-
煤炭作为我国的大型经济产业,在经济发展中有着举足轻重的作用[1]。2019年我国原煤产量达38.5亿t,同比增长4%,煤炭在未来一段时间内,依旧是我国的主要能源[2]。煤炭生产中,建成使用或已废弃的煤矿会产生大量的废水、岩石废料和尾矿,随着地表径流和地下水的浸出和侵蚀,这些废物中发生了一系列复杂的物理化学反应,如风化、溶解和氧化,造成硫酸和重金属含量高的酸性矿井排水[3-5],一方面影响地表水与地下水的相互关系,通过地下水间接影响地表水水质;另一方面,大量矿井水会直接排入地表水,造成二次污染[6]。对于煤矿开采区的水资源,掌握其水质状况尤为重要,水质的演化特征关系着区域水资源的可持续开发与利用,深入认识水质的变化过程和水环境质量的变化趋势,可为水环境保护、水资源合理开发利用提供依据。
水化学特征可作为河流水质评价以及河流生态系统的重要指标,对流域内人类生活用水、工农业用水有重要的影响。由于水体中的化学成分受区域地质、气候以及人类生产生活等影响,因此,水化学特征在一定程度上可反映流域内的基本特征[7-8],同时也是研究水环境质量的重要方法。对于上述的研究,国内外已经取得了很多成果,研究方法也趋于多样化[9-10]。从20世纪中期开始,运用大量的理论知识和技术手段来研究地表水、地下水水化学特征及演化规律。其中处理水质数据的数学方法有很多,一般包括聚类分析法、主成分分析法、相关分析法、因子分析法等[11-12],基于水质数据的分析,进一步运用piper三线图[13]、Gibbs图[14]、水质模拟法、同位素分析法[15-16]等探究河流离子化学特征及流域主要风化过程的影响[17],继而通过GIS可视化功能将水质结果清晰地展示出来[18]。近年来,人们进行了许多研究来调查水资源和煤矿开采的相互关系与影响。河流水质受到多种因素共同作用,流域水体中离子之间的相互作用、相互影响,构成了一个复杂的水环境系统。针对这种典型区域水体研究,明晰其水化学特征尤为关键,可以进一步分析水质演化规律,以期在煤矿开采过程中保护水资源及煤矿开采区域的水生态[19-20]。
长河流域采煤区地处晋城市泽州县,是晋城煤炭经济带中的重要一环。流域内分布着大量煤炭、煤化工企业,据统计,2019年长河排放污水总量为504万t,由于煤炭工业的快速发展,已经使当地生态环境发生了改变,造成水质型缺水。近年来,晋城市已经开展了多项水环境治理工程,对长河流域地表水和地下水进行水资源保护与治理,但并未从水化学角度深入探究水质成因及变化规律。因此,本研究聚焦采煤区地表水长河,根据当地实际情况,沿程选取9个采样点进行测试分析,明晰地表水水化学特征及影响因素,为当地水资源管理与保护提供科学的建议。
长河流域矿区地表水水化学特征及驱动因子分析
Hydrochemical characteristics and driving factors of surface water in the mining area of Changhe River Basin
-
摘要: 为了研究晋城市长河流域采煤区地表水水质情况、查清其水化学特征,明晰其影响因素及主要离子来源。现场采集了地表水水样9组,采用数理统计方法分析水化学特征,运用Piper三线图分析水化学类型,通过Gibbs图和离子相关分析等方法探讨了地表水主要离子的来源及其影响因素。结果表明,研究区地表水TDS为126—604 mg·L−1,平均值为344.11 mg·L−1;pH值为7.43—8.17,平均值为7.79,属于弱碱性水。地表水阳离子以Ca2+和Mg2+为主,阴离子主要是
${{\rm{HCO}}_3^{-} }$ ,水化学类型为${{\rm{HCO}}_3^{-}} $ Mg。通过主要离子的相关性分析可知,TDS与Na+、 K+、${{\rm{HCO}}_3^{-}} $ 、${{\rm{SO}}_4^{2-}} $ 和Cl−都存在显著的正相关性,这些离子对TDS都有贡献。${{\rm{HCO}}_3^{-}} $ 与Na+相关,与K+存在显著相关性,可能来源于含钠或钾硅酸盐。通过水岩模型分析可知,研究区地表水水化学成因主要受岩石风化作用控制,多数离子是由硅酸盐岩与碳酸盐岩风化溶解作用,少数阳离子受到水体离子交换作用影响。相关的研究成果可为研究区水资源规划配置提供科学的参考意见。Abstract: In order to study the water quality of the surface water in the Changhe coal mining area of Jincheng City, find out its hydrochemical characteristics, and clarify its influencing factors and main ion sources. Nine groups of surface water samples were collected on site, and the hydrochemical characteristics were analyzed by mathematical statistics, the hydrochemical types were analyzed by Piper trigraph, and the sources and influencing factors of main ions in surface water were discussed by Gibbs graph and ion correlation analysis. The results showed that : TDS of surface water in the study area was 126—604 mg·L−1, with an average value of 344.11 mg·L−1. The pH value is 7.43—8.17, and the average value is 7.79, which belongs to weakly alkaline water. The main cations in surface water are Ca2+ and Mg2+, the anions are mainly${\rm{HCO}}_3^{-} $ , and the hydrochemical type is${\rm{HCO}}_3^{-} $ Mg.The correlation analysis of major ions shows that TDS is significantly positively correlated with Na+, K+,${\rm{HCO}}_3^{-} $ ,${\rm{SO}}_4^{2-} $ and Cl-, and these ions all contribute to TDS.