-
锑是元素周期表第五周期中的一种类金属元素,其在环境中广泛存在。锑及其化合物会引起肝脏、皮肤、呼吸系统和心血管系统疾病[1-2],已被美国环境保护署(USEPA)[3]及欧盟[4]列为优先控制污染物。此外,国际癌症研究机构(IARC)认为三氧化二锑可能对人类有致癌作用[5]。随着锑开采和应用相关的人为活动(例如采矿、冶炼矿石、燃烧煤炭、废弹药以及各类产品(如阻燃剂、合金、半导体、塑料)的生产使用)干扰加剧,锑污染日益严重[6-10]。中国拥有丰富的锑资源,是世界上最大的锑生产国,约占全球锑总产量的90%[11],在全球锑排放中也扮演着重要角色。近些年来,锑污染事件在中国时有发生,对人们的健康安全造成了极大的威胁[12]。
受锑污染的水体中锑浓度可高达几千到几万微克每升[13]。水环境中的锑可被动植物富集,继而通过食物链在人体内积累,危害人类健康[14]。水产品是居民,尤其沿海城市居民日常膳食的重要组成部分,现阶段有关中国水产品中的锑研究仍十分有限,仅对烟台海产品和湖南水产品中锑有报道[15-19]。
为更全面地了解中国沿海城市水产品中锑的赋存特征及其食用风险,本研究对中国8个典型沿海城市(盐城市、杭州市、舟山市、宁波市、台州市、温州市、福州市、深圳市)市售水产品中锑含量进行了检测,基于每日摄入评估量(EDI)及目标危害系数(THQ)对通过食用水产品摄入锑引起的潜在健康风险进行了评估,并根据各类水产品对THQ的贡献为中国沿海城市居民提供了水产品消费建议。
中国典型沿海城市水产品中锑的分布特征及食用风险
Distribution characteristics and consumption risk of antimony in aquatic products in typically coastal cities of China
-
摘要: 锑具有毒性和潜在的致癌性,近年来受到越来越多的关注。水产品中锑的数据十分有限。本文分析了中国8个典型沿海城市(盐城市、杭州市、舟山市、宁波市、台州市、温州市、福州市、深圳市)124个市售水产品中锑的分布特征和食用风险。结果显示,水产品中锑的污染水平较低,含量范围为<0.13—37.8 ng·g−1湿重,平均含量5.70 ng·g−1湿重。锑含量在各个城市样品间无显著差异,但不同物种间存在明显差异。贝类和虾类中锑含量相对鱼类较高。鱼体中,鱼鳃的锑含量较高。水产品中锑含量受个体体征影响较小,仅贝类中锑含量与其脂肪含量存在负相关性。在一般、推荐、高的水产品食用水平(47.7—235 g·d−1)下,采样区居民每日食用水产品摄入锑的平均量约在0.002—0.053 μg·kg−1·d−1,目标危害系数均小于1,表明中国沿海城市居民通过食用水产品暴露锑的风险可忽略不计。Abstract: Antimony (Sb) has received increasing attention in recent years due to its toxicity and potential carcinogenicity. However, available data on Sb in aquatic products are extremely limited. This study analyzed the distribution characteristics and consumption risk of Sb in 124 marketed aquatic products from eight typically coastal cities of China (Yancheng City, Hangzhou City, Zhoushan City, Ningbo City, Taizhou City, Wenzhou City, Fuzhou City, and Shenzhen City). Results show that the Sb pollution in aquatic products was relatively low. The content of Sb in the samples ranged from <0.13 to 37.8 ng·g−1 wet weight (ww) with an average value of 5.70 ng·g−1 ww. Significant differences in Sb contents were not observed among the samples from different cities but existed among species. The contents of Sb in shellfish and shrimp were higher than those in fish. Fish gills contained higher Sb contents than other organs. The Sb content in aquatic products was less affected by individual characteristics, and only the Sb content in shellfish was negatively correlated with the lipid content. The average estimated daily intakes of Sb under the general, recommended and high aquatic products consumption scenarios (47.7—235 g·d−1) were in the range of 0.002—0.053 μg·kg−1·d−1 for the residents in the sampled sites. The values of correspondingly target hazard quotients were less than 1, indicating the negligible risk of Sb exposure for residents through aquatic products consumption in coastal cities in China.
