-
随着工业化和城市化进程的不断推进,重金属污染已对环境构成了严重的威胁[1]。据《中国土壤污染调查公报》显示,中国超过19%的耕地遭受不同程度的重金属污染。同样,对于主要河流和湖泊的沉积物,超过80.1%的场地受到不同程度的重金属污染[2]。沉积物通常被认为是水生系统中重金属的主要来源之一,是污染物的载体[3],为水生系统提供了一个污染状态。沉积物中重金属的流动性严格依赖于环境参数,长期的工业、农业及重金属冶炼生产等这些人为活动将大量重金属带入河流,沉入河底进入沉积物中,当外界条件发生改变时,重金属又会释放到水体中并沿河流输送,造成水体二次污染,并对水体生物及人类健康产生危害[4-5]。
重金属的来源主要有人为来源和自然来源。人为来源不同于自然来源,例如城市污水、工业废水排放、采矿活动和农业肥料。人为来源是重金属污染的主要贡献者,尤其是频繁和持续的采矿活动[6-7]。江西省赣南地区素有“世界-钨都”之称,辖区共18个县(市)均有钨矿分布,累积钨矿床400多处。该地区钨矿多与重金属硫化矿伴生,在选矿过程中产生的尾矿作为固废露天堆存,其中重金属在雨水淋滤、地下水径流以及土壤吸附作用下得以释放迁移。进入水体,对环境造成严重的影响,而赣江是长江的主要支流之一,是鄱阳湖水系的重要组成部分。基于此,开展赣江沉积物中重金属的研究具有极其重要的现实意义。
车继鲁等[8]对河流系统进行了定量研究,Amin等[9]通过定量研究报道了河流沉积物中重金属的浓度和分布特征。但河流的污染状况不能只看重金属总浓度,还需要采用一些评价方法对污染和风险水平进行评价[10]。污染负荷指数法、地累积指数法、潜在生态风险评价法都是常见的污染生态评价方法。另外,Krishna等[11]通过研究表明统计技术在描述污染状况方面也发挥了重要作用。
本文通过对赣江29个采样点沉积物中重金属含量和序列组分的测定,获取了赣江表层沉积物重金属含量及其组分的时空分布特征,利用污染负荷指数法、地累积指数法、潜在生态风险评价法,探讨河流重金属污染程度和风险水平,利用多元统计技术确定重金属的自然和人为来源,完整地研究了赣江沉积物中重金属的分布规律及生态风险评价。
基于多元统计技术的赣江沉积物重金属污染评价
Assessment of heavy metal pollution in sediments of the Ganjiang River: Using pollution assessments and multivariate statistical techniques
-
摘要: 赣江是鄱阳湖重要入湖河流,为了解赣江流域沉积物重金属空间分布及污染状况,本文布设了29个采样点,对赣江沉积物重金属(Cu、As、Cd、Pb、Hg、W、Cr、Mn、Zn)含量和序列组分进行了测定及分析,并运用污染负荷指数(PLI)、地累积指数(Igeo)和潜在生态风险(RI)指数评价沉积物重金属污染程度。结果表明,Mn、Cu、Zn、As、Cd、W、Hg和Pb的平均浓度分别超出本底3.8、4.1、5.2、3.0、22.7、5.0、11.8、1.6倍。其中,章江(Z)分布较高的Cu、As、Cd、Pb、Hg、W;桃江(T)分布较高的Cr和Mn;赣江(G)分布较高的Zn。所有采样点的PLI值均大于1,表明所有采样点均受到重金属污染;Igeo评价结果表明,赣江沉积物重金属Igeo依次为Cd(3.4)>Hg(1.7)>Zn(1.6)>Cu(1.2)>Mn(1.0)>As(0.4)>W(0.3)>Pb(−0.1)>Cr(−3.7);其中Cd的污染程度最高,Zn、Hg、Cu,As、W、Pb为轻度污染,沉积物中Cr的Igeo<0,表明赣江未受到Cr的污染。RI均值均大于150,表明赣江水系沉积物重金属均存在潜在风险,且赣江沉积物重金属污染对鄱阳湖构成严重威胁。Abstract: Ganjiang River is an important inflow river Poyang Lake. In order to evaluate the status of heavy metals pollution in the sediments and understand the spatial distribution of the ganjiang River basin, 29 sampling points were set up to determine and analyze the heavy metal (Cu, As, Cd, Pb, Hg, W, Cr, Mn, Zn) content and sequence components in the sediments of the ganjiang river. The pollution load index (PLI), the land accumulation index (Igeo) and the potential ecological risk evaluation(RI) were used to evaluate the pollution degree of heavy metals.The results showed that the average concentrations of Mn, Cu, Zn, As, Cd, W, Hg and Pb exceeded the background 3.8, 4.1, 5.2, 3.0, 22.7, 5.0, 11.8 and 1.6 times, respectively. Zhangjiang (Z) had a higher distribution of Cu, As, Cd, Pb, Hg, W; Taojiang (T) had a higher distribution of Cr and Mn; Ganjiang (G) had a higher distribution of Zn. The PLI value of all sampling points was greater than 1, indicating that all sampling points were polluted by heavy metals. The mean Igeo value indicates that the degree of heavy metal pollution in Gan River sediments was Cd(3.4)>Hg(1.7)>Zn(1.6)>Cu(1.2) >Mn(1.0)>As(0.4)>W(0.3)>Pb(−0.1)>Cr(−3.7). Cd