-
城市污水管道通过一般检查孔与外界环境进行气体交换,故通风效果有限,难以及时补充污水中被微生物消耗的溶解氧(dissolved oxygen ,DO),极易形成厌氧环境[1],从而导致厌氧气体积累,甚至可能发生爆炸事故。控制污水管道爆炸性气体的方式有:通过鼓风充气以抑制厌氧生物膜的活性,减少 H2S 和 CH4 的产生[2];通过投加化学药剂(包括氢氧化钠、硝酸盐、金属盐等)来抑制厌氧气体产生的措施[3-6]。上述措施一般需持续性的操作,药剂投加和特殊的操作条件均使得城市管网的管理成本增加[7]。
目前,国内城市建筑密度大、污水管道长,有必要建立一种消除 CH4 爆炸性隐患的可持续方法。张二飞等[8]探究了建筑排水立管未经化粪池直接接入污水管网的气流规律,发现立管带入气体有94%用于改善污水管道顶部的气相环境。该方法能改善污水管网通风状态的长度为5~32 m,对于密集的城市污水管网而言,其改善长度有限。高如月等[9]使用脉冲通气方法在水流速度为 0.2 m·s−1时,可实现对有害气体的最佳控制效果,但该方法同样面临改善区域有限的问题。卢金锁等[10]从整个污水集输管道系统角度出发,探讨了化粪池对气流组织的隔断效应,发现利用排水立管连通大气可降低污水管道中有害气体的浓度。而污水管道内外气体的温度、湿度差异会影响自然通风效果[11],故自然通气控制方法的影响范围有限。硫酸盐还原菌(sulfate-reducing bacteria,SRB)受高温影响在夏季管道中会产生更多CH4[12],夏季高温情况下,CH4与干空气密度差减小,建筑立管直接与污水管道相连的通风效果会受到一定限制。
基于上述背景,本课题组提出一种用风机推动建筑物直立管道及污水管道中气相流动,以增强污水管道通风、控制有害气体安全风险的新方法,其风机系统如图1所示。通过在上下游建筑立管顶部分别安装风机,使得上游立管向内鼓入新鲜气体,下游立管向外排出有害气体并设置气体吸附装置。该方法可使建筑立管与污水管道直接相连以改善通风,且不受制与管道内外温度差(如夏季高温)的影响,还可以增加建筑立管在排水时所需补气量,加强建筑立管与污水管道直接相连对下水道通风状态的影响长度。将该方法应用于西安市某建筑的部分污水管道,建立了通风效能的计算流体力学(CFD)模型,并进行现场实验验证,以期为城市污水管道中有害气体的控制提供参考。
污水管道强化通风技术的CFD模拟及现场验证
Simulation and experimental study on reinforced ventilation of sewage pipelines
-
摘要: 污水管道通风不畅是管道厌氧产生有害气体并不断富集的主要原因。为此,提出了在上下游建筑立管并设置风机以增强污水管道通风的应对方法,且以西安市某建筑的部分污水管道为例,建立了通风效能的计算流体力学(CFD)模型,并进行了现场实验验证。现场实验结果证明了通风效能和CFD模拟方法的可靠性。模拟结果表明:CFD模拟与实测结果偏差小于7.0%;增强通风量的2.3%通过立管近处检查井孔溢出;所选风机对污水管道的影响区域为510~750 m;风机运行对建筑横支管水封损耗小于国内规定的水封破坏值;风机运行安全可行。以上研究结果可为疏导城市建筑污水管道中的有害气体,控制污水管道安全风险提供参考。Abstract: Poor ventilation of sewage pipes is the primary cause of anaerobic generation and continuous accumulation of hazardous gases. Therefore, this paper proposed a method to enhance the ventilation of sewage pipes by installing a blower in the upstream and downstream building standpipes. Taking part of sewage pipes in a building in Xi′an as an example, a computational fluid dynamics (CFD) model of ventilation efficiency was established and verified by field experiments, the results of which demonstrated the reliability of the ventilation efficiency and the CFD simulation method. The simulation results revealed that the deviation between CFD simulation and measured results was less than 7.0%, and 2.3% of the enhanced ventilation overflowed through the inspection shaft hole near the standpipe. The influence area of the selected blower on the sewage pipeline was 510-750 m. The water seal loss of the horizontal branch pipe in the building caused by the operation of the blower was less than the water seal damage value stipulated in China, and the operation of the blower was safe and feasible. The results of this study can provide reference for dredging harmful gases in urban construction sewage pipes and controlling the safety risks of sewage pipes.
