-
利用人工湿地进行污水处理的技术目前已经得到广泛应用,但人工湿地运行过程中频繁出现的堵塞问题,已严重影响到人工湿地的持久和高效运行。而目前对人工湿地发生堵塞的判断及堵塞程度仅能进行定性评价,无法对堵塞区域进行精确定位。因此,在治理堵塞的时候没有具体针对性,在治理的时候只能针对于人工湿地整体进行,时间成本高、经济效果差。因此,针对人工湿地堵塞区域的定位探测是亟待解决的问题。
目前在实际针对人工湿地堵塞问题上,较为常用的有生物电池法[1]、探地雷达法[2-5] 、电阻率法[6-8]、渗透系数法[9]、示踪剂法[10-11]、分析堵塞物质性质[12]等方法。对于示踪剂法,投入的示踪剂会被湿地植物和其他生物吸收[13-14],且单一的示踪实验结果可能不具有代表性[4]。通过水力传导率法测得的值仅表示轴流方向上横截面内的平均水力传导率,并不能表示该横截面内某特定垂直和横向位置处的堵塞严重程度[15],实际操作过程中一般将水力传导率法和示踪剂法相结合。AIELLO等[16]分析了水平潜流人工湿地的水力特性,通过现场测量砾石层的水力传导率、量化累积堵塞物质,最后通过示踪实验可视化流动路径来研究堵塞现象。对于利用地球物理方法探测人工湿地堵塞问题方面,目前的文献主要还是集中在电阻率法和探地雷达方法,探地雷达精度较高、速度快,适合中、小尺度监测,可得到湿地内部能量衰减图像[3-4]。特别是MATOS等[5]使用探地雷达探测了种植香蒲与未种植植被的2个全尺寸水平潜流人工湿地的堵塞特性,结果表明,探地雷达可以探测出堵塞区域,但地质雷达方法也存在纵向尺度定位不精确的问题,并且由于人工湿地一般纵向尺度较小和水饱和状态,存在基底和边界反射较强、堵塞区域反射不够清晰的问题,因而探测精度不够理想。电阻率法对湿地内部造成的干扰较小,可以快速、无损、有效地反映湿地堵塞状况,在湿地堵塞物定性定量方面具有良好的发展前景[7-8]。但目前使用的电阻率探测方法多采用的是地面电阻率法,在纵向尺度探测效果不佳,并且干扰因素过多。
基于上述情况,本研究以较为广泛的潜流人工湿地为研究对象,根据潜流人工湿地结构和堵塞区域的特点,基于电阻率法提出了利用改进的高密度电阻率法来探测和定位人工湿地堵塞区域,并使用Visual MODFLOW(VMOD)建立了堵塞模型,主要从人工湿地堵塞探测的电阻率方法讨论、电阻率法的水槽模拟实验和流场模拟几个方面,探讨了基于电阻率法探测和定位人工湿地堵塞区域的可行性。
-
电阻率法测井是通过测量钻井剖面上各种岩石电阻率来区分岩石性质的方法,主要应用在石油和矿产勘探中。常规电阻率测井方法采用的是点测方法,效率比较低,但由于其方法简单,使用广泛,到目前为止,在划分钻井地质剖面和判断岩性等工作中仍然起着一定的作用[17]。如图1所示,在进行电阻率测井时,设有供电线路AB和测量线路MN。通过供电线路上的电极A、B供给电流,在井内建立电场,然后测量在测量回路上电极M、N的电位差
ΔUMN ,所测ΔUMN 大小取决于周围介质电阻率。ΔUMN 的变化则反映了沿井孔剖面上介质电阻率的变化。最后按式(1)计算电阻率,其中的装置系数K由式(2)计算(均匀各向同性介质全空间电阻率),并最终取平均值作为最终的电阻率。式中:
ρ 为岩土层视电阻率,Ω·m;ΔUMN 为电位差,mV;I为供电电流,mA;DAM、DAN、DBM、DBN分别为供电电极A、B与测量电极M、N之间的距离,m。 -
为了适应人工湿地的特殊情况,并提高数据采集效率,改进了电阻率测井方法,设计了高密度电阻率测井方法。高密度测井方法采用高密度电极探杆(图2)代替普通电阻率测井的电极系,测量方式类似于地面高密度电法的测量方式,只是把高密度电极通过电阻率探杆垂直布设在人工湿地床体中。
测量装置也与常规的测量方法不一样,常规电阻率测井一般使用三极装置。但人工湿地堵塞探测不适合使用三极装置,因为三极装置异常相对比较复杂,而且大多小型人工湿地由于尺寸原因,并不能满足布设“无穷远极”的条件,使测量数据容易产生较大误差。因此,在人工湿地堵塞探测中,测量装置采用对称四极装置(施伦贝尔装置),该装置不需要布设“无穷远极”,并且视电阻率数据异常简单,对于堵塞区域反映直接,易于解释。
-
对于单孔测井视电阻率数据而言,视电阻率数据反映的是井孔周围一定范围内的介质电阻率,在极距较小(由于人工湿地纵向尺寸较小,所以电阻率测量时使用的电极距较小)、介质分层比较单一的情况下,电阻率测量方法类似于电法勘探中取得岩土体电阻率数据的野外小四极测量方法(露头法)[18]。经实测,其测量得到的视电阻率近似等于介质的真电阻率。而在视电阻率的计算方面,采用全空间的视电阻率计算公式计算得到的视电阻率,除了边界附近存在较小的误差外,其他区域误差相对较小。因此,可以采用全空间的视电阻率计算公式计算视电阻率。
经测量,对于水饱和人工湿地来说,单一填料人工湿地可认为只有一层均匀介质,当不存在堵塞区域时,所测视电阻率近似等于介质的真电阻率;当存在堵塞区域时,所测视电阻率也基本接近堵塞体的电阻率。另外,当人工湿地为多层粒径不同的填料时,由于饱和填料的电阻率主要受孔隙率和所含溶液控制,电阻率差异很小,故可近似认为是电性均匀的介质[19]。但是,这种电阻率近似替代的方案要求在选择测量装置的时候需选择对称四极装置(施伦贝尔装置),三极装置无法实现。因此,对于用改进的高密度电阻率测井方法,可以直接利用测量得到的视电阻率数据近似代替电阻率数据进行分析,即使不用进行数据的反演工作也可取得较好的效果。
-
1)改进的单孔高密度测井法探测堵塞实验。实验采用水槽模拟的方式进行,水槽的长、宽、高分别为146、119和102 cm,仪器使用WDJD-2高密度电阻率测量系统,自制井中高密度电极杆(图2)[20],高阻堵塞体为石英砂。测量装置使用对称四极装置(施伦贝尔装置),每根高密度电极杆实接电极数位20,电极间距5 cm。高阻体直径约15 cm,形状为近似球体。以水槽下方角点设定为坐标原点,高阻体中心坐标为: x=70 cm,y=60 cm,z=62 cm。测量和测点布线为了避开水槽边界的影响,在水槽中间布设了6条测线,测线间距10 cm,其中,中间的3条测线位置分别为测线1(y=55 cm)、测线2(y=65 cm)、测线3(y=75 cm),每条测线按间距10 cm布置了6个测点(x=45~95 cm)。
