-
剩余污泥(waste activated sludge,WAS)是在城市污水处理过程中形成的主要副产物。据报道,2019年我国剩余污泥(80%含水率)的产生量超过6 000×104 t[1-2]。剩余污泥中通常含有有毒有害有机物、重金属、病原菌和寄生虫卵等,具有较大的二次污染风险[3]。目前,污泥的处理以堆埋、焚烧、农业堆肥和自然干化为主,所需费用较高(占污水处理厂总运行费用的50%~60%) [4-5]。厌氧发酵是一种重要的环境生物技术,能够利用剩余污泥生产甲烷和短链脂肪酸(VFA)等多种化学品[3, 6-7]。而且,短链脂肪酸可以作为污水处理厂反硝化的碳源,从而进一步降低污水处理厂的运行成本[8]。因此,将混菌厌氧发酵技术应用于市政污泥处置,是实现其资源化的重要手段。
市政污泥的主要有机成分复杂,包括细胞、胞外聚合物(EPS)和少量纤维素等[9-10],导致了厌氧发酵技术面临生物水解速率慢等诸多问题。例如,厌氧反应器需要较长的水力停留时间(20~30 d),但其有机物去除率仍然不高(30%~50%)[9]。剩余污泥中的EPS组分占污泥有机质干重的50%~80%,具有维持微生物聚集体结构和保持其功能完整性的作用[10]。因此,一般认为EPS组分是导致市政污泥水解困难的主要因素。目前,主要采用预处理过程(超声波处理、水热处理、酸碱处理和高级氧化处理等)来破坏EPS和细胞壁的结构,以降低污泥生物处置的阻力和提高污泥中有机物的可利用性[9, 11]。例如,ZHANG等[12]发现,通过外源投加钢渣和碱处理,污泥中有机物水解程度随pH的增加而增加,20 d后可溶性有机碳质量浓度比空白组增加了1.0 g·L−1。ARENAS等[13]报道,碱性条件下电氧化预处理后可溶性有机物增量最大,总有机碳和可溶性COD(SCOD)的质量浓度分别为2.8和7.8 g·L−1,而空白组仅为0.4和1.1 g·L−1。然而,上述预处理方法选择性不高,并且增加了装置的额外运行成本。
EPS中的酸性多糖(藻酸盐和半乳糖醛酸等)能够与水中阳离子形成凝胶类物质[14-17],可维持污泥结构并阻碍微生物的水解作用。其中,藻酸盐是由β-D-甘露糖醛酸和α-L-古洛糖醛酸按(1→4)糖苷键连接而成。LIN等[18]通过鉴定发现,污泥絮体中藻酸盐类似物的质量分数达到7%。然而,目前有关藻酸盐降解及其对污泥发酵影响的报道仍然较少。因此,本研究首先构建以藻酸盐为底物的恒化器,培养稳定的藻酸盐降解菌群(alginate-degrading consortium,ADC),并通过高通量测序分析菌群结构;其次,利用EPS中存在的典型物质(聚半乳糖醛酸,酪蛋白,纤维素和葡聚糖)作为底物,解析ADC促进EPS水解酸化的功能;最后,将ADC应用到实际剩余污泥体系中,解析3种典型pH(5.0,6.0和7.0)条件下ADC对污泥水解和酸化效率的促进能力,以期为强化污泥产酸提供新的思路。
藻酸盐降解菌群强化剩余污泥厌氧发酵产酸
Enhanced acidogenesis of waste activated sludge fermentation by an alginate-degrading consortium
-
摘要: 厌氧发酵是实现剩余污泥(WAS)资源化的重要技术,而其中的水解阶段是剩余污泥(WAS)厌氧资源化的限速步骤。WAS中的酸性多糖(藻酸盐和半乳糖醛酸等)能够与水中阳离子形成凝胶类物质,从而维持污泥结构并阻碍微生物的水解。利用藻酸盐为底物,经过恒化器培养得到了高效的藻酸盐降解菌群(ADC)。该菌群对WAS的典型有机成分(聚半乳糖醛酸、葡聚糖和酪蛋白等)均具有较好的厌氧降解能力,其代谢产物以乙酸等短链脂肪酸为主。而且,ADC菌群对WAS的水解和酸化过程均存在促进作用;在pH为7.0、6.0、5.0的条件下,水解效率分别提升了25.4%、13.2%和12.1%,酸化效率则分别提升了138.5%、184.0%和103.4%。Illumina Miseq高通量测序结果表明,该菌群以拟杆菌属(Bacteroides,37.3%)为主。本研究结果可为剩余污泥厌氧资源化提供参考。Abstract: Anaerobic fermentation is an important biotechnology to convert the waste activated sludge to valuable biochemicals. But, hydrolysis is known as the rate-limiting step of WAS fermentation. The uronic acids (such as alginate and polygalacturonic acid) in WAS can form hydrogels with cationic ions in wastewater, which maintain sludge structure and retard the microbial hydrolysis. An alginate-degrading consortium (ADC) with high activity was enriched in a mesophilic chemostat using alginate as the substrate. The results showed that the typical organic components of WAS, including polygalacturonic acid, dextran, and casein, could be utilized by the enriched ADC, and the metabolites were volatile fatty acids, like acetate. Moreover, hydrolysis and acidification of WAS were also enhanced by dosing ADC, of which, the hydrolytic efficiency at pH 7.0, 6.0, and 5.0 increased by 25.4%, 13.2%, and 12.1%, respectively, and the acidification efficiency increased by 138.5%, 184.0%, and 103.4%, respectively. The genus Bacteroides (37.3%) was identified as the dominant bacteria in ADC by an Illumina Miseq high-throughput sequencing. The results of this study can provide references for anaerobic resource utilization of WAS.