had the highest degree of pollution, followed by Zn, Hg, Cu, As, W, and Pb were Slightly polluted, and the Igeo of Cr in the sediment was less than 0, indicating that the Ganjiang River was not polluted by Cr. The average RI was greater than 150, indicating that there are potential risks for heavy metals in the sediments of the Ganjiang River and indicating that Zhangjiang had a great threat to Poyang Lake.
-
元素 Element W Cu Pb Zn Cd Cr Mn Hg As 含量 Concentration 5.10 20.80 32.10 69.00 0.10 48.00 259.00 0.08 10.40 表 2 地累积指数污染等级[20]
Table 2. Degree of heavy metal pollution in sediments by Geo-accumulation index [20]
$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ <0 0—1 1—2 2—3 3—4 4—5 >5 级别 Level 1 2 3 4 5 6 7 污染程度 Pollution level 无污染 轻污染 中度污染 中—强污染 强污染 强—极强污染 极强污染 表 3 潜在生态风险指数等级划分标准
Table 3. Classification standard of potential ecological risk index
$ {E}_{\mathrm{r}}^{i} $ 风险等级Risk Level RI 风险等级Risk Level <1$ {E}_{\mathrm{r}}^{i} $ 低污染 RI<150 低风险 1≤ <3$ {E}_{\mathrm{r}}^{i} $ 中等污染 150≤RI<300 中风险 3≤ <6$ {E}_{\mathrm{r}}^{i} $ 较高污染 300≤RI<600 高风险 ≥6$ {E}_{\mathrm{r}}^{i} $ 很高污染 600≤RI<1200 很高风险 RI≥1200 极高风险 表 4 赣江沉积物重金属及类重金属浓度汇总统计(n=29,mg·kg−1)
Table 4. Aggregated statistics of concentrations of heavy metals and heavy metals in sediments of Ganjiang River (n=29,mg·kg−1)
Cr Mn Cu Zn As Cd W Hg Pb 最小值 0.0a 221.8 29.6 171.5 9.8 0.5 1.1 0.2 17.4 第5百分位 0.0 406.2 31.4 175.1 9.9 0.6 2.7 0.2 24.4 第25 百分位 0.0 511.7 49.1 217.9 12.7 1.0 4.5 0.3 32.3 平均值 4.7 980.8 84.3 362.0 31.5 2.3 25.7 0.9 52.8 中位数 0.0 620.5 65.0 284.1 18.8 1.7 8.5 0.4 42.3 第75百分位 8.3 1134.5 90.9 353.6 26.6 2.1 10.6 0.7 54.0 第95百分位 14.4 2129.1 189.7 662.4 81.3 5.7 105.3 3.2 98.6 最大值 38.2 4264.6 279.7 1649.5 277.3 12.8 336.9 9.9 244.3 标准差 8.1 811.7 58.8 282.2 50.6 2.5 65.5 1.9 41.8 变异系数 171.3 81.3 68.5 46.7 65.7 83.1 103.0 119.1 46.7 背景值b 48.0 258.8 20.8 69.0 10.4 0.1 5.1 0.1 32.1 注:a多个样品中Cr浓度低于检出限(0.5 mg·kg−1);b为江西重金属浓度背景值. a The concentration of Cr in several sample was lower than detection limit (0.5 mg·kg−1); b Jiangxi background value of heavy metal concentration. 表 5 赣江不同区域重金属浓度比较(mg·kg−1)
Table 5. Comparison of heavy metal concentrations in different regions of Ganjiang River (mg·kg−1)
样品 Sample 参数 Parameter Cr Mn Cu Zn As Cd W Hg Pb T 最小值 0.0 518.6 29.6 173.3 9.8 0.7 1.1 0.2 27.7 最大值 38.2 4264.6 124.0 452.3 38.3 12.8 9.5 0.6 56.6 平均值 7.1 1643.8 64.9 266.8 20.6 3.3 6.2 0.4 41.7 S 最小值 0.0 494.5 30.7 171.5 10.1 0.7 4.2 0.2 29.2 最大值 12.8 2182.2 279.7 284.1 24.9 1.7 17.1 0.6 54.0 平均值 2.7 982.4 96.4 229.3 17.1 1.2 8.9 0.4 43.5 Z 最小值 0.1 362.8 90.9 290.7 28.4 1.7 19.0 0.7 69.8 最大值 15.4 1272.0 190.1 531.1 277.3 5.9 336.9 9.9 244.3 平均值 9.2 832.3 149.1 401.8 114.0 3.7 136.6 4.0 125.3 G 最小值 0.0 221.8 37.4 235.2 10.8 0.5 3.5 0.2 17.4 最大值 11.0 1470.2 170.2 1649.5 28.7 5.2 25.1 1.7 65.7 平均值 3.5 692.6 72.0 571.3 19.8 2.1 10.2 0.6 39.0 P 最小值 0.0 511.7 53.4 198.4 9.8 0.6 2.2 0.2 22.9 最大值 4.2 609.0 65.1 333.4 19.9 1.3 10.2 0.9 79.2 平均值 1.1 543.1 59.9 269.5 13.4 1.0 5.3 0.4 41.0 表 6 赣江及江西省选取的其他水系沉积物样品重金属浓度(mg·kg−1)