2)VMOD模拟。地下水模拟工具较多,VMOD因其开源、具一定物理意义和参数化过程相对明晰,在世界范围内得到广泛应用。该模型是在由加拿大Waterloo水文地质公司在美国地质调查局(USGS)研发的MODFLOW[21]的基础上进行可视化集成开发,被水文地质学界认可的三维地下水流和溶质运移模拟的标准可视化专业软件系统[22-23]。
VMOD用三维有限差分法概化地下水系统,由水量平衡原理通过连续性方程(式(3))进行地下水系统动态求解[24]。
式中:
Kx、Ky、Kz 分别是沿x、y、z方向的渗透系数,m·d−1;h 为地下水头,m;W 为均衡期内地表地下沿垂向的交互通量,表示地下水系统的源、汇项构成,mm·a−1;Ss 表示多孔介质的储水系数(潜水含水层给水度μ ,m−1;t 表示时间,d。由于人工湿地堵塞区域和未堵塞区域的渗透系数不同,根据这个特点可以使用VMOD进行堵塞模拟。此次使用VMOD进行的流场模拟,模型的长、宽、高分别为146 、119和102 cm(图3),与水槽模拟实验相同。各个模拟参数由之前研究中的实验数据所得[25],主堆料场采用单层堆料,渗透系数为65
m⋅d−1 ,布水区和集水区渗透系数为500m⋅d−1 ,进水区设定为补给边界,补给量为2.3m⋅d−1 ,出水端设定为定水头边界(0.9 m);两侧概化为隔水边界,系统主体填料孔隙率均设置为0. 4,总孔隙率为0.45。当基质堵塞后,由基质的渗透系数会下降20%~40%[26],堵塞区的渗透系数设置为26m⋅d−1 。 -
此次使用VMOD进行的流场模拟(图4),人工湿地模型使用的为20目石英砂岩,渗透系数为
65m⋅d−1 ,当堵塞后由于在泥沙和生物膜的共同作用下堵塞,渗透系数会下降20%~40%,通过不同渗透系数来实现模拟堵塞。由图4可以看出,等水位线在中间区域发生变化,两侧的等水位线向中间区域靠拢。这是由于此处渗透系数较小导致发生该变化。从而可以推断是由堵塞导致的渗透系数的变化。由流线也可以看出,流线在中间区域发生变化,两边的流线绕过中间的区域,且流线的密度也变得更加稀疏,也可以推断该区域的渗透系数较小,表明发生堵塞。 -
通过改进的高密度测井方法,根据设计的测点和电极间距,测量整个设计测量范围内的三维数据。每个平面测点布设的高密度电极系统测量了3组不同供电极距的视电阻率数据,通过分别提取所有测点的3组不同供电极距的数据,用这3组数据分别组成各条测线的二维断面数据并绘制二维断面视电阻率断面等值线图,根据视电阻率断面等值线图的特征可以对堵塞区域进行分析定位。
图5为供电极距DAB/2=7.5 cm (装置参数为DAM=DMN=DNB=5 cm,即最小供电极距状态下)时的视电阻率断面等值线图。沿x轴有效测量深度为7.5~87.5 cm。由图5(a)和图5(b)中可以看出,在高阻体周围的测线1和测线2的断面等值线图上,存在一个高阻封闭区域,该区域与高阻体的位置比较吻合;通过和人工湿地堵塞模拟流线图(图4)对比,与流场模拟得到的堵塞区也较吻合。另外,在测线1和测线2上,也只有靠近高阻体的x=65 cm和x=75 cm处的4个点视电阻率数值较大,其他测点都是背景值,没有受到高阻体的影响,其他测线由于没有靠近高阻体,视电阻率数据都比较平稳,和流场模拟的一样,流线平稳,都是背景值。而表层和底层电阻率偏高是由于边界处的测量不能满足全空间状态所致,这个还需要考虑半空间状态的影响,所以边界附近的视电阻率计算方法还需要进一步的改进。
图6为供电极距DAB/2=12.5 cm(装置参数为DAM=2DMN=DNB=10 cm)时的视电阻率断面等值线图。沿x轴有效测量深度为12.5~82.5 cm,相对于供电极距DAB/2=7.5 cm的有效范围有所缩小。由图6(a)和图6(b)中可以看出,在高阻体周围的测线1和测线2的断面等值线图上,存在一个高阻封闭区域,该区域与高阻体的位置比较吻合,但与供电极距DAB/2=7.5 cm的测线相比,该区域与高阻体的位置在纵向上吻合度稍差。这主要是由于供电极距的增大,堵塞体外围测点的视电阻率平均效应有所增强。
图7为供电极距DAB/2=22.5 cm(装置参数为DAM=4DMN=DNB=20 cm)时的视电阻率断面等值线图。沿x轴有效测量深度为22.5~72.5 cm,相对于供电极距DAB/2=12.5 cm的有效范围进一步缩小。由图7(a)和图7(b)中可以看出,在高阻体周围的测线1和测线2的断面等值线图上,存在的高阻封闭区域,与流场模拟得到的堵塞区吻合,由于供电极距的进一步增大造成综合效应增强,高阻区域与高阻堵塞体吻合度和分辨度进一步减弱,这主要是由于表层和底层对视电阻率测量和计算结果影响进一步增强。
综合上述3个供电极距的视电阻率断面等值线图的分析结果,可以得到3点结论。1)只要电阻率差异存在并且差异够大,改进的高密度电阻率测井方法能够较好的探测和定位人工湿地高阻堵塞区域,该方法是有效的。2)改进的高密度测井方法采用的数据供电极距不宜过大,如果供电极距过大,则不但有效测量范围会减小,而且异常效果由于受边界和电极距范围内介质综合效应的影响而变差。根据实验结果,建议高密度电阻率探杆的电极间距不大于5 cm,供电极距DAB/2不超过12.5 cm。3)该实验的视电阻率计算方法都是基于全空间条件进行,后续还需进一步研究边界处全空间条件和半空间条件的转换问题,在视电阻率的计算上需要研究全空间和半空间的混合算法,以期消除边界处的计算误差,增强边界处的分辨率。
另外,对于人工湿地工程实例来说,水饱和人工湿地未堵塞区域和堵塞区域的电阻率差异并不是很大,并不能保证有较好的探测效果。为此,我们提出了一种强化电阻率差异的人工湿地堵塞探测方法[27],通过在人工湿地中加入电解质溶液的方法来加大人工湿地未堵塞区域和堵塞区域的电阻率差异,可以提升人工湿地堵塞区域探测精度和探测效果。
-
本次设计的单孔高密度测井法探测实验测量区域是三维区域,可以根据数据绘制三维立体图,以更好的对高阻异常体进行空间定位和有效展示。图8为供电极距DAB/2=7.5 cm时的视电阻率三维组合图件,可以更好的展示高阻体的空间位置和形态,更直观和精确的定位堵塞区域。
-
1)只要电阻率差异存在并且差异够大,改进的高密度电阻率测井方法能够较好地探测和定位人工湿地高阻堵塞区域。