${\rm{HCO}}_3^{-} $ is associated with Na+ and significantly associated with K+, and may be derived from sodium or potassium silicates. Through the analysis of the water-rock model, it can be seen that the hydrochemical genesis of the surface water in the study area is mainly controlled by rock weathering, most of the ions are dissolved by the weathering of silicate rock and carbonate rock, and a few cations are affected by water ion exchange. Relevant research results can provide scientific references for water resources planning and allocation in the research area. -
表 1 长河流域地表水主要离子质量浓度
Table 1. The mass concentration of main ions in the surface water of the Changhe River Basin
离子
Ion最大值/ (mg·L−1)
Max最小值/ (mg·L−1)
Minimum平均值/ (mg·L−1)
Average value标准差/ (mg·L−1)
Standard deviation变异系数/%
Coefficient of variationCa2+ 254.64 99.82 190.30 53.85 28.3 Mg2+ 116.10 45.50 88.96 25.27 28.4 Na+ 70.10 23.67 48.83 17.58 36.0 K+ 0.84 0.21 0.56 0.24 43.0 Cl− 13.12 2.08 6.36 4.22 66.4 ${\rm{HCO}}_3^{-} $ 598.23 204.56 393.29 152.42 38.8 ${\rm{SO}}_4^{2-} $ 53.26 13.54 31.31 13.33 42.6 pH 8.17 7.43 7.79 0.26 3.3 TDS 604.00 126.00 344.10 196.65 57.0 总硬度 500.00 196.00 383.78 103.71 27.0 表 2 长河流域中上游矿区入河排污口水质检测结果(mg·L−1)
Table 2. Test results of water quality of sewage outfalls in the middle and upper reaches of the Changhe River Basin(mg·L−1)
排污口位置Location of sewage outlet TP TN N${\rm{NH}}_3^{-} $ N${\rm{NO}}_3^{-} $ KMnO4 氯化物Chloride 硫酸盐Sulphate 总硬度Total hardness BOD 下村镇万里村 0.29 0.29 0.68 0.59 8.3 216 176 378 6.41 下村镇中村 0.07 0.74 0.87 0.43 5.4 180 147 412 3.6 下村镇史村 0.09 0.34 0.38 0.61 4.5 173 169 392 2.57 表 3 Pearson相关系数临界值
Table 3. Critical values of Pearson correlation coefficient
皮尔逊相关系数值 Pearson correlation coefficient 相关性 Correlation 0.8—1.0 极强相关 0.6—0.8 强相关 0.4—0.6 中等程度相关 0.2—0.4 弱相关 0.0—0.2 无相关 <0.0 负相关 -
[1] 王金华, 谢和平, 刘见中, 等. 煤炭近零生态环境影响开发利用理论和技术构想 [J]. 煤炭学报, 2018, 43(5): 1198-1209. WANG J H, XIE H P, LIU J Z, et al. Coal development and utilization theory and technical system of near-zero ecological environment impact [J]. Journal of China Coal Society, 2018, 43(5): 1198-1209(in Chinese).
[2] 国家统计局. 中国统计年鉴[J]. 北京: 中国统计出版社, 2019. National Bureau of Statistics. The yearbook of china tourism statistics [J]. Beijing: China Statistics Press, 2019(in Chinese).