-
表 1 剩余污泥基本特性
Table 1. Basic characteristics of WAS
pH TSS/
(g·L−1)VSS/
(g·L−1)TCOD/
(g·L−1)SCOD/
(g·L−1)PS/
(mg·L−1)PN/
(mg·L−1)7.2 ± 0.1 21.7 ± 2.2 10.2 ± 0.1 10.4 ± 1.6 0.10 ± 0.01 2.7 ± 0.1 237.3 ± 4.9 -
[1] 卢怡清, 许颖, 董滨, 等. 去除城市生活污泥中有机络合态金属强化其厌氧生物制气[J]. 环境科学, 2018, 39(1): 284-291. [2] 施正华, 李秀芬, 宋小莉, 等. 采用等电点沉淀法回收市政污泥水解液中的蛋白质[J]. 环境工程学报, 2016, 10(10): 5919-5923. doi: 10.12030/j.cjee.201603072 [3] 董滨, 高君, 陈思思, 等. 我国剩余污泥厌氧消化的主要影响因素及强化[J]. 环境科学, 2020, 41(7): 3384-3391. [4] BAELE D J, KARPE A V, MCLEOD J D, et al. An ‘omics’ approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge[J]. Water Research, 2016, 88: 346-357. [5] SMITH K, LIU S, LIU Y, et al. Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change[J]. Renewable & Sustainable Energy Reviews. 2018, 91: 41-58. [6] LATIF M A, MEHTA C M, BATSTONE D J. Influence of low pH on continuous anaerobic digestion of waste activated sludge[J]. Water Research, 2017, 113: 42-49. doi: 10.1016/j.watres.2017.02.002 [7] 王凯军, 王婧瑶, 左剑恶, 等. 我国餐厨垃圾厌氧处理技术现状分析及建议[J]. 环境工程学报, 2020, 14(7): 1735-1742. doi: 10.12030/j.cjee.201911085 [8] DAI K, ZHANG W, ZENG R J, et al. Production of chemicals in thermophilic mixed culture fermentation: mechanism and strategy[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(1): 1-30. doi: 10.1080/10643389.2019.1616487 [9] ZHEN G, LU X, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 559-577. doi: 10.1016/j.rser.2016.11.187 [10] 林治岐, 张信, 邵尉, 等. 废水生物处理过程中微生物胞外聚合物与污染物的分子间相互作用[J]. 中国科学:化学, 2018, 48(9): 1102-1108. [11] XIE G J, LiU B F, WANG Q, et al. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production[J]. Water Research, 2016, 93: 56-64. doi: 10.1016/j.watres.2016.02.012 [12] ZHANG Y, ZHANG C, ZHANG X, et al. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition[J]. Journal of Environmental Sciences, 2016, 48: 200-208. doi: 10.1016/j.jes.2016.02.010 [13] ARENAS C B, GONZALEZ R, GONZALEZ J, et al. Assessment of electrooxidation as pre- and post-treatments for improving anaerobic digestion and stabilisation of waste activated sludge[J]. Journal of Environmental Management, 2021, 288: 112365. doi: 10.1016/j.jenvman.2021.112365 [14] LIN Y M, DE KREUK M, VAN LOOSDRECHT M C, et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant[J]. Water Research, 2010, 44(11): 3355-3364. doi: 10.1016/j.watres.2012.09.017 [15] FELZ S, KLEIKAMP H, ZLOPASA J, et al. Impact of metal ions on structural EPS hydrogels from aerobic granular sludge[J]. Biofilm, 2020, 2: 100011. doi: 10.1016/j.bioflm.2019.100011 [16] 曹达啟, 王振, 郝晓地, 等. 