2)改进的高密度测井方法采用的数据供电极距不宜过大,如果供电极距过大的话,不但有效测量范围会减小,而且异常效果由于受边界和电极距范围内介质综合效应的影响而变差。根据实验结果,建议高密度电阻率探杆的电极间距不大于5 cm,供电极距DAB/2不超过12.5 cm。
3)对于视电阻率的计算方面,采用全空间的视电阻率计算公式计算得到的视电阻率,除了边界附近存在较小的误差外,其他区域误差相对较小。因此,在方法探索阶段,可以采用全空间的视电阻率计算公式计算视电阻率。但后续还需进一步研究边界处全空间条件和半空间条件的转换问题,在视电阻率的计算上需要研究全空间和半空间的混合算法,以期消除边界处的计算误差,增强边界处的分辨率。
4)对于人工湿地堵塞探测的数据处理来说,根据探测数据绘制三维立体图,可以更好的展示高阻堵塞体的空间位置和形态,更精确的实现堵塞区域的定位。
5)对于人工湿地工程实例来说,人工湿地未堵塞区域和堵塞区域的电阻率差异并不是很大,并不能保证有较好的探测效果,可以通过在人工湿地中加入电解质溶液的方法来加大人工湿地未堵塞区域和堵塞区域的电阻率差异,提升人工湿地堵塞区域探测精度和探测效果。
基于电阻率法的人工湿地堵塞区域探测方法
Detection method of constructed wetland clogging based on resistivity method
-
摘要: 人工湿地污水处理技术已经得到广泛的应用,但目前对人工湿地堵塞问题,无法对堵塞区域进行精确定位。为了解决这个问题,根据潜流人工湿地结构和堵塞区域的特点,建立了长、宽、高分别为146、119和102 cm水槽物理实验模型,利用改进的高密度电阻率测井法开展了探测和定位人工湿地堵塞区域的实验研究,并结合人工湿地堵塞模型的Visual MODFLOW(VMOD)流场模拟特征,探讨了基于电阻率法探测和定位人工湿地堵塞区域的可行性。结果表明,改进的高密度电阻率测井法在电阻率探杆的电极间距不大于5 cm,供电极距DAB/2不超过12.5 cm的情况下,通过绘制电阻率数据的二维和三维视电阻率等值线图,能够更好地定位高阻体的空间位置和形态。可见,利用改进的高密度电阻率测井方法可以探测和定位人工湿地高阻堵塞区域,实现堵塞区域的精确定位。
-
关键词:
- 潜流人工湿地 /
- 堵塞 /
- 改进的高密度电阻率测井法 /
- VMOD /
- 堵塞定位
Abstract: Constructed wetland for sewage treatment has been widely used, but at present, the blocked area in constructed wetland can not be accurately located. To solve the problem, according to the characteristics of subsurface flow constructed wetland structure and blocked area, a physical experimental model of a flume with length, width and height of 146, 119 and 102 cm, respectively, was established. Experimental research on detecting and locating the blocked area of constructed wetland was carried out by using an improved high-density resistivity logging method. Combined with Visual MODFLOW (VMOD) flow field simulation characteristics of the constructed wetland blocking model, the feasibility of detecting and locating the blocked area of the constructed wetland based on the resistivity method was discussed. The experimental results show that the improved high-density resistivity logging method could well locate the spatial position and shape of high resistivity body by drawing two-dimensional and three-dimensional apparent resistivity contours of resistivity data under the condition that the electrode spacing of the resistivity probe rod and the power supply distance of DAB/2 were less than 5 cm and 12.5 cm, respectively. Therefore, the improved high-density resistivity logging method can be used to detect and locate the high resistance blocked area of constructed wetland, which can realize the accurate location of the blocked area. -
氯苯(chlorobenzene,CB)是最简单的氯芳烃,自19世纪合成以来,即大量用于生产DDT,至今,氯苯依然是年产量超过100万磅的高产量化学品[1]. 环境中的氯苯大多来源于人类的工业活动,据报道,美国氯苯类化合物的环境排放量可达到每年980吨[2]. 氯苯在自然界中的降解速度较慢,具有很强的生物积累性和生物毒性,有研究显示氯苯除了对中枢神经系统和呼吸系统有影响之外,还可造成肾脏和肝脏的损伤[3].