[3] AKCIL A, KOLDASS. Acid mine drainage (Amd): Causes, treatment and case studies [J]. Clean Prod, 2006(14): 1139-1145. [4] SUN J, TANG C. Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: impacts at a SW China coalfield [J]. Science of the Total Environment, 2014, 487(4): 123-129. [5] KEFENI, KEBEDE K, MSAGATI T A M. Acid mine drainage: Prevention, treatment options, and resource recovery: A review [J]. Clean Prod, 2017, 151(10): 475-493. [6] 於方, 过孝民, 张强. 中国矿产业的废水污染现状分析与防治对策 [J]. 资源科学, 2004, 26(2): 46-53. doi: 10.3321/j.issn:1007-7588.2004.02.007 YU F, GUO X M, ZHANG Q. Wastewater pollution situation and countermeasures for Chinese mineral industry [J]. Resources Science, 2004, 26(2): 46-53(in Chinese). doi: 10.3321/j.issn:1007-7588.2004.02.007
[7] 赵江涛, 周金龙, 梁川, 等. 新疆焉耆盆地平原区地下水演变的主要水文地球化学过程分析 [J]. 环境化学, 2017, 36(6): 1397-1406. ZHAO J T, ZHOU J L, LIANG C, et al. Hydrogeochemical process of evolution of groundwater in plain area of Yanqi, Xinjiang [J]. Environmental Chemistry, 2017, 36(6): 1397-1406(in Chinese).
[8] 孙英, 周金龙, 魏兴, 等. 巴楚县平原区地下水水化学特征及成因分析 [J]. 环境化学, 2019, 38(11): 2601-2609. SUN Y, ZHOU J L, WEI X, et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County [J]. Environmental Chemistry, 2019, 38(11): 2601-2609(in Chinese).
[9] 沈照理. 水文地球化学基础(一)[J]. 水文地质工程地质, 1983(3): 58-61.SHEN Z L. Basis of Hydrogeochemistry(一)[J]. Hydrogeology & Engineering Geology, 1983(3): 58-61(in Chinese). [10] 王亚平, 王岚, 许春雪, 等. 长江水系水文地球化学特征及主要离子的化学成因 [J]. 地质通报, 2010, 29(Z1): 446-456. WANG Y P, WANG L, XU C X, et al. Hydro-geochemistry and genesis of major ions in the Yangtze River, China [J]. Geological Bulletin of China, 2010, 29(Z1): 446-456(in Chinese).
[11] 周小平, 彭吟雪, 马雷, 等. 氢氧同位素对淮南潘集矿区地下水的指示作用 [J]. 合肥工业大学学报(自然科学版), 2019, 42(4): 536-540. ZHOU X P, PENG Y X, MA L, et al. Indicating function of hydrogen and oxygen isotope to the groundwater of Huainan Panji mine area [J]. Journal of Hefei University of Technology, 2019, 42(4): 536-540(in Chinese).
[12] JIANG L, YAO Z, LIU Z, et al. Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau [J]. Journal of Geochemical Exploration, 2015, 155: 76-83. doi: 10.1016/j.gexplo.2015.04.009 [13] PIPER A M. A graphical interpretation of water analysis [J]. Trans Am Geophys Union, 1944, 25: 914-928. doi: 10.1029/TR025i006p00914 [14] GIBBS R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170: 1088-1090. doi: 10.1126/science.170.3962.1088 [15] JIA Y F, GUO H M, XI B D, et al. Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia [J]. Total Environ, 2017, 601/602: 691-702. doi: 10.1016/j.scitotenv.2017.05.196 [16] FEI L, SHOU W, LI S W. Coupling hydrochemistry and stable isotopes to identify the major factors affecting groundwater geochemical evolution in the Heilongdong Spring Basin, North China [J]. Journal of Geochemical Exploration, 2019, 205: 106305. [17] 张未. 格尔木昆仑山前冲洪积扇地下水水文地球化学作用[D]. 西安: 长安大学, 2018. ZHANG W. Hydrogeochemical process of groundwater in the Alluvial Fan of Mt. Kunlun in Golmud[J]. Xi’an: Chang’an University, 2018(in Chinese).