-
Key words:
- sewage pipelines /
- enhanced ventilation /
- hazardous gases /
- water seal protection
-
表 1 模拟模型的设置内容
Table 1. Simulation model parameter
设置项目 具体内容 求解器 压力基求解器 多相流方式 VOF模型 湍流模型 标准的κ-ε模型 速度和压力的耦合方式 SIMPLE算法 压力的空间离散方式 PRESTO函数 体积分数方程 一阶迎风格式 动量方程 二阶迎风格式 湍动能方程 一阶迎风格式 湍动能耗散率方程 一阶迎风格式 -
[1] HVITVED-JACOBSEN T, VOLLERTSEN J, NIELSEN A H. Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks[M]. Boca Raton: CRC Press, 2013. [2] LIU Y, NI B, SHARMA K, et al. Methane emission from sewers[J]. Science of the Total Environment, 2015, 524-525: 40-51. doi: 10.1016/j.scitotenv.2015.04.029 [3] AUGUET O, PIJUAN M, BORREGO C M, et al. Control of sulfide and methane production in anaerobic sewer systems by means of downstream nitrite dosage[J]. Science of the Total Environment, 2016, 550: 1116-1125. doi: 10.1016/j.scitotenv.2016.01.130 [4] AUGUET O, PIJUAN M, GUASCHBALCELLS H, et al. Implications of downstream nitrate dosage in anaerobic sewers to control sulfide and methane emissions[J]. Water Research, 2015, 68: 522-532. doi: 10.1016/j.watres.2014.09.034 [5] FIRER D, FRIEDLER E, LAHAV O. Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications[J]. Science of the Total Environment, 2008, 392(1): 145-156. doi: 10.1016/j.scitotenv.2007.11.008 [6] LIN H W, LU Y, GANIGUE R, et al. Simultaneous use of caustic and oxygen for efficient sulfide control in sewers[J]. Science of the Total Environment, 2017, 601-602: 776. doi: 10.1016/j.scitotenv.2017.05.225 [7] GANIGUE R, GUTIERREZ O, ROOTSEY R, et al. Chemical dosing for sulfide control in Australia: An industry survey[J]. Water Research, 2011, 45(19): 6564-6574. doi: 10.1016/j.watres.2011.09.054 [8] 张二飞, 卢金锁. 建筑排水立管直接接入污水管网的通风性能分析[J]. 给水排水, 2018, 34(17): 112-115. [9] 于玺, 王社平, 高如月, 等. 脉冲通气对污水管道内有害气体的控制[J]. 环境工程学报, 2020, 14(1): 278-284. doi: 10.12030/j.cjee.201903137 [10] 卢金锁, 周亚鹏, 丁艳萍, 等. 污水集输管道系统中有害气体释放与解决对策[J]. 环境工程学报, 2019, 13(4): 757-764. doi: 10.12030/j.cjee.201812105 [11] PESCOD M B, PRICE A C. Major factors in wewer ventilation[J]. Journal, 1982, 54(4): 385-397. [12] FOLEY J, YUAN Z G, KELLER J, et al. N2O and CH4 Emission from Wastewater Collection and Treatment Systems: State of the Science Report and Technical Report[M]. London: IWA Publishing, 2015. [13] CHENG C L, LU W H, SHEN M D. An empirical approach: Prediction method of pressure distribution on building vertical drainage stack[J]. Journal of the Chinese Institute of Engineers, 2005, 28(2): 205-217. doi: 10.1080/02533839.2005.9670988 [14] JOYCE J, SORENSEN H W, SMITH M M. Large diameter sewer and tunnel ventilation characteristics and odor control: Recent developments and case histories[J]. Proceedings of the Water Environment Federation, 2000, 13: 195-214.