-
城市污水活性污泥处理工艺的发展经历了漫长的发展过程,从开始的传统活性污泥工艺,发展到序批式活性污泥工艺及其衍生工艺(SBR、ICEAS、CASS、DAT-IAT、UNITANK、MSBR),以及改良的活性污泥法(A-B法、氧化沟)[1]。目前,业界提出了多种以活性污泥法为基础的、具有不同优良性能特点和功能的新工艺,如同步硝化-反硝化(SND)、氨厌氧氧化(ANAMMOX)、短程硝化-反硝化、移动床生物膜反应器(MBBR)、膜生物反应器(MBR)等工艺[2-3]。
随着国家对环境保护要求的不断提高,对城市污水处理厂出水水质(尤其是氮和磷含量)的要求也越来越严格[4],污水处理工艺也相应发生变化,由应用较多的改良活性污泥工艺转变为MBBR[5]和MBR工艺。孙逊等[6]在山东济宁市采用MBBR工艺进行强化脱氮除磷中试实验,获得了成功,为污水处理厂改造提供了重要参考。该MBBR工艺不仅在无锡芦村污水处理厂升级改造中得到了全面认可[7-8],而且在青岛市李村河污水处理厂[9]、团岛污水处理厂[10]升级改造中均得到采用。这些实例表明,MBBR工艺不仅可以显著提高污水处理系统的硝化能力,而且均具有一定的抗冲击负荷能力;尤其在冬季低温时对氨氮有较高的去除效果,可以保证氨氮的稳定达标[8]。
2017年以前,宁夏回族自治区现有污水处理厂大部分采用改良的活性污泥法,出水水质大都执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级B或二级标准。根据《水污染防治计划》和《宁夏回族自治区城镇污水处理及再生利用设施建设“十三五”规划》,“十三五”期间,必须对未达到一级A排放标准的污水处理设施进行提标改造,并要求新建污水处理厂出水水质全部执行一级A标准。2015—2016年,宁夏回族自治区采用MBBR工艺进行提标改造的污水处理厂主要有吴忠市第一、第二、第三污水处理厂,石嘴山市第一污水处理厂,中卫市城市污水处理厂,西吉县污水处理厂等。上述污水处理厂自改造完成后,出水水质均已稳定达到一级A标准。
本文以吴忠市第三污水处理厂扩建工程为案例,探讨和验证了MBBR工艺的应用效果。从设计水质出发,探讨了工艺流程及主要构筑物参数的合理确定问题,并总结分析了该工程的主要设计特点及运行效果,以期为相关地区城市污水处理厂提标改造及扩建工程提供参考。
-
吴忠市第三污水处理厂现有处理规模为2×104m³·d−1,采用百乐克工艺,出水水质执行一级B标准。2015年采用MBBR工艺进行提标改造,出水执行一级A标准,目前稳定运行。本次扩建工程设计规模为3×104m³·d−1,扩建完成后该污水处理厂总处理规模达到5×104 m³·d−1。扩建工程设计出水执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级A标准,采用“MBBR+沉淀+滤布滤池”组合工艺,尾水经消毒后部分回用,其余尾水达标排放。
根据吴忠市第三污水处理厂多年运行中的实际进水水质,确定本扩建工程的进水水质设计值如表1所示,出水执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级A标准。
根据进水水质设计值和出水排放标准,本扩建工程所采用的污水处理工艺不仅具有去除有机污染物和悬浮固体的效果,重点还应具有同步脱氮除磷的功能。吴忠市第三污水处理厂多年实际运行数据表明,COD和BOD5一直稳定达标,氨氮、总氮及总磷出水浓度波动较大。因此,本扩建工程与多数污水处理厂面临的问题一样,即主要解决氮磷稳定达标排放问题[11]。由于该污水处理厂进水总氮较高,C/N比较低,反硝化缺乏碳源,故考虑外加碳源,并加大缺氧区容积,以保证总氮稳定达标。总磷去除率目标确定为91.7%,此目标仅依生化法是很难达到的,因此,需要采用以生化法为主、化学法为辅的方式来保证达到出水要求。通过设置滤布滤池,一方面可实现悬浮物的稳定达标,另一方面也可保障出水COD和总磷达标。综上所述,确定污水处理工艺流程见图1。
-
MBBR反应池是整个污水处理厂的核心构筑物,其运行情况直接影响污水处理厂的出水水质。MBBR工艺以悬浮填料为微生物提供生长载体,通过悬浮填料的充分流化,实现污水的高效处理[1]。该工艺充分汲取了生物接触氧化及生物流化床的优点,克服了其传质效率低、处理效率差、流化动力高等缺点。本扩建工程将MBBR与A2/O相结合,工艺运行方式集生物膜工艺和活性污泥工艺的优点于一体。设置MBBR反应池1座2组,采用钢筋混凝土结构。单池有效容积11 437 m³,总平面长、宽、高(净尺寸)分别为95.5、44.5、6.3 m,超高0.8 m。池容划分为厌氧区、缺氧区和好氧区(投加填料)分别为1.8、8.3和8.8 h。设计参数见表2,池型见图2和图3。