[18] FANG Y H, ZHENG T Y, ZHENG X L, et al. Assessment of the hydrodynamics role for groundwater quality using an integration of GIS, water quality index and multivariate statistical techniques[J]. Journal of Environmental Management, 2020, 273: 111185 [19] GU D. Theory framework and technological system of coal mine underground reservoir [J]. China Coal Soc, 2015, 40(2): 239-246. [20] GUO Q, XIONG X, JIANG J. Analysis of isotopic and hydrochemical characteristics of different waters in Kuye Riber Basin [J]. Soil Water Conserv, 2016, 30(2): 237-242. [21] GB3838—2002, 《地表水环境质量标准》[S]. GB3838-2002, 《Environmental quality standards for surface water》[S]. (in Chinese)
[22] HUANG H, CHEN Z, WANG T, et al. Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China [J]. Environmental Science and Pollution Research, 2019, 26(29): 30055-30068. doi: 10.1007/s11356-019-05984-4 [23] BELKHIRI L, BOUDOUKHAA, MOUNI L A. Multivariate statistical analysis of groundwater chemistry date [J]. International Journal of Environmental Research, 2010, 5(2): 537-544. [24] 戴维·穆尔. 统计学的世界[M]. 第8版. 北京: 中信出版社, 2007: 345-346. DAVID M. Statistics: Concepts and controversies. [M]. 8th Edition. Beijing: China Citic Press, 2007: 345-346(in Chinese).
[25] LI P, TIAN R, LIU R. Solute geochemistry and multivariate analysis of Water Quality in the Guohua Phosphorite Mine, Guizhou Province, China [J]. Exposure and Health, 2019(11): 81-94. [26] 李平, MAGZUMNUROLLA, 梁志杰, 等. 渠井用水比例对土壤脱盐与地下水化学特征的影响 [J]. 中国农业科学, 2017, 50(3): 526-536. doi: 10.3864/j.issn.0578-1752.2017.03.011 LI P, MAGZUM N, LIANG Z J, et al. Effects of canal well water ratios on root layer soil desalination and groundwater hydrochemical characteristics [J]. Scientia Agricultura Sinica, 2017, 50(3): 526-536(in Chinese). doi: 10.3864/j.issn.0578-1752.2017.03.011
[27] SCHOELLER H. Qualitative evaluation of groundwater resource: Methods and techniques of groundwater investigation and development [J]. Water Research, 1967, 33: 44-52. [28] 吕婕梅, 安艳玲, 吴起鑫, 等. 清水江流域岩石风化特征及其碳汇效应 [J]. 环境科学, 2016, 37(12): 4673-4674. LV J M, AN Y L, WU Q X, et al. Rock weathering characteristics and the atmospheric carbon sink in the chemical weathering processes of Qingshuijiang River Basin [J]. Environmental Science, 2016, 37(12): 4673-4674(in Chinese).
[29] 李甜甜, 季宏兵, 江用彬, 等. 赣江上游河流水化学的影响因素及DIC来源 [J]. 地理学报, 2007, 62(7): 764-775. doi: 10.3321/j.issn:0375-5444.2007.07.009 LI T T, JI H B, JIANG Y B, et al. Hydro-geochemistry and the sources of DIC in the upriver tributaries of the Ganjiang River [J]. Acta Geographica Sinica, 2007, 62(7): 764-775(in Chinese). doi: 10.3321/j.issn:0375-5444.2007.07.009
[30] 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素 [J]. 环境科学, 2017, 38(11): 4537-4545. ZHANG T, CAI W T, LI Y Z, et al. Major ionic features and their possible controls in the water of the Niyang River Basin [J]. Environmental Science, 2017, 38(11): 4537-4545(in Chinese).
[31] 孙厚云, 王晨昇, 卫晓锋, 等. 大兴安岭南段巴音高勒流域水化学特征及驱动因子 [J]. 环境化学, 2020, 39(9): 2507-2519. doi: 10.7524/j.issn.0254-6108.2020032102 SUN H Y, WANG C S, WEI X F, et al. Hydrochemical characteristics and driving factors in the water of the Bayingaole Basin, Southern Great Xing’an Range [J]. Environmental Chemistry, 2020, 39(9): 2507-2519(in Chinese). doi: 10.7524/j.issn.0254-6108.2020032102
[32] 王剑, 罗朝晖, 陈植华, 等. 滇东北毛坪铅锌矿区水化学特征及成因 [J]. 环境化学, 2018, 37(6): 1421-1431. WANG J, LUO C H, CHEN Z H, et al. Characteristics and controlling factors of water chemistry in Maoping lead-zinc mine area, Northeast Yunnan, China [J]. Environmental Chemistry, 2018, 37(6): 1421-1431(in Chinese).
[33] TIWA R, SINGH A K. Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh [J]. Journal of the Geological Society of India, 2014, 83(3): 329-343. doi: 10.1007/s12594-014-0045-y