-
《土壤污染防治法》规定“国务院生态环境主管部门根据土壤污染状况、公众健康风险、生态风险和科学技术水平,并按照土地用途,制定国家土壤污染风险管控标准”。《生态环境标准管理办法》指出“制定生态环境风险管控标准,应当根据环境污染状况、公众健康风险、生态环境风险、环境背景值和生态环境基准研究成果等因素,区分不同保护对象和用途功能,科学合理确定风险管控要求”。因此,土壤生态风险是我国土壤污染防治的重要目标,建立基于生态风险的土壤风险管控标准(土壤生态筛选值),是我国土壤生态环境法律法规的要求。然而,《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中仅部分指标考虑了污染物对农作物生长和土壤生态的影响[1],《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600—2018)未考虑土壤污染物的生态风险[2]。
欧美发达国家更早开展了土壤生态筛选值的相关研究,部分国家已制定了土壤生态筛选值。美国环境保护局(Environmental Protection Agency,EPA)于2003年颁布了土壤生态筛选值制定技术导则,逐步建立了21种污染物的土壤生态筛选值(Ecological Soil Screening Levels,Eco-SSL)[3]。英国环境署(Environment Agency,EA)针对9种重金属和10种有机物,建立了适用于土壤生态风险评估的土壤筛选值(Soil Screening Values,SSV)[4]。荷兰住房、空间规划和环境部(The Ministry of Housing,Spatial Planning and the Environment,VROM)发布了基于生态和健康风险的土壤质量标准[5]。加拿大环境部长理事会(Canadian Council of Ministers of the Environment,CCME)制定了不同用地方式下,基于生态风险和人体健康的土壤质量指导值(Soil Quality Guideline,SQG)[6]。与上述国家相比,我国土壤污染生态风险研究基础相对薄弱,有关土壤生态筛选值的综述研究相对较少。因此,本研究通过对英国、美国、荷兰和加拿大土壤生态筛选值的定位、关键受体、暴露途径、推导方法和生物有效性等方面进行对比分析,结合我国土壤生态风险的研究基础和现状,提出我国土壤生态筛选值的制定建议,以期为我国土壤风险管控标准的优化和完善提供参考。
不同国家土壤生态筛选值比较与启示
Ecological soil screening values among different countries and implication for China
-
摘要: 土壤污染生态风险防控是我国土壤环境保护和管理的重要目标。与国外发达国家相比,我国尚未建立基于生态风险的土壤筛选值(土壤生态筛选值),当前有关土壤生态筛选值的综述相对较少。本文系统梳理了美国环境保护局(EPA)、英国环境署(EA)、荷兰住房、空间规划和环境部(VROM)和加拿大环境部长理事会(CCME)制定的土壤生态筛选值,从标准定位、关键受体、暴露途径、推导方法和生物有效性等方面进行对比分析。结果表明,不同国家土壤生态筛选值均考虑了土壤直接接触毒性和经生物富集和生物放大的二次毒性,推导方法普遍采用生态风险评估方法,并充分考虑污染物的生物有效性。然而,当前我国土壤风险管控标准中仅GB 15618—2018农用地标准的部分考虑了污染物对农作物生长和土壤生态的影响,且试验和推导方法与国外筛选值存在较大差异。因此,“十四五”期间建议初步构建我国土壤生态风险评估框架,明确土壤生态筛选值的定位、作用和使用形式,加强代表性物种和典型土壤的陆生生态毒理学等基础研究,建立科学、规范的土壤生态筛选值制定方法和配套指南,尝试建立适合我国土壤区域特征的土壤污染归一方程和淋洗/老化因子,为我国土壤生态筛选值的制定提供建议和参考。Abstract: Ecological risk control of soil contamination is an essential target for soil environment protection and management. However, there is still lack of ecological soil screening values (Eco-SSVs) in China and the foundation of the works concerning soil environmental criteria aimed at protecting the terrestrial ecology is also rather weak. In this paper, we systematically compared and analyzed the difference in Eco-SSVs among US Environmental Protection Agency (EPA), UK Environmental Agency (EA), Ministry of Housing, Spatial Planning and the Environment (VORM) of the Netherlands and Canadian Council of Ministers of the Environment (CCME), in aspect of standard positioning, protection objective, derivation method, protective level as well as bioavailability factors. The result showed that both the toxicity induced by direct exposure to soil and the secondary poisoning via bioaccumulation/ biomagnification are taken into account for the derivation of Eco-SSVs with a widely applied method of ecological risk assessment in all the aforementioned countries. Meanwhile, the bioavailability of pollutants was well considered. However, among all the current risk control standard of soil contamination in our country, the consideration of ecological risk on crop growth and soil ecosystem was only observed in GB 15618—2018. On such a basis, constructing the framework of soil ecological risk assessment and specifying the role, function and the application form of Eco-SSVs were highly proposed during the 14th Five-Year Plan of our country. Moreover, we highlight strengthening the research of terrestrial ecotoxicity involved in local species and typical soil types in China, establishing the scientific and standardized derivation method of Eco-SSVs as well as the corresponding guideline, and establishing the normalized model and leaching/aging factor, which could provide scientific and technological base for the formulation of Eco-SSVs in our country.