目前已经有很多研究者关注到氯苯的无害化处理问题,传统的氯苯处理方法主要包括吸附法、生物降解法和化学氧化法. 这些方法大多具有二次污染、效率低、选择性差等特点. 基于单过硫酸盐化合物(PMS)的高级氧化技术因其高氧化效率在降解氯代有机污染物的过程中表现出了优异的性能. 许多研究结果表明,钴氧化物(CoO、CoO2、Co2O3、CoO(OH)、Co3O4)具有活化PMS的良好能力,但单钴氧化物的比表面积非常低,以团聚,导致活性位有限,显著抑制其催化活性[4]. 有研究表明通过将钴氧化物分散在多孔材料的孔道中,可以将活性金属限域在特定孔结构中,从而使活性金属实现高度分散,这种方法可以极大提高钴基材料的催化活性[5]. SBA-15具有较高的比表面积、稳定的结构和有序的孔径,是一种良好的催化剂载体. 由于金属盐与模板剂之间的强相互作用,通过固相研磨法将金属盐与未去除模板的SBA-15充分混合之后,经过焙烧可以得到高金属分散度的催化剂. 因此,在本研究中,采用固相研磨法合成催化剂CoOx@SBA-15,并对其活化PMS降解氯苯的性能进行测试,并进一步探究反应中的各种因素对反应活性的影响机制及反应体系的主要活性物种.
1. 材料与方法(Materials and methods)
1.1 试剂与药品
试剂:P123(Sigma-Aldrich,99%),正硅酸四乙酯(国药,AR),六水合硝酸钴(阿拉丁,99%),氯苯(麦克林,AR),单过硫酸盐化合物(Sigma-Aldrich,99.9%),2,2,6,6-四甲基哌啶(Sigma-Aldrich,AR),5,5-二甲基-1-吡咯啉-N-氧化物(百灵威,AR),甲醇(TEDIA,HPLC),盐酸(国药,AR),实验中所用水均为去离子水.
1.2 催化剂的制备与表征
以SBA-15为载体利用固相研磨法制备限域型CoOx@SBA-15[6]:按文献报道方法,以正硅酸四乙酯(TEOS)为硅源,三嵌段共聚化合物P123为模板剂合成介孔氧化硅SBA-15[7];在室温条件下将一定量的Co(NO3)2·6H2O与1 g未去除模板剂的SBA-15在研钵中混合并研磨1 h得到CoOx@SBA-15;将所得的混合物置于马弗炉中,以2 °C·min−1 的升温速率升温至500 °C,并保持5 h,焙烧所得产物标记为CoOx(X)@SBA-15,其中X是钴的负载量(以质量分数计).
采用传统浸渍法制备CoOx/SBA-15和CoOx/SiO2催化剂. 首先将SBA-15置于马弗炉中焙烧,以1 °C·min−1的升温速率升温到550 °C,并保持6 h,目的是碳化并去除SBA-15中的模板剂;将购得的SiO2置于马弗炉中焙烧,以2 °C·min−1的升温速率升温到300 °C,并保持4 h,目的是去除其中可能存在的杂质;随后将一定量的Co(NO3)2溶液与1 g载体在室温条件下混合搅拌2 h以上,并在90 °C水浴中蒸干,在100 °C烘箱中干燥过夜,干燥后所得材料标记为CoOx(X)/Y,其中X是负载量(以质量分数计),Y是载体.
催化剂透射电镜分析(TEM)在日本JEOL公司,JEM-200CX型透射电子显微镜上检测;X射线衍射分析(XRD):采用日本Rigaku公司D/max-rA型X射线衍射仪,Cu 靶(Kα1,λ=0.154056 nm,扫描速度6(°)· min−1),操作条件:40 kV、30 mA,扫描范围:10°—80°;催化剂中Co含量采用原子吸收光谱(AAS,美国Thermo公司)测定;催化剂比表面积、孔径孔容采用比表面积测定仪(ASAP 2020,美国Micromeritics公司)分析;催化剂的在不同温度的还原状态采用泛泰公司生产的Finesorb-3010程序升温化学吸附仪进行测定.
1.3 氯苯的降解实验
氯苯的降解实验在250 mL三口烧瓶中进行,温度保持在(25±0.5)℃,具体操作方法如下:储备液用去离子水稀释至反应所需浓度,三口烧瓶中溶液总体积为200 mL,随后将一定量的催化剂(5—40 mg)分散在溶液中,搅拌1 h以达到吸附平衡并保证催化剂充分分散. 加入一定量的PMS储备液开始反应,在反应开始后的固定时间(1、3、5、10、20、30、50、70、90、120 min)取出反应溶液,并通过0.22 μm PTFE过滤器(Anpel)进行过滤. 将过滤后的1 mL反应溶液转移到装有0.5 mL甲醇的2 mL棕色液相小瓶中以清除残留的自由基.
使用配备有C-18色谱柱(ZORBAX Eclipse XDB-C18)的高效液相色谱仪(HPLC,1220 Infinity II)检测滤液中的氯苯. 仪器条件:流动相包括纯水和甲醇(30/70,V/V),流速为0.8 mL·min−1. 紫外检测波长为223 nm,柱温30 ℃.