Table 6. Heavy metal concentrations of sediment samples from Ganjiang River and other river systems in Jiangxi Province (mg·kg−1)
研究区域 Study area Cr Mn Cu Zn As Cd W Hg Pb 赣江(本文) 0—38 222—4265 30— 280 172—1650 10— 277 0.5—12.8 1.1—337 0.2— 9.9 17—244 赣江[28] 18 — 48 130 8 17.3 — — 62 赣江[29] 60 — 48 139 — 2.3 — — 60 赣江[30] 17— 54 332— 648 15— 44 70—173 18—26 0.4— 2.4 — — 36— 76 饶河[31] 20—33 1016—1057 130—132 258—456 — 1.2—2.5 — — 46—55 修水[31] 10—18 617—877 23—30 59—143 — 0.2—1.2 — — 27—39 信江[32] 12—101 — 12—182 88—257 2—32 0.6—2.9 — — 16—77 抚河[33] 327—802 386—1366 34—113 1468—2708 704—1326 — — — 155—263 鄱阳湖[34] 30—75 — 20—51 82—257 9—18 — — 0.05—0.14 36—75 鄱阳湖[35] 2—10 177—1656 3—246 13—312 2—30 0.1—6.3 0.7—8.6 — 16—72 表 7 赣江沉积物重金属相关性分析
Table 7. Correlation analysis of heavy metals in sediments of Ganjiang River
Cr Mn Cu Zn As Cd W Hg Pb Cr 1 Mn 0.650** 1 Cu 0.312 0.427* 1 Zn 0.559** 0.508** 0.625** 1 As 0.310 0.104 0.499** 0.448* 1 Cd 0.290 0.097 0.402* 0.773** 0.358 1 W 0.264 0.050 0.478** 0.365 0.985** 0.274 1 Hg 0.650** 0.432* – 0.049 0.083 – 0.030 0.047 – 0.064 1 Pb 0.360 0.154 0.573** 0.532** 0.974** 0.395* 0.951** 0.026 1 *在0.05的概率水平上显著,**在0.01概率水平显著性;* Significance at the 0.05 probability level,** Significance at the 0.01 probability level. -
[1] PENG H, GUO J, LI B, et al. High-efficient recovery of chromium (VI) with lead sulfate [J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 149-154. doi: 10.1016/j.jtice.2018.01.028 [2] 王海东, 方凤满, 谢宏芳. 中国水体重金属污染研究现状与展望 [J]. 广东微量元素科学, 2010, 17(1): 14-18. doi: 10.3969/j.issn.1006-446X.2010.01.002 WANG H D, FANG F M, XIE H F. Research situation and outlook on heavy metal pollution in water environment of China [J]. Guangdong Trace Elements Science, 2010, 17(1): 14-18(in Chinese). doi: 10.3969/j.issn.1006-446X.2010.01.002
[3] ZAHRA A, HASHMI M Z, MALIK R N, et al. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan [J]. Science of the Total Environment, 2014, 470/471: 925-933. doi: 10.1016/j.scitotenv.2013.10.017 [4] FU J, HU X, TAO X C, et al. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China [J]. Chemosphere, 2013, 93(9): 1887-1895. doi: 10.1016/j.chemosphere.2013.06.061 [5] HUANG S L, NG C O, GUO Q Z. Experimental investigation of the effect of flow turbulence and sediment transport patterns on the adsorption of cadmium ions onto sediment particles [J]. Journal of Environmental Sciences, 2007, 19(6): 696-703. doi: 10.1016/S1001-0742(07)60116-8 [6] PAN L B, MA J, WANG X L, et al. Heavy metals in soils from a typical County in Shanxi Province, China: Levels, sources and spatial distribution [J]. Chemosphere, 2016, 148: 248-254. doi: 10.1016/j.chemosphere.2015.12.049 [7] VAROL M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques [J]. Journal of Hazardous Materials, 2011, 195: 355-364. doi: 10.1016/j.jhazmat.2011.08.051 [8] 车继鲁, 余树全, 张鑫, 等. 