-
表 1 各国土壤生态筛选值制定考虑的关键受体和暴露途径
Table 1. Key receptors and exposure pathways for consideration of ecological soil screening values
国家1Countries 土壤直接接触途径
Soil direct contact route土壤和食物摄入途径
Soil and food
ingestion route土壤-地下水途径
Soil-groundwater route美国 Eco-SSL植物 植物 — — Eco-SSL无脊椎动物 无脊椎动物 — — Eco-SSL哺乳动物 — 哺乳动物 — Eco-SSL鸟类 — 鸟类 — 英国 SSV 植物、无脊椎动物和
微生物主导的生态功能野生生物
(哺乳动物和鸟类)— 荷兰 MV 植物、无脊椎动物和
微生物主导的生态功能野生生物
(哺乳动物和鸟类)— IV — — 加拿大 SQG农用地 微生物(营养和能量循
环)、无脊椎动物、
植物/作物和
牲畜/野生动物食草动物(初级消费者)和
食肉动物(次级或三级
消费者)2牲畜、作物(灌溉)和
淡水生物SQG居住用地/公园 微生物(营养和能量循
环)、无脊椎动物、植物和
野生动物食草动物(初级消费者)和
食肉动物(次级或三级
消费者)3淡水生物 SQG商业用地 — SQG工业用地 — 1)Eco-SSL植物、Eco-SSL无脊椎动物、Eco-SSL哺乳动物和Eco-SSL鸟类分别表示保护植物、无脊椎动物、哺乳动物和鸟类的土壤生态筛选值;SSV表示英国土壤生态筛选值;MV和IV表示荷兰最大值和干预值;SQG农用地、SQG居住用地/公园、SQG商业用地和SQG工业用地分别表示农用地、居住/公园、商业和工业用地的土壤质量指导值。
Eco-SSLplants、Eco-SSLinvertebrates、Eco-SSLmammals and Eco-SSLbirds refer to Eco-SSLs for plants, invertebrates, Mammalian and birds, respectively; SSV refers to Soil Screening Values in UK; MV and IV refer to Maximal Values and Intervention Values in The Netherlands, respectively; SQGagriculture, SQGresidential/parkland, SQGcommercial and SQGindustrial refer to Soil Quality Guidelines for agriculture, residential/parkland, commercial and industrial land use, respectively.
2)仅当土壤污染物具有潜在生物累积或生物放大特性时,加拿大农用地的土壤SQG推导才考虑食肉动物等次级或三级消费者的土壤和食物摄入途径。
In the case of substances have a strong tendency to bioaccumulate and/or biomagnify, SQGagricultural for soil and food ingestion should be developed for the protection of secondary and tertiary consumers.
3)仅当土壤污染物具有潜在生物累积或生物放大特性时,加拿大居住用地/公园的土壤SQG推导才考虑食草动物等初级消费者和食肉动物等次级或三级消费者的土壤和食物摄入途径。
In the case of substances have a strong tendency to bioaccumulate and/or biomagnify, SQGresidential/parkland for soil and food ingestion should be developed for the protection of primary, secondary and tertiary consumers.表 2 各国土壤生态筛选值的推导方法(直接接触途径)
Table 2. Derivation methodologies of ecological soil screening values among different countries(soil direct contact route)
国家
Countries毒性数据1
Ecotoxicological data1外推方法
Extrapolation methodologies筛选值确定
Determination of
soil screening values美国 Eco-SSL植物 EC20、MATC和
EC10几何均值法 Eco-SSL无脊椎动物 英国 SSV NOEC、EC10和
E(L)C50物种敏感性分布法(SSD)、
评估因子法(AF)PNEC(HC5) 荷兰 MV NOEC、EC10和
E(L)C50物种敏感性分布法(SSD)、评估
因子法(AF)和平衡分配法HC5和HC50的几何均值
(约HC20)IV HC50 加拿大 SQG农用地 EC25、LOEC和
E(L)C50证据权重法(EC25分布法)、最低
效应浓度法和中位效应法(最小值)25%百分位值 SQG居住用地/公园 SQG商业用地 EC25、LOEC和
E(L)C50证据权重法(EC25分布法)和最低
效应浓度法(几何均值)50%百分位值 SQG工业用地 1)各国毒性数据按照数据使用优先级排列Ecotoxicological data is listed in order of priority for each country..