1.4 反应活性物种的鉴定
催化剂活化PMS产生的自由基采用德国Bruker BioSpin有限公司生产的顺磁共振波谱仪(Electron Paramagnetic Resonance Spectrometer,EMX PLUS(PPMS))检测. 具体方法如下:称取适量催化剂分散在去离子水中,涡旋振荡30 s确保催化剂充分分散,取一定量PMS溶液加入到催化剂的溶液中,并使其充分混匀;在2.5 mL尖头离心管中加入1 mL所得混合溶液和100 µL 1 mol·L−1的自由基捕获剂(5,5-二甲基吡咯啉氧化物(DMPO)或2,2,6,6-四甲基-4-哌啶(TEMP))储备液,自由基捕获剂需溶解在pH = 7.4的磷酸缓冲液中,涡旋振荡30 s;将混合后的溶液转移至EPR样品管中,进行EPR分析. EPR操作参数:中心场为348.0 mT,扫描宽度为20 mT,微波频率为9.77 GHz,调制频率为100 GHz,能量为20 mW.
2. 结果讨论 (Results and discussion)
2.1 催化剂的表征
图1(a)是焙烧去除模板后的SBA-15、固相研磨法合成的催化剂CoOx@SBA-15以及浸渍法合成的催化剂CoOx/SBA-15的小角XRD图谱,小角XRD图谱可以用于分析材料的孔结构的有序度. 从图1(a)中可以看出,去除模板后的SBA-15在2θ为0.75°到2°范围内有3个明显的特征衍射峰,分别位于0.88°、1.52°和1.76°,对应于于SBA-15的(100)、(110)和(200)衍射面,该结果表明合成的SBA-15具有高度的二维六方介孔结构和p6mm对称性[7]. 此外,催化剂CoOx@SBA-15和CoOx/SBA-15的图谱中也呈现着3个明显的特征衍射峰,这表明在500 ℃焙烧后载体SBA-15的介孔结构并没有被破坏.
催化剂的广角XRD图谱如图1(b)所示. 从图1可以看出,浸渍法合成的CoOx/SiO2催化剂在2θ 为36.56°、55.3°、59.96°处均有明显的特征衍射峰,此处衍射峰可归属于尖晶石Co3O4的(311)、(422)、(511)晶面,这表明焙烧过程中Co(NO3)2在载体SiO2形成了较大的Co3O4微晶,这是因为金属和载体之间的相互作用较弱[8]. 此外在该材料的XRD图谱上还可以观察到CoO(2θ = 42.9°)和金属Co(2θ = 44.2°)的特征衍射峰,这是因为在焙烧过程中产生的微量C、N会还原部分Co3O4. 从CoOx@SBA-15和CoOx/SBA-15的广角XRD图谱中可以看出,2种材料与载体SBA-15一样均在2θ = 22°附近有一处较宽的衍射峰,可归属于无定型SiO2的特征峰[9]. 其中催化剂CoOx/SBA-15可以观察到一处微弱的CoO(2θ = 42.9°)特征衍射峰,表明位于SBA-15上的Co(NO3)2焙烧时部分形成了CoO分散在SBA-15表面或孔道中,而在CoOx@SBA-15中未观察到明显的衍射峰,这表明金属在CoOx@SBA-15中高度分散.
去模板后的载体SBA-15以及催化剂CoOx@SBA-15和CoOx/SBA-15的N2吸附-脱附等温线和孔径分布如图2所示,各材料的结构参数汇总在表1. 从图2(a)中可以看出,SBA-15的N2吸附-脱附等温线在P/P0 0.64—0.85之间出现了明显的H1型回滞环,且曲线为典型的IV型等温线,验证了实验中合成的SBA-15具有有序的介孔结构[10]. CoOx@SBA-15和CoOx/SBA-15的等温线形状与SBA-15类似,分别在P/P0 0.50—0.85和0.49—0.82之间存在H1型回滞环,这说明经过焙烧后的催化剂依旧具有和SBA-15一样的有序介孔结构. 但材料的氮气吸附量呈现出CoOx@SBA-15 < CoOx/SBA-15 < SBA-15的趋势,这是由于固相研磨法合成的催化剂中金属会在焙烧过程中更多地被限域在SBA-15的孔道中,从而影响材料的吸附量. 除此之外,如图2(b)所示,催化剂CoOx@SBA-15和CoOx/SBA-15和载体SBA-15的孔径均集中分布在4—10 nm之间,最可几孔径分别为6.38 nm、6.33 nm和6.49 nm,这表明金属的负载并不会影响SBA-15的中孔结构. 除此之外,从表1中可以看出,CoOx@SBA-15和CoOx/SBA-15的孔容分别为0.68 cm3·g-1和0.82 cm3·g−1,相较于SBA-15的孔容1.10 cm3·g−1有很大降低,孔径和孔容结果也进一步验证了催化剂CoOx@SBA-15上SBA-15对钴氧化物的限域作用.
表 1 SBA-15及钴基催化剂的结构参数Table 1. Structural parameters of SBA-15 and Cobalt-based catalyst样品 Sample SBETa/(m2·g−1) Smicrob/(m2·g−1) Vtc/(cm3·g−1) Vmicrob/(cm3·g−1) DBJHd/nm SBA-15 744 75 1.10 0.051 6.68 CoOx(14.14)@SBA-15 430 38 0.68 0.024 6.70 CoOx(16.66)/SBA-15 552 69 0.82 0.045 6.80 a calculated by Brunauer-Emmett-Teller (BET) method;b calculated by t-plot method;c obtained at P/P0=0.995;d from BJH method. 图3为催化剂CoOx@SBA-15、CoOx/SBA-15和CoOx/SiO2的TEM图. 从图3(a)、(b)可以观察到清晰的孔道结构,这与SBA-15的典型孔道结构相一致[7]. 此外CoOx/SBA-15和CoOx/SiO2的TEM图中可以观察到明显的金属颗粒,这是因为传统浸渍法合成的材料易在载体表面形成团聚而呈现出较大的金属颗粒. 对比图3(a)可以发现,利用固相研磨法合成的材料CoOx@SBA-15中金属颗粒借由焙烧过程中和模板剂P123的相互作用高度分散在SBA-15的孔道之中,而未见明显的金属颗粒.