瓯江下游流域河流沉积物重金属污染特征、来源及潜在生态风险评价 [J]. 生态科学, 2017, 36(4): 176-184. CHE J L, YU S Q, ZHANG X, et al. Pollution characteristics, sources and potential ecological risk of heavy metals in surface sediment from the Lower Ou River [J]. Ecological Science, 2017, 36(4): 176-184(in Chinese).
[9] AMIN B, ISMAIL A, ARSHAD A, et al. Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia [J]. Environmental Monitoring and Assessment, 2009, 148(1/2/3/4): 291-305. [10] GATI G, POP C, BRUDAŞCĂ F, et al. The ecological risk of heavy metals in sediment from the Danube Delta [J]. Ecotoxicology, 2016, 25(4): 688-696. doi: 10.1007/s10646-016-1627-9 [11] KRISHNA A K, SATYANARAYANAN M, GOVIL P K. Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India [J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 366-373. [12] ZHANG H, JIANG Y H, WANG M, et al. Spatial characterization, risk assessment, and statistical source identification of the dissolved trace elements in the Ganjiang River—feeding tributary of the Poyang Lake, China [J]. Environmental Science and Pollution Research, 2017, 24(3): 2890-2903. doi: 10.1007/s11356-016-7988-z [13] MWANAMOKI P M, DEVARAJAN N, THEVENON F, et al. Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): spatial distribution and potential ecotoxicological effects[J]. Chemosphere 2014, 111: 485-492. [14] BEDNAR A J, JONES W T, CHAPPELL M A, et al. A modified acid digestion procedure for extraction of tungsten from soil [J]. Talanta, 2010, 80(3): 1257-1263. doi: 10.1016/j.talanta.2009.09.017 [15] 张芙蕖, 蒋晶晶. 三种土壤消解方法的对比研究 [J]. 环境科学与管理, 2008, 33(3): 132-134. doi: 10.3969/j.issn.1673-1212.2008.03.034 ZHANG F Q, JIANG J J. The comparison study on three methods of soil digestion [J]. Environmental Science and Management, 2008, 33(3): 132-134(in Chinese). doi: 10.3969/j.issn.1673-1212.2008.03.034
[16] URE A M, QUEVAUVILLER P, MUNTAU H, et al. Speciation of heavy metals in soils and sediments. an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities [J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 135-151. [17] TOMLINSON D L, WILSON J G, HARRIS C R, et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index [J]. Helgolä nder Meeresuntersuchungen, 1980, 33(1/2/3/4): 566-575. [18] 何纪力, 徐光炎, 朱惠民. 江西省土壤环境背景值研究[M]. 北京: 中国环境科学出版社, 2006: 314. HE J L, XU G Y, ZHU H M. Study on soil environment background value in Jiangxi Province [M]. Beijing: China Environment Science Press, 2006: 314(in Chinese).