根据进水水质情况及出水水质要求,TN去除率需达77%。为此,缺氧区停留时间设计为8.3 h。好氧区的池容与缺氧池基本相同。在好氧区内投加生物悬浮填料,填料规格为:直径25 mm,厚度10 mm,比表面积620 m²·m−³。填料填充率为22%;设计污泥负荷(以单位MLSS所含BOD5计)为0.07 kg·(kg·d)−1;硝化液回流比为250%~400%;污泥回流比为50%~100%。
本扩建工程生化池设计参考UCT工艺在污水处理工程设计中的应用[12],借鉴郭姣等[13]关于进水方式与比例对UCT工艺脱氮除磷效果的影响的研究结果,即外回流100%、内回流200%时,多点进水的同时脱氮除磷效果明显优于单点进水。为此,本工程采用多点进水、多点回流的设计。缺氧池和厌氧池均设置进水闸门,可实现进水比例的灵活调节;好氧池硝化液回流采用渠道回流,分别回流至缺氧池和厌氧池,可实现多点回流(见图3);通过闸门可以灵活控制进水及回流的流量比例。
-
除了核心处理单元——MBBR生化池,其他均为常规工艺,预处理为粗细格栅间、提升泵及沉砂池(为了防止拦截桶堵塞,细格栅采用内进水孔板细格栅),沉淀采用中进周出辐流式沉淀池,深度处理采用滤布滤池,鼓风机采用空气悬浮风机(自带变频,调节曝气量灵活方便,可节约能耗),污泥脱水采用离心脱水机,具体设计参数详见表3。
-
1)本扩建工程工艺与原厂提标改造工艺保持一致,仍采用MBBR工艺,并将好氧池分为2段,每段均设置拦截筒和填料投加,根据水质水量变化情况灵活调节填料投加区域和投加比,以保证出水稳定达标。
2)为了减少MBBR池拦截筒的堵塞,采用内进水孔板细格栅代替常用的回转式细格栅或者转鼓式格栅。
3)采用缺氧池和厌氧池2处进水、2处回流等优化措施,实现了生物降解功能的强化,保证了系统运行的安全性和稳定性。
4)设置了化学除磷和碳源投加装置,可针对水质情况灵活选择是否投加药剂,运行管理方便灵活,处理效果更稳定。
-
吴忠市第三污水处理厂扩建工程于2019年4月建成投入使用,运行1 a以来,水量从50%增加至80%,最大日处理量达到100%;进水水质除TP外其他指标均低于设计浓度,尤其TN和NH3-N浓度偏低;出水水质一直稳定达到一级A标准。2019年11月至2020年2月整个冬季运行效果如图4所示,其中水温为10~14 ℃,水质指标为出水指标。
从整体看,本扩建工程主要出水水质指标均稳定满足一级A标准要求,COD和TN出水平均值分别为34.5和7.0 mg·L−1,最大值为46.7和14.7 mg·L−1;NH3-N和TP去除率平均值分别为98.4%和94.3%,最大值为1.0和0.5 mg·L−1。从图4可看出,进水TP浓度均值为6.3 mg·L−1,超过设计最大值,而出水全部达标,且除磷药剂投加量极少。分析其原因,主要是在发现进水TN浓度较低时调整了运行工况,采取了以除磷为主以脱氮为辅的策略,增加了厌氧段的硝化液回流量及缺氧段的进水量,形成了类似倒置A2O的运行模式,从而强化了脱氮除磷效果。
进水水质除TP外的其他指标较设计浓度低,但整体进水指标波动不小,而出水基本不受影响,稳定达标,说明MBBR工艺抗冲击负荷能力非常强。
-
1)本扩建工程采用内进水孔板细格栅代替常规机械格栅,可减少MBBR池拦截筒的堵塞,增加运行的稳定性;采用空气悬浮风机,自带变频控制,可实现曝气量的灵活调节及能耗的降低。
2) UCT工艺及其改良工艺具有灵活改变污水运行模式的特点。根据进水水质的特点,调整脱氮/除磷的主次地位,可加强生化系统的脱氮/除磷效率,且可减少外加碳源及除磷药剂的投加量。
3)进水水质的波动对出水指标影响较小,说明MBBR工艺抗冲击负荷能力强。
4) MBBR和UCT的结合工艺适用于生活污水处理厂。
MBBR工艺在吴忠市第三污水处理厂扩建工程中的应用及运行效果
Application and performance of MBBR process of No.3 Sewage Treatment Plant expansion project in Wuzhong city, China
-
摘要: 以宁夏回族自治区吴忠市第三污水处理厂扩建工程为案例,探讨和验证了MBBR工艺的应用效果。该扩建工程设计规模为3×104m³·d−1,采用“MBBR+沉淀+