为了进一步探究催化剂中的CoOx和载体之间的相互作用,对3种催化剂进行了氢气程序升温还原实验,所得结果如图4所示. 从图4可以看出,CoOx/SBA-15和CoOx/SiO2的TPR曲线中均可观察到2个明显的连续还原峰,其中CoOx/SiO2的还原峰出现在327°C和366°C附近,分别对应于Co3O4还原为CoO和CoO还原为金属Co两个过程[11],且第二个还原峰的强度较高,这是因为负载在SiO2上的Co3O4的颗粒粒径较大,因而CoO的还原程度较高[12]. CoOx/SBA-15的2个还原峰出现在304°C和338°C附近,且300—500°C之间的还原峰强度较低、范围较广,这归因于SBA-15的介孔结构. 虽然同为浸渍法合成,但相较于CoOx/SiO2,CoOx/SBA-15上的CoOx分散度更高、颗粒更小. 相对地,CoOx@SBA-15的TPR曲线在100—600°C 范围内未观察到明显的还原峰,仅在700°C后出现了强度较弱的还原峰,该还原峰归属于Co2+与SBA-15强相互作用形成的高分散的硅酸钴类物质的还原峰[12],表明CoOx@SBA-15中CoOx为高分散,与TEM和XRD结果一致.
2.2 CoOx@SBA-15催化活化PMS降解氯苯
2.2.1 不同催化剂催化氯苯降解实验
氯苯的初始浓度为0.18 mmol·L−1,催化剂的投加量为50 mg·L−1,PMS浓度为5 mmol·L−1时,分别以CoOx(14.14)@SBA-15、CoOx(16.66)/SBA-15和CoOx(13.38)/SiO2为催化剂在室温条件下进行氯苯的降解实验,所得结果如图5所示. 结果显示,3种催化剂均在活化PMS催化降解氯苯的反应中表现出较强的活性,反应120 min后,氯苯在CoOx(14.14)@SBA-15、CoOx(16.66)/SBA-15和CoOx(13.38)/SiO2 的3种催化剂上去除率分别为100%、89.3%和84.7%. 结合催化剂表征来看,SBA-15的介孔结构使得的催化活性CoOx(16.66)/SBA-15高于CoOx(13.38)/SiO2,具体来说,SBA-15的均匀孔结构有利于活性位点的分散同时还可以促进污染物在催化剂上的扩散,提高氯苯的降解效率. 而CoOx(14.14)@SBA-15的催化活性高于CoOx(16.66)/SBA-15是因为采用固相研磨法合成催化剂的过程中Co2+与模板剂P123互作用,使得CoOx高度分散在SBA-15的孔道中,形成对活性位点的限域作用[13]. 限域在孔道中的活性位点能够更高效地与PMS接触,提高PMS的活化效率,进而提高反应活性.
2.2.2 催化剂投加量对氯苯降解的影响
氯苯的初始浓度为0.18 mmol·L−1,PMS浓度为5 mmol·L−1时,以CoOx(14.14)@SBA-15为催化剂探究催化剂投加量对CoOx@SBA-15催化PMS降解氯苯的影响,所得结果如图6所示. 催化剂投加量为50 mg·L−1和100 mg·L−1时,氯苯分别在70 min和30 min时实现完全降解,而当催化剂投加量为25 mg·L−1时,氯苯在120 min时的去除率仅为93.2%,这表明氯苯的降解速率随着催化剂投加量的增加而增大. 通过计算催化剂在最初3 min内的催化活性可以验证反应过程是否受降解中间体的竞争性吸附影响[14],催化活性计算结果如图6(b)所示. 从图6可以看出,不同催化剂投加量时的氯苯降解反应的初活性基本相同,因此该反应不受催化剂传质阻力影响.
2.2.3 负载量对氯苯降解的影响
氯苯的初始浓度为0.18 mmol·L−1,催化剂的投加量为50 mmol·L−1,PMS浓度为5 mmol·L−1时,分别以不同负载量的CoOx@SBA-15为催化剂在室温条件下进行氯苯的降解实验,所得结果如图7所示. 从图7可以看出,当负载量为14.14%和26.02%时,CoOx@SBA-15可以在70 min内实现氯苯的完全降解,而当催化剂的负载量为8.14%时,反应120 min后氯苯的去除率仅为83%,氯苯的降解速率随着催化剂负载量的增加而增大. 图7(b)中展示的是不同负载量的CoOx@SBA-15催化剂的反应初活性,随着催化剂负载量的增加,催化反应在3 min内的初活性从0.368增长到2.297 mmol·L−1gCat−1min−1,这是因为负载量的增加使得催化反应的主要活性位点CoOx增多.
2.2.4 表面吸附对氯苯降解的影响
氯苯的初始浓度为0.18 mmol·L−1,催化剂的投加量为50 mg·L−1时,在其他条件不变的情况下,改变每次降解实验中氯苯和PMS的初始浓度,以进一步探究PMS在CoOx(14.14)@SBA-15上的活化机制,所得结果如图8、9所示. 从图8中可以看出,当PMS的浓度固定为5 mmol·L−1,氯苯的初始浓度从0.1 mmol·L−1增加至0.4 mmol·L−1时,氯苯的降解速率随之加快,反应初活性也从1.512 mmol·L−1gCat−1min−1增至3.185 mmol·L−1gCat−1min−1,这是因为随着氯苯初始浓度的增加,氯苯在CoOx(14.1)@SBA-15表面的吸附量不断增加,从而促进了氯苯的降解. 从图9中可以看出,当氯苯的初始浓度固定为0.1 mmol·L−1时,随着PMS浓度从2.5增加到10 mmol·L−1,反应初活性从1.429 mmol·L−1gCat−1min−1增至2.460 mmol·L−1gCat−1min−1,这说明PMS在催化剂表面的吸附量也会影响氯苯的降解反应.