藻酸盐污水处理合成研究现状与应用前景[J]. 中国给水排水, 2017, 33(4): 1-6. [17] 李佳琦, 彭党聪, 董征, 马保卫. 藻酸盐对污泥性能的影响及提取方法的研究[J]. 中国给水排水, 2018, 34(11): 15-19. [18] LIN Y M, SHARMA P K, VAN LOOSDRECHT M C. The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge[J]. Water Research, 2013, 47(1): 57-65. [19] ZHANG F, ZHANG W, QIAN D K, et al. Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens[J]. Water Research, 2019, 163: 114892. [20] LI J, HAO X, VAN LOOSDRECHT M C M, et al. Effect of humic acids on batch anaerobic digestion of excess sludge[J]. Water Research, 2019, 155: 431-443. doi: 10.1016/j.watres.2018.12.009 [21] FELZ S, VERMEULEN P, VAN LOOSDRECHT M C M, et al. Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS)[J]. Water Research, 2019, 157: 201-208. doi: 10.1016/j.watres.2019.03.068 [22] GILCREAS F W. Standard methods for the examination of water and waste water[J]. American Journal of Public Health and the Nation's Health, 1966, 56(3): 387-388. doi: 10.2105/AJPH.56.3.387 [23] ZHANG F, QIAN D K, GENG Z Q, et al. Enhanced methane recovery from waste-activated sludge by alginate-degrading consortia: The overlooked role of alginate in extracellular polymeric substances[J]. Environmental Science & Technology Letters, 2021, 8(1): 86-91. [24] ZHANG F, DING J, ZHANG Y, et al. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor[J]. Water Research, 2013, 47(16): 6122-6129. doi: 10.1016/j.watres.2013.07.033 [25] DOGAN I, SANIN F D. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method[J]. Water Research, 2009, 43(8): 2139-2148. doi: 10.1016/j.watres.2009.02.023 [26] FANG W, ZHANG P, ZHANG G, et al. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization[J]. Bioresource Technology, 2014, 168: 167-172. doi: 10.1016/j.biortech.2014.03.050 [27] XIN X, HE J, FENG J, LI L, et al. Solubilization augmentation and bacterial community responses triggered by co-digestion of a hydrolytic enzymes blend for facilitating waste activated sludge hydrolysis process[J]. Chemical Engineering Journal, 2016, 284(15): 979-988. [28] TEO CW, WONG PCY. Enzyme augmentation of an anaerobic membrane bioreactor treating sewage containing organic particulates[J]. Water Research, 2014, 48: 335-344. doi: 10.1016/j.watres.2013.09.041 [29] LIN Y, DE K M, VAN LOOSDRECHT M C M, et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant[J]. Water Research, 2010, 44(11): 3355-3364.