表 3 各国土壤生态筛选值的生物有效性因子
Table 3. Bioavailability factors of ecological soil screening values
国家
Countries背景含量
Background concentration土壤理化性质
Soil physico-chemical properties淋洗-老化处理
Leaching/aging treatment美国 评估毒性数据的质量和
Eco-SSL的合理性优先采用生物有效性高(基于pH和有机质含量)毒性数据 开展淋洗-老化处理的毒理试验 英国 (1)风险添加法(Zn和V)
(2)总量法(其余污染物),SSV不应低于土壤背景水平(1)通用SSV:
有机物1:${\text{E(L)} }{ {\text{C} }_{ {\text{sta} } } }/{\text{NOE} }{ {\text{C} }_{ {\text{sta} } } } = {\text{E(L)C} }/{\text{NOEC} } \times \dfrac{ {3.4} }{ { {\text{SOM} } } }$
重金属:毒性数据不进行归一化
(2)特定场地SSV
有机物2:${\text{SS} }{ {\text{V} }_{ {\text{site - specific} } } }{\text{ = SS} }{ {\text{V} }_{ {\text{generic} } } } \times \dfrac{ { {\text{SOM} } } }{ { {\text{3} }{\text{.4} } } }$
重金属:SSVgeneric和毒性数据根据土壤理化性质(pH、有机质、黏粒
和效应阳离子交换量)归一化(1)通用SSV的毒性数据不进行淋洗/老化校准
(2)当条件允许,毒性数据可基于淋洗/老化因子(L/F)进行
校准荷兰 风险添加法 (1)有机物1: $ {\text{E(L)}}{{\text{C}}_{{\text{sta}}}}/{\text{NOE}}{{\text{C}}_{{\text{sta}}}} = {\text{E(L)C}}/{\text{NOEC}} \times \frac{{3.4}}{{{\text{SOM}}}} $
(2)重金属不建议根据土壤理化性质归一化— 加拿大 SQG不应低于土壤
背景水平(1)分为粗粒土和细粒土
(2)毒性数据考虑生物有效性— 1)E(L)Csta/NOECsta和E(L)C/NOEC分别表示标准土壤和特定土壤的毒性数据,包括EC、LC和NOEC; SOM表示特定土壤的有机质含量(%)。E(L)Csta/NOECsta and E(L)C/NOEC refer to ecotoxicological data in standard and site specific soil, including EC、LC and NOEC, respectively; SOM refer to soil organic matter (%).
2)SSVgeneric和SSVsite specific分别表示通用筛选值和特定场地的筛选值。SSVgeneric and SSVsite specific refer to generic and site specific soil screening values, respectively表 4 土壤环境质量标准(GB15618—1995)的生态环境效应法
Table 4. Ecological effect methods of soil quality standards (GB 15618—1995)
体系
Systems土壤-植物体系(作物效应)
Soil-plant system
(Crop effects)土壤-微生物体系(微生物效应)
Soil-microorganism system
(Microbial effects)土壤-水体系(环境效应)
Soil-water system
(Environmental effects)内容 农产品质量 作物生长 生化指标 微生物计数 地下水 地表水 目的 保证公众
健康保持良好的
生产力保持土壤生态良性循环 地下水水质符合国家标准 地表饮用水源地水质符合国家标准 依据 食品卫生标
准等农作物产量减产不大于10% 一种以上的生化指标出现的变化率小于25% 微生物数量出现的变化率小于50% 生活饮用水卫生标准 地表水环境质量标准 -
[1] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 农用地土壤污染风险管控标准 GB 15618—2018[S]. 北京: 中国标准出版社, 2018. National Standard (Mandatory) of the People's Republic of China: Soil environmental quality Risk control standard for soil contamination of agricultural land. GB 15618—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[2] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 建设用地土壤污染风险管控标准 GB 36600—2018[S]. 北京: 中国标准出版社, 2018. National Standard (Mandatory) of the People's Republic of China: Soil environmental quality Risk control standard for soil contamination of development land. GB 36600—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[3] United States Environmental Protection Agency (US EPA). Guidance for developing ecological soil screening levels[R]. Washington DC: US Environmental Protection Agency, 2005. [4] Environment Agency (EA). Derivation and use of soil screening values for assessing ecological risk (Science Report share id26)[R]. Bristol: Environment Agency, 2017. [5] SWARTJES F A, RUTGERS M, LIJZEN J P A, et al. State of the art of contaminated site management in The Netherlands: Policy framework and risk assessment tools [J]. Science of the Total Environment, 2012, 427/428: 1-10. doi: 10.1016/j.scitotenv.2012.02.078 [6] Canadian Council of Ministers of the Environment (CCME). A protocol for the derivation of environmental and human health soil quality guidelines[R]. Ottawa: Canadian