为了进一步探究反应物在催化剂表面的吸附对反应的影响,使用Langmuir-Hinshelwood(L-H)模型对实验数据进行拟合,Langmuir吸附方程为:
θ=bc1+bc (1) 其中,θ、b、c分别代表吸附的反应物覆盖在催化剂表面的分数,吸附常数和反应物的浓度. 而在该反应中,可能吸附在催化剂表面的反应物有氯苯和PMS,因此假设氯苯和PMS的初始浓度分别为
和c1 ,当氯苯的初始浓度c2 固定时,θ的计算公式为:c1 θ=b1c11+b2c2+b1c1 (2) r1=−dcdt=kθ=kb1c11+b1c1+b2c2 (3) 1r1=1k+(1+b2c2)kb11c1 (4) 式中,
为氯苯的初始降解速率,k为反应速率常数,r1 和b1 分别为氯苯和PMS的吸附常数. 从式4可以看出,当b2 固定时,c2 与1/r1 成正比. 同理,当PMS浓度1/c1 固定时,c2 也呈正比.1/r2与1/c2 L-H模型假设反应速率与吸附在催化剂表面的反应物浓度成正比,进而证明反应物的吸附是催化反应的速率控制步骤. 因此将
与1/r1 、1/c1 与1/r2 分别进行拟合,拟合结果如图8(b)和图9(b)的插图所示. 从图中可以看出,当氯苯的初始浓度改变时,1/c2 与1/r1 的线性关系良好(R2 > 0.98),同样的,当PMS的浓度改变时,1/c1 与1/r2 也呈现了良好的线性关系(R2 > 0.98),这表明氯苯和PMS在催化剂表面的吸附均在氯苯的降解过程中起着重要的作用,是反应的速率控制步骤.1/c2 2.2.5 反应体系初始pH对氯苯降解的影响
氯苯的初始浓度为0.18 mmol·L−1,PMS浓度为5 mmol·L−1,催化剂的投加量为50 mg·L−1 时,以CoOx(14.14)@SBA-15为催化剂探究反应体系初始pH氯苯降解的影响,所得结果如图10所示. 从图10可看出,当反应体系初始pH为6.0和10.0时,氯苯在70 min时可以实现完全降解,这表明CoOx@SBA-15催化剂在中性和碱性条件下都具有较高的催化活性. 然后当反应体系初始pH为3.0时,120 min时氯苯的去除率仅为54.3%,这表明酸性条件会抑制催化剂活化PMS降解氯苯,这是因为酸性条件下,H+易于HSO5-结合形成氢键,影响PMS的活化[15].
2.3 催化体系中的活性物种
采用EPR技术检测反应体系中的活性自由基,具体方法见1.4,所得结果如图11所示. 从图11(a)可以看出,CoOx@SBA-15+PMS的EPR光谱图中未见明显的DMPO·-OH和DMPO·-
特征峰,这表明该体系中没有产生SO−4 和·OH,但在该体系的光谱中出现了强度为1:2:1:2:1:2:1的7条分裂峰,这类分裂峰可归属于DMPO-X,形成原因为DMPO受单原子直接氧化,类似的EPR信号曾出现在Co2+-PMS体系中[16]. 除此之外,在CoOx@SBA-15+PMS+CB、PMS+CB、DMPO体系的EPR光谱图中还出现了3个等强度的分裂缝,此处可归属于DMPO的分裂峰[17]. CoOx@SBA-15/PMS/CB催化体系的DMPO-EPR结果表明,PMS在催化剂CoOx@SBA-15上的活化存在非自由基过程,PMS会与CoOx@SBA-15表面的活性位点结合形成亚稳态复合物,这种复合物具有强氧化活性,从而促进氯苯的氧化降解. 这也再次验证了,在氯苯的降解过程中,PMS在催化剂表面的吸附是反应的关键步骤. 为了鉴定反应体系中可能存在的其他活性自由基,使用TEMP(2,2,6,6-四甲基-4 哌啶)作为单线态氧(1O2)的捕获剂,所得结果如图11(b)所示,TEMP-EPR光谱图中出现了3个等强度的分裂峰,归属于TEMP-1O2,这表明CoOx@SBA-15/PMS/CB催化体系中存在单线态氧(1O2).SO·−4 为了进一步验证反应体系中存在的自由基种类,在反应体系中加入一定量自由基猝灭剂[18],其中甲醇(Methanol)用于猝灭
和·OH,叔丁醇(tert-butanol)用于猝灭·OH,叠氮化钠(NaN3)则用于猝灭1O2,实验结果如图12所示. 与Control组相比,当反应体系中存在甲醇和叠氮化钠时,氯苯在120 min时的去除率从100%分别下降到9.3%和10.2%. 而当反应体系中存在叔丁醇时,氯苯的降解反应未被明显抑制,虽然降解速率有所下降但在90 min时可以实现完全降解. 因此反应体系中的主要活性物种是SO·−4 和1O2,·OH的作用较小.SO·−4 3. 结论 (Conclusion)
(1)相较于传统浸渍法合成的催化剂CoOx/SBA-15和CoOx/SiO2,固相研磨法合成的催化剂CoOx@SBA-15的活性位点颗粒更小、分散度更高,因而在氯苯的降解实验中具有更高的催化活性.
(2) CoOx@SBA-15催化活化PMS降解氯苯的反应符合Langmuir-Hinshelwood模型,表明PMS和氯苯在催化剂表面的吸附是该反应的关键步骤.