-
Key words:
- antimony /
- aquatic products /
- distribution characteristics /
- consumption risk
-
图 3 一般、推荐、高的水产品食用水平下,中国八个沿海城市居民锑的(a)平均每日摄入评估量(EDI)、(b)目标危害系数(THQ)、及(c)鱼类、贝类和虾的THQ贡献比例
Figure 3. (a) Mean estimated daily intake (EDI), (b)target hazard quotient (THQ) of Sb from aquatic product consumption for residents in sampling cities in China under general, recommend and high intake consumption scenarios, and (b) relative contributions of fish, shellfish and shrimp to the THQ
表 1 中国市售鱼体不同部位中的锑含量
Table 1. Concentrations of Sb in different parts of the marketed aquatic products in China
品种
Species部位
Parts锑含量/(ng·g−1)
Sb concentrations品种
Species部位
Parts锑含量/(ng·g−1)
Sb concentrations罗非鱼 肌肉 ND. a 昂刺鱼 肌肉 ND. 肝脏 2.47 肝脏 ND. 鱼皮 ND. 鱼皮 ND. 鱼鳃 14.7 鱼鳃 35.3 珍珠斑 肌肉 ND. 鮰鱼 肌肉 1.60 肝脏 ND. 肝脏 ND. 鱼皮 ND. 鱼皮 ND. 鱼鳃 3.77 鱼鳃 14.3 桂鱼 肌肉 ND. 龙头鱼 肌肉 ND. 肝脏 1.84 肝脏 2.37 鱼皮 ND. 鲫鱼 肌肉 ND. 鱼鳃 25.9 鱼皮 ND. 鳊鱼 肌肉 ND. 鱼籽 ND. 肝脏 7.32 黄鱼 肌肉 ND. 鱼皮 ND. 鱼皮 ND. 鱼籽 ND. 鱼籽 ND. a ND (not detected) 表示未检出. -
[1] SCHNORR T M, STEENLAND K, THUN M J, et al. Mortality in a cohort of antimony smelter workers [J]. American Journal of Industrial Medicine, 1995, 27(5): 759-770. doi: 10.1002/ajim.4700270510 [2] KURODA K, ENDO G, OKAMOTO A, et al. Genotoxicity of beryllium, gallium and antimony in short-term assays [J]. Mutation Research Letters, 1991, 264(4): 163-170. doi: 10.1016/0165-7992(91)90072-C [3] U. S. Environmental Protection Agency (USEPA). Water-related environmental fate of 129 priority pollutants. Volume I: introduction and technical background, metals and inorganics, pesticides and PCBs[M]. Washington: United States Environmental Protection Agency, 1979. [4] The Council of the European Union (CEU). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption[EB/OL]. [2015-10-27].https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01998L0083-20151027&from=EN. [5] International Agency for Research on Cancer (IARC). Antimony trioxide and antimony trisulfide. IARC monographs on the evaluation of carcinogenic risks to humans[EB/OL]. [1989].https://monographs.iarc.who.int/agents-classified-by-the-iarc/. [6] FU Z Y, WU F C, MO C L, et al. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China [J]. Science of the Total Environment, 2016, 539: 97-104. doi: 10.1016/j.scitotenv.2015.08.146 [7] GUO W J, ZHANG Z Y, WANG H, et al. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area [J]. Journal of Environmental Management, 2021, 289: 112493. doi: 10.1016/j.jenvman.2021.112493 [8] OKKENHAUG G, GRASSHORN GEBHARDT K A, AMSTAETTER K, et al. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study [J]. Journal of Hazardous Materials, 2016, 307: 336-343. doi: 10.1016/j.jhazmat.2016.01.005 [9] HALDAR A K, SEN P, ROY S. Use of antimony in the treatment of leishmaniasis: Current status and future directions [J]. Molecular Biology International, 2011, 2011: 571242. [10] SHOTYK W, KRACHLER M. Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage [J]. Environmental Science & Technology, 2007, 41(5): 1560-1563. [11] TIAN H Z, ZHAO D, CHENG K, et al. Anthropogenic atmospheric emissions of antimony and its spatial distribution characteristics in China [J]. Environmental Science & Technology, 2012, 46(7): 3973-3980. [12] HE M C, WANG X Q, WU F C, et al. Antimony pollution in China [J]. Science of the Total Environment, 2012, 421/422: 41-50. doi: 10.1016/j.scitotenv.2011.06.009 [13] 朱静, 吴丰昌, 邓秋静, 等. 湖南锡矿山周边水体的环境特征 [J]. 环境科学学报, 2009, 29(3): 655-661. doi: 10.3321/j.issn:0253-2468.2009.03.029 ZHU J, WU F C, DENG Q J, et al. Environmental characteristics of water near the Xikuangshan antimony mine, Hunan Province [J]. Acta Scientiae Circumstantiae, 2009, 29(3): 655-661(in Chinese). doi: 10.3321/j.issn:0253-2468.2009.03.029
[14] OBIAKOR M O, TIGHE M, PEREG L, et al. Bioaccumulation, trophodynamics and ecotoxicity of antimony in environmental freshwater food webs [J]. Critical Reviews in Environmental Science and Technology, 2017, 47(22): 2208-2258. doi: 10.1080/10643389.2017.1419790 [15] 刘海韵, 王茂波, 刘正毅, 等. 烟台市部分海域常见水产品锑含量水平及污染评价 [J]. 预防医学论坛, 2012, 18(3): 217-218. LIU H Y, WANG M B, LIU Z Y, et al. Evaluation on the content and pollution of Sb in marine products from some sea areas in Yantai city [J]. Preventive Medicine Tribune, 2012, 18(3): 217-218(in Chinese).
[16] 谭湘武, 马金辉, 萧福元, 等. 湖南居民主要食品中锑的污染及暴露评估 [J]. 中国食品卫生杂志, 2016, 28(4): 528-532. TAN X W, MA J H, XIAO F Y, et al. Dietary exposure assessment of antimony in hunan [J]. Chinese Journal of Food Hygiene, 2016, 28(4): 528-532(in Chinese).
[17] WU F C, FU Z Y, LIU B J, et al. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area [J]. Science of the Total Environment, 2011, 409(18): 3344-3351. doi: 10.1016/j.scitotenv.2011.05.033 [18] FU Z Y, WU F C, MO C L, et al. Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China [J]. Microchemical Journal, 2011, 97(1): 12-19. doi: 10.1016/j.microc.2010.06.004 [19] FU Z Y, WU F C, AMARASIRIWARDENA D, et al. Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China [J]. Science of the Total Environment, 2010, 408(16): 3403-3410. doi: 10.1016/j.scitotenv.2010.04.031 [20] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 中华人民共和国国家标准: 食品安全国家标准 食品中脂肪的测定 GB 5009.6—2016[S]. 北京: 中国标准出版社, 2017. National Health Commission of the People's Republic of China, China Food and Drug Administration. . National Standard (Mandatory) of the People's Republic of China: GB 5009.6—2016[S]. Beijing: Standards Press of China, 2017(in Chinese).
[21] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 中华人民共和国国家标准: 食品安全国家标准 食品中锑的测定 GB 5009.137—2016[S]. 北京: 中国标准出版社, 2017. National Health Commission of the People's Republic of China, China Food and Drug Administration. . National Standard (Mandatory) of the People's Republic of China: GB 5009.137—2016[S]. Beijing: Standards Press of China, 2017(in Chinese).