[19] ZHAO H R, XIA B C, FAN C, et al. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China [J]. Science of the Total Environment, 2012, 417/418: 45-54. doi: 10.1016/j.scitotenv.2011.12.047 [20] BHUIYAN M A H, PARVEZ L, ISLAM M A, et al. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh [J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 384-392. [21] 卢聪, 李涛, 付义临, 等. 基于生物可利用性与宽度范围的Hakanson潜在生态风险指数法的创建——以小秦岭金矿区农田土壤为例 [J]. 地质通报, 2015, 34(11): 2054-2060. doi: 10.3969/j.issn.1671-2552.2015.11.009 LU C, LI T, FU Y L, et al. Establishment of the Hakanson potential ecological risk index method based on bioavailability and wide concentration range ——Taking the farmland soil of Xiaoqinling gold mining area as an example [J]. Geological Bulletin, 2015, 34(11): 2054-2060(in Chinese). doi: 10.3969/j.issn.1671-2552.2015.11.009
[22] 陈明, 胡兰文, 陶美霞, 等. 桃江河沉积物中重金属污染特征及风险评价 [J]. 环境科学学报, 2019, 39(5): 1599-1606. CHEN M, HU L W, TAO M X, et al. Heavy metal pollution characteristics and risk assessment in sediments of Taojiang River [J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1599-1606(in Chinese).
[23] ZHENG X J, CHEN M, WANG J F, et al. Ecological risk assessment of heavy metals in the vicinity of tungsten mining areas, southern Jiangxi Province [J]. Soil and Sediment Contamination:an International Journal, 2020, 29(6): 665-679. doi: 10.1080/15320383.2020.1763912 [24] YAN F, LIU C L, WEI B W. Evaluation of heavy metal pollution in the sediment of Poyang Lake based on stochastic geo-accumulation model (SGM) [J]. Science of the Total Environment, 2019, 659: 1-6. doi: 10.1016/j.scitotenv.2018.12.311 [25] CHEN M, LI F G, TAO M X, et al. Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China [J]. Marine Pollution Bulletin, 2019, 146: 893-899. doi: 10.1016/j.marpolbul.2019.07.029 [26] 李凤果, 陈明, 师艳丽, 等. 赣江上游沉积物重金属空间分布及污染特征 [J]. 生态学杂志, 2020, 39(3): 920-927. LI F G, CHEN M, SHI Y L, et al. Spatial distribution and pollution characteristics of heavy metals in sediments of the upper reaches of Ganjiang River [J]. Chinese Journal of Ecology, 2020, 39(3): 920-927(in Chinese).
