll.202005739 [35] LI Y P, WANG C B, HUANG L Y, et al. Fabrication of carbon quantum dots/1D MoO3-x hybrid junction with enhanced LED light efficiency in photocatalytic inactivation of E. coli and S. aureus [J]. Journal of Alloys and Compounds, 2020, 836: 155410. doi: 10.1016/j.jallcom.2020.155410 [36] DING D D, HUANG W C, SONG C Q, et al. Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation [J]. Chemical Communications (Cambridge, England), 2017, 53(50): 6744-6747. doi: 10.1039/C7CC01427A [37] WANG B B, ZHONG X X, MING B M, et al. Structure and photoluminescence properties of MoO3−x/graphene nanoflake hybrid nanomaterials formed via surface growth [J]. Applied Surface Science, 2019, 480: 1054-1062. doi: 10.1016/j.apsusc.2019.02.183 [38] ZHAO H N, GUAN X Y, ZHANG F, et al. Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water [J]. Journal of Materials Science & Technology, 2022, 100: 110-119. [39] TAN L, LI J, LIU X M, et al. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light [J]. Advanced Materials, 2018, 30(31): 1801808. doi: 10.1002/adma.201801808 [40] ZHANG Q, LIU X M, TAN L, et al. An UV to NIR-driven platform based on red phosphorus/graphene oxide film for rapid microbial inactivation [J]. Chemical Engineering Journal, 2020, 383: 123088. doi: 10.1016/j.cej.2019.123088 [41] LI D Y, ZHAO Q, ZHANG S Y, et al. Filtration-based water treatment system embedded with black phosphorus for NIR-triggered disinfection [J]. Environmental Science:Nano, 2019, 6(10): 2977-2985. doi: 10.1039/C9EN00774A [42] KUMAR S, KARMACHARYA M, JOSHI S R, et al. Photoactive antiviral face mask with self-sterilization and reusability [J]. Nano Letters, 2021, 21(1): 337-343. doi: 10.1021/acs.nanolett.0c03725 [43] YANG Y, WU X Z, HE C, et al. Metal-organic framework/Ag-based hybrid nanoagents for rapid and synergistic bacterial eradication [J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13698-13708. [44] USMAN M, MENDIRATTA S, LU K L. Semiconductor metal-organic frameworks: Future low-bandgap materials [J]. Advanced Materials, 2017, 29(6): 1605071. doi: 10.1002/adma.201605071 [45] ZAHADIYA H, WIJESUNDERA R P, HETTIARACHCHI C V, et al. Effect of benzene derivatives as guest molecules on semiconductor properties of MOF-199 [J]. ChemistrySelect, 2021, 6(3): 425-429. doi: 10.1002/slct.202004528 [46] WANG T Q, WANG Y F, SUN M Z, et al. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde [J]. Chemical Science, 2020, 11(26): 6670-6681. doi: 10.1039/D0SC01397H [47] LUO Y, LIU X M, TAN L, et al. Enhanced photocatalytic and photothermal properties of ecofriendly metal-organic framework heterojunction for rapid sterilization [J]. Chemical Engineering Journal, 2021, 405: 126730. doi: 10.1016/j.cej.2020.126730 [48] HAN D L, HAN Y J, LI J, et al. Enhanced photocatalytic activity and photothermal effects of Cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds [J]. Applied Catalysis B:Environmental, 2020, 261: 118248. doi: 10.1016/j.apcatb.2019.118248 [49] WANG T Q, JIANG Z F, AN T C, et al. Enhanced visible-light-driven photocatalytic bacterial inactivation by ultrathin carbon-coated magnetic cobalt ferrite nanoparticles [J]. Environmental Science & Technology, 2018, 52(8): 4774-4784. [50] FANG Z Y, ZHEN Y R, NEUMANN O, et al. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle [J]. Nano Letters, 2013, 13(4): 1736-1742. doi: 10.1021/nl4003238 [51] SPINKS A T, DUNSTAN R H, HARRISON T, et al. Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures [J]. Water Research, 2006, 40(6): 1326-1332. doi: 10.1016/j.watres.2006.01.032 [52] XIAO K M, WANG T Q, SUN M Z, et al. Photocatalytic bacterial inactivation by a rape pollen-MoS 2 biohybrid catalyst: Synergetic effects and inactivation mechanisms [J]. Environmental Science & Technology, 2020, 54(1): 537-549. [53] KIM H E, LEE H J, KIM M S, et al. Differential microbicidal effects of bimetallic iron-copper nanoparticles on Escherichia coli and MS2 coliphage [J]. Environmental Science & Technology, 2019, 53(5): 2679-2687. [54] BOSSHARD F, BUCHELI M, MEUR Y, et al. The respiratory chain is the cell's Achilles' heel during UVA inactivation in Escherichia coli[J]. Microbiology (Reading, England), 2010, 156(Pt 7): 2006-2015. [55] MAO C Y, XIANG Y M, LIU X M, et al. Local photothermal/photodynamic synergistic therapy by disrupting bacterial membrane to accelerate reactive oxygen species permeation and protein leakage [J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17902-17914. [56] KIM H E, NGUYEN T T M, LEE H, et al. Enhanced inactivation of Escherichia coli and MS2 coliphage by cupric ion in the presence of hydroxylamine: Dual microbicidal effects [J]. Environmental Science & Technology, 2015, 49(24): 14416-14423. [57] PARK H J, NGUYEN T T M, YOON J, et al. Role of reactive oxygen species in Escherichia coli inactivation by cupric ion [J]. Environmental Science & Technology, 2012, 46(20): 11299-11304. [58] MA H, YANG S E, LI M, et al. Preparation and photocatalytic antibacterial mechanism of porous metastable β-Bi2O3 nanosheets [J]. Ceramics International, 2021, 47(24): 34092-34105. doi: 10.1016/j.ceramint.2021.08.319