[22] 国家统计局. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020. National Bureau of Statistics of China. China Statistical Yearbook 2020[M]. Beijing: China Statistics Press, 2020.
[23] 中国营养学会. 中国居民膳食指南: 2016 科普版[M]. 北京: 人民卫生出版社, 2016. Chinese Nutrition Society. The Chinese Dietary Guidelines 2016 [M]. Beijing: People's Medical Publishing House, 2016(in Chinese).
[24] GULKOWSKA A, JIANG Q T, SO M K, et al. Persistent perfluorinated acids in seafood collected from two cities of China [J]. Environmental Science & Technology, 2006, 40(12): 3736-3741. [25] U. S. Environmental Protection Agency (USEPA). Antimony; CASRN 7440-36-0[EB/OL]. [1987-1-31].https://iris.epa.gov/ChemicalLanding/&substance_nmbr=6. [26] 香港特别行政区政府食品安全中心. 食物掺杂(金属杂质含量)规例[S].https://www.cfs.gov.hk/tc_chi/whatsnew/whatsnew_fstr/whatsnew_fstr_PA_Food_Adulteration_Metallic_Contamination.html#1. Hong Kong Special Administrative Region Centre for Food Safety. Guideline Food Adulteration-Metallic Contamination[S].https://www.cfs.gov.hk/tc_chi/whatsnew/whatsnew_fstr/whatsnew_fstr_PA_Food_Adulteration_Metallic_Contamination.html#1.
[27] UJAH I I, DO O, VE O. Determination of heavy metals in fish tissues, water and sediment from the onitsha segment of the river Niger anambra state Nigeria [J]. Journal of Environmental & Analytical Toxicology, 2017, 7(5): 1000507. doi: 10.4172/2161-0525.1000507 [28] DOVICK M A, KULP T R, ARKLE R S, et al. Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage [J]. Environmental Chemistry, 2016, 13(1): 149. doi: 10.1071/EN15046 [29] LEBEPE J, MARR S, LUUS-POWELL W. Metal contamination and human health risk associated with the consumption of Labeo rosae from the Olifants River system, South Africa [J]. African Journal of Aquatic Science, 2016, 41(2): 161-170. doi: 10.2989/16085914.2016.1138100 [30] CHÉTELAT J, COTT P A, ROSABAL M, et al. Arsenic bioaccumulation in subarctic fishes of a mine-impacted bay on Great Slave Lake, Northwest Territories, Canada [J]. PLoS One, 2019, 14(8): e0221361. doi: 10.1371/journal.pone.0221361 [31] ZHANG H Y, GUO C Q, FENG H R, et al. Total mercury, methylmercury, and selenium in aquatic products from coastal cities of China: Distribution characteristics and risk assessment [J]. Science of the Total Environment, 2020, 739: 140034. doi: 10.1016/j.scitotenv.2020.140034 [32] OKKENHAUG G, ZHU Y G, HE J W, et al. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: Differences in mechanisms controlling soil sequestration and uptake in rice [J]. Environmental Science & Technology, 2012, 46(6): 3155-3162. [33] ZHANG W, WANG W X. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes [J]. Science of the Total Environment, 2018, 616/617: 594-601. doi: 10.1016/j.scitotenv.2017.10.292 [34] ZHANG W, HUANG L M, WANG W X. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua [J]. Aquatic Toxicology, 2011, 105(3/4): 582-588. [35] AMLUND H, INGEBRIGTSEN K, HYLLAND K, et al. Disposition of arsenobetaine in two marine fish species following administration of a single oral dose of [14C]arsenobetaine [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 143(2): 171-178. [36] CLEARWATER S J, FARAG A M, MEYER J S. Bioavailability and toxicity of dietborne copper and zinc to fish [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2002, 132(3): 269-313.