Council of Ministers of the Environment, 2006. [7] PERRODIN Y, de BOILLOT C, ANGERVILLE R, et al. Ecological risk assessment of urban and industrial systems: A review [J]. Science of the Total Environment, 2011, 409(24): 5162-5176. doi: 10.1016/j.scitotenv.2011.08.053 [8] United States Environmental Protection Agency (US EPA). Framework for ecological risk assessment[R]. Washington DC: US Environmental Protection Agency, 1992. [9] United States Environmental Protection Agency (US EPA). Guidelines for ecological risk assessment[R]. Washington DC: US Environmental Protection Agency, 1998. [10] United States Environmental Protection Agency (US EPA). Ecological risk assessment guidance for superfund process for designing and conducting ecological risk assessments (Interim Final)[R]. Washington DC: US Environmental Protection Agency, 1997. [11] Environment Agency (EA). An ecological risk assessment framework for contaminants in soil (Science Report SCO70009/SR1)[R]. Bristol: Environment Agency, 2008. [12] Environment Agency (EA). Guidance on the use of soil screening values in ecological risk assessment (Science Report SC070009/SR2B)[R]. Bristol: Environment Agency, 2008. [13] Environment Agency. Soil screening values for use in UK ecological risk assessment[R]. Bristol: Environment Agency, 2008. [14] European Commission (EC). Technical guidance document in support of Commission Directive 93/67/EEC on Risk assessment for new notified substances and Commission Regulation (EC) No 1488/94 on Risk assessment for existing substances and Commission Directive (EC) 98/8 on Biocides, Part 2[R]. Luxembourg: European Commission, 2003. [15] 李勖之, 郑丽萍, 张亚, 等. 应用物种敏感分布法建立铅的生态安全土壤环境基准研究 [J]. 生态毒理学报, 2021, 16(1): 107-118. LI X Z, ZHENG L P, ZHANG Y, et al. Derivation of ecological safety based soil quality criteria for lead by species sensitivity distribution [J]. Asian Journal of Ecotoxicology, 2021, 16(1): 107-118(in Chinese).
[16] 颜增光, 谷庆宝, 周娟, 等. 构建土壤生态筛选基准的技术关键及方法学概述 [J]. 生态毒理学报, 2008, 3(5): 417-427. YAN Z G, GU Q B, ZHOU J, et al. A synoptic review of the technical tips and methodologies for the development of ecological soil screening benchmarks [J]. Asian Journal of Ecotoxicology, 2008, 3(5): 417-427(in Chinese).
[17] 周启星, 滕涌, 展思辉, 等. 土壤环境基准/标准研究需要解决的基础性问题 [J]. 农业环境科学学报, 2014, 33(1): 1-14. doi: 10.11654/jaes.2014.01.001 ZHOU Q X, TENG Y, ZHAN S H, et al. Fundamental problems to be solved in research on Soil-environmental Criteria/standards [J]. Journal of Agro-Environment Science, 2014, 33(1): 1-14(in Chinese). doi: 10.11654/jaes.2014.01.001
[18] 周启星. 环境基准研究与环境标准制定进展及展望 [J]. 生态与农村环境学报, 2010, 26(1): 1-8. doi: 10.3969/j.issn.1673-4831.2010.01.001 ZHOU Q X. Advances and prospect of research on environmental criteria/benchmarks and enactment of environmental standards [J]. Journal of Ecology and Rural Environment, 2010, 26(1): 1-8(in Chinese). doi: 10.3969/j.issn.1673-4831.2010.01.001
[19] CROMMENTUIJN T, SIJM D, de BRUIJN J, et al. Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations [J]. Journal of Environmental Management, 2000, 60(2): 121-143. [20] 王小庆, 李菊梅, 韦东普, 等. 土壤中铜生态阈值的影响因素及其预测模型 [J]. 中国环境科学, 2014, 34(2): 445-451. WANG X Q, LI J M, WEI D P, et al. Major soil factors affecting ecological threshold for copper and the predictable models [J]. China Environmental Science, 2014, 34(2): 445-451(in Chinese).