[27] 徐金英, 郑利林, 徐力刚, 等. 南方丘陵区河流表层沉积物重金属污染评价 [J]. 中国环境科学, 2019, 39(8): 3420-3429. doi: 10.3969/j.issn.1000-6923.2019.08.036 XU J Y, ZHENG L L, XU L G, et al. Ecological risk assessment and source analysis of heavy metals in surface sediments of rivers located in the hilly area of Southern China [J]. China Environmental Science, 2019, 39(8): 3420-3429(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.08.036
[28] JI Y, ZHANGI J, HUANG X P, et al. Investigation and assessment of heavy metals in surface sediments of Ganjiang River, China [J]. Journal of Environmental Biology, 2014, 35(6): 1173-1179. [29] ZHANG H, JIANG Y H, YANG T, et al. Heavy metal concentrations and risk assessment of sediments and surface water of the Gan river, China [J]. Polish Journal of Environmental Studies, 2016, 25(4): 1529-1540. doi: 10.15244/pjoes/62100 [30] XU J Y, XU L G, ZHENG L L, et al. Distribution, risk assessment, and source analysis of heavy metals in sediment of rivers located in the hilly area of Southern China [J]. Journal of Soils and Sediments, 2019, 19(10): 3608-3619. doi: 10.1007/s11368-019-02341-3 [31] 李鸣. 鄱阳湖重金属污染特征研究及环境容量估算[D]. 南昌大学, 2010. [32] JI Y, ZHANG J, LI R H, et al. Distribution and partitioning of heavy metals in sediments of the Xinjiang River in Poyang Lake Region, China [J]. Environmental Progress & Sustainable Energy, 2015, 34(3): 713-723. [33] 刘小真, 周文斌, 胡利娜, 等. 抚河南昌段底泥重金属污染特征研究 [J]. 环境科学与技术, 2008, 31(5): 30-34. doi: 10.3969/j.issn.1003-6504.2008.05.009 LIU X Z, ZHOU W B, HU L N, et al. Contamination characteristics of heavy metals of fu river sediments at Nanchang segment [J]. Environmental Science & Technology, 2008, 31(5): 30-34(in Chinese). doi: 10.3969/j.issn.1003-6504.2008.05.009
[34] 杨期勇, 曾明, 谢琪, 等. 鄱阳湖北部湖区沉积物重金属分布及其潜在生态风险评价 [J]. 生态环境学报, 2018, 27(3): 556-564. YANG Q Y, ZENG M, XIE Q, et al. The distribution of heavy metals and potential ecological risk in the northern Poyang lake [J]. Ecology and Environmental Sciences, 2018, 27(3): 556-564(in Chinese).
[35] ZHANG H, JIANG Y H, DING M J, et al. Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China [J]. Environmental Science and Pollution Research, 2017, 24(27): 21902-21916. doi: 10.1007/s11356-017-9855-y [36] PANDEY B, AGRAWAL M, SINGH S. Ecological risk assessment of soil contamination by trace elements around coal mining area [J]. Journal of Soils and Sediments, 2016, 16(1): 159-168. [37] CHEN M, LI F G, HU L W, et al. Occurrence and release of tungsten from river depositions in typical mining areas of southern Jiangxi Province [J]. Chemical Industry and Engineering Progress, 2019: 4320-4326. [38] LONGMAN R S, COTA A A, HOLDEN R R, et al. A regression equation for the parallel analysis criterion in principal components analysis: Mean and 95th percentile eigenvalues [J]. Multivariate Behavioral Research, 1989, 24(1): 59-69. doi: 10.1207/s15327906mbr2401_4 [39] MURTAGH F, LEGENDRE P. Ward's hierarchical agglomerative clustering method: Which algorithms implement ward's criterion? [J]. Journal of Classification, 2014, 31(3): 274-295. doi: 10.1007/s00357-014-9161-z [40] MORADI R, POURGHASEMIAN N, NAGHIZADEH M. Effect of beeswax waste biochar on growth, physiology and cadmium uptake in saffron [J]. Journal of Cleaner Production, 2019, 229: 1251-1261. doi: 10.1016/j.jclepro.2019.05.047 [41] WU J Z, LI Z T, HUANG D, et al. A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils [J]. Journal of Hazardous Materials, 2020, 387: 122010. doi: 10.1016/j.jhazmat.2019.122010 [42] NICOLAU R, GALERA-CUNHA A, LUCAS Y. Transfer of nutrients and labile metals from the continent to the sea by a small Mediterranean river [J]. Chemosphere, 2006, 63(3): 469-476. doi: 10.1016/j.chemosphere.2005.08.025