(3)酸性条件下,H+易于HSO5-结合形成氢键,不利于PMS的活化,进而影响氯苯的降解效率.
(4)自由基抑制试验表明CoOx@SBA-15/PMS/CB催化体系中的主要活性物种为
、·OH和1O2.SO·−4 -
-
[1] CORBELLA C, GARCÍA J, PUIGAGUT J. Microbial fuel cells for clogging assessment in constructed wetlands[J]. Science of the Total Environment, 2016, 569: 1060-1063. [2] MATOS M P, SPERLING M V, MATOS A T, et al. Clogging in constructed wetlands: Estimation of medium porosity by ground-penetrating radar[C]// 15th International conference on wetland systems for water Pollution Control. London: IWA Publishing, 2016: 4-9. [3] COOPER D, GRIFFIN P, COOPER P. Factors affecting the longevity of sub-surface horizontal flow systems operating as tertiary treatment for sewage effluent[J]. Water Science and Technology, 2005, 51(9): 127-135. doi: 10.2166/wst.2005.0303 [4] NIVALA J, KNOWLES P, DOTRO G, et al. Clogging in subsurface-flow treatment wetlands: Measurement, modeling and management[J]. Water Research, 2012, 46(6): 1625-1640. doi: 10.1016/j.watres.2011.12.051 [5] MATOS M P, SPERLING M V, MATOS A T, et al. Clogging in constructed wetlands: Indirect estimation of medium porosity by analysis of ground-penetrating radar images[J]. Science of the Total Environment, 2019, 676: 333-342. doi: 10.1016/j.scitotenv.2019.04.168 [6] TAPIAS J C, HIMI M, LOVERA R, et al. Assessing clogging development in infiltration-percolation systems for wastewater treatment by electrical resistivity and induced polarisation methods[J]. //EGU General Assembly 2013. EGU General Assembly Conference Abstracts. Austria, 2013: EGU2013-8050. [7] 张明珍, 徐栋, 武俊梅, 等. 人工湿地堵塞监测方法的研究进展[J]. 水生态学杂志, 2021, 42(3): 121-126. [8] MORVANNOU A. Dynamic modelling of nitrification in vertical flow constructed wetlands[D]. Brussels: Université Catholique de Louvain, 2012. [9] MORRIS R H, NEWTON M I, KNOWLES P R, et al. Analysis of clogging in constructed wetlands using magnetic resonance[J]. The Analyst, 2011, 136(11): 2283-2286. doi: 10.1039/c0an00986e [10] LAURENT J, BOIS P, NUEL M, et al. Systemic models of full-scale surface flow treatment wetlands: Determination by application of fluorescent tracers[J]. Chemical Engineering Journal, 2015, 264: 389-398. doi: 10.1016/j.cej.2014.11.073 [11] 李曼, 华国芬, 姬雨雨. 垂直流人工湿地堵塞和轮休过程中水流变化规律[J]. 水处理技术, 2017, 43(1): 57-61. [12] MARTÍN I, SALAS J J, SARDÓN N, et al. Research on clogging and effective surface in subsurface flow constructed wetlands[C]// 12th International conference on wetland systems for water Pollution Control. London: IWA Publishing, 2010: 4-8. [13] SMITH E, GORDON R, MADANI A, et al. Cold climate hydrological flow characteristics of constructed wetlands[J]. Canadian Biosystems Engineering, 2005, 47: 1.1-1.7. [14] WHITMER S, BAKER L, WASS R. Loss of bromide in a wetland tracer experiment[J]. Journal of Environmental Quality, 2000, 29(6): 2043-2045. [15] 张亮, 曹营渠, 易畅, 等. 人工湿地堵塞的研究进展[J]. 四川环境, 2017, 36(S1): 174-178. [16] AIELLO R, BAGARELLO V, BARBAGALLO S, et al. Evaluation of clogging in full-scale subsurface flow constructed wetlands[J]. Ecological Engineering, 2016, 95: 505-513. doi: 10.1016/j.ecoleng.2016.06.113 [17] 楚泽涵. 地球物理测井方法与原理[M]. 北京: 石油工业出版社出版, 2007: 26-42. [18] 程志平. 电法勘探教程[M]. 北京: 冶金工业出版社, 2007: 13-20. [19] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(3): 54-62. [20] 丁彦礼, 李为一, 李文龙, 等. 一种小型可监测堵塞的人工湿地: 201820973071.3[P]. 2019-04-12. [21] 王帅兵, 张雪蕾, 李常斌, 等. 基于Visual MODFLOW的武威盆地地下水动态模拟及预测[J]. 兰州大学学报(自然科学版), 2015, 51(2): 159-165. [22] 郝治福, 康绍忠. 地下水系统数值模拟的研究现状和发展趋势[J]. 水利水电科技进展, 2006, 26(1): 77-81. doi: 10.3880/j.issn.1006-7647.2006.01.023 [23] 王庆永, 贾忠华, 刘晓峰, 等. Visual MODFLOW及其在地下水模拟中的应用[J]. 水资源与水工程学报, 2007, 18(5): 90-92. doi: 10.3969/j.issn.1672-643X.2007.05.023 [24] 何杉. Processing Modflow软件在地下水污染防治中的应用[J]. 水资源保护, 1999, 57(3): 16-18. [25] 白少元, 宋志鑫, 丁彦礼, 等. 潜流人工湿地基质结构与水力特性相关性研究[J]. 环境科学, 2014, 35(2): 592-596. [26] 贺映全, 曹红军, 胡武林, 等. 垂直流人工湿地基质堵塞分析与处理措施[J]. 山西建筑, 2019, 45(10): 175-176. doi: 10.3969/j.issn.1009-6825.2019.10.093 [27] 丁彦礼, 李为一, 韦益华, 等. 一种强化电阻率差异的人工湿地堵塞区域探测方法: 201810656942.3[P]. 2018-11-16. 期刊类型引用(0)
其他类型引用(1)
-