[21] 吴燕玉, 陈涛, 张学询, 等. 污灌区环境质量评价的原则和程序 [J]. 农业环境科学学报, 1983, 2(2): 1-5. WU Y Y, CHEN T, ZHANG X X, et al. Principles and procedures for environmental quality assessment of sewage irrigation areas [J]. Journal of Agro-Environmental Science, 1983, 2(2): 1-5(in Chinese).
[22] 夏增禄. 土壤环境容量在总量控制上的应用 [J]. 环境科学, 1985, 6(1): 56-60. XIA Z L. The application of soil environmental capacity to total quantity control [J]. Environmental Science, 1985, 6(1): 56-60(in Chinese).
[23] 夏家淇. 土壤环境质量标准详解[M]. 北京: 中国环境科学出版社, 1996. XIA J Q. Detailed explanation of soil environmental quality standards [M]. Beijing: China Environment Science Press, 1996(in Chinese).
[24] 龙涛, 邓绍坡, 吴运金, 等. 生态风险评价框架进展研究 [J]. 生态与农村环境学报, 2015, 31(6): 822-830. doi: 10.11934/j.issn.1673-4831.2015.06.005 LONG T, DENG S P, WU Y J, et al. Advancement in study on development of ecological risk assessment framework [J]. Journal of Ecology and Rural Environment, 2015, 31(6): 822-830(in Chinese). doi: 10.11934/j.issn.1673-4831.2015.06.005
[25] 窦韦强, 安毅, 秦莉, 等. 农用地土壤重金属生态安全阈值确定方法的研究进展 [J]. 生态毒理学报, 2019, 14(4): 54-64. DOU W Q, AN Y, QIN L, et al. Research progress in determination methods of ecological safety thresholds for heavy metals in agricultural land [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 54-64(in Chinese).
[26] 张霖琳, 金小伟, 王业耀. 土壤污染物的生态毒理效应和风险评估研究进展 [J]. 中国环境监测, 2020, 36(6): 5-13. ZHANG L L, JIN X W, WANG Y Y. Research progress on ecotoxicological effects and risk assessment of soil pollutants [J]. Environmental Monitoring in China, 2020, 36(6): 5-13(in Chinese).
[27] 吴爱明, 赵晓丽, 冯宇, 等. 美国生态毒理数据库(ECOTOX)对中国数据库构建的启示 [J]. 环境科学研究, 2017, 30(4): 636-644. WU A M, ZHAO X L, FENG Y, et al. The enlightenment of the ecotoxicolohy knowledgebase(ECOTOX) for its establishment in China [J]. Research of Environmental Sciences, 2017, 30(4): 636-644(in Chinese).
[28] 刘娜, 金小伟, 王业耀, 等. 生态毒理数据筛查与评价准则研究 [J]. 生态毒理学报, 2016, 11(3): 1-10. doi: 10.7524/AJE.1673-5897.20160503005 LIU N, JIN X W, WANG Y Y, et al. Review of criteria for screening and evaluating ecotoxicity data [J]. Asian Journal of Ecotoxicology, 2016, 11(3): 1-10(in Chinese). doi: 10.7524/AJE.1673-5897.20160503005
[29] 王小庆, 马义兵, 黄占斌. 土壤中镍生态阈值的影响因素及预测模型 [J]. 农业工程学报, 2012, 28(5): 220-225. doi: 10.3969/j.issn.1002-6819.2012.05.037 WANG X Q, MA Y B, HUANG Z B. Influence factors and prediction model for soil nickel ecological threshold [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 220-225(in Chinese). doi: 10.3969/j.issn.1002-6819.2012.05.037
[30] 李宁, 郭雪雁, 陈世宝, 等. 基于大麦根伸长测定土壤Pb毒性阈值、淋洗因子及其预测模型 [J]. 应用生态学报, 2015, 26(7): 2177-2182. LI N, GUO X Y, CHEN S B, et al. Toxicity thresholds and predicted model of Pb added to soils with various properties and its leaching factors as determined by barley root-elongation test [J]. Chinese Journal of Applied Ecology, 2015, 26(7): 2177-2182(in Chinese).
[31] 王晓南, 陈丽红, 王婉华, 等. 保定潮土铅的生态毒性及其土壤环境质量基准推导 [J]. 环境化学, 2016, 35(6): 1219-1227. doi: 10.7524/j.issn.0254-6108.2016.06.2015101402 WANG X N, CHEN L H, WANG W H, et al. Ecotoxicological effect and soil environmental quality criteria of lead in the fluvo-aquic soil of Baoding [J]. Environmental Chemistry, 2016, 35(6): 1219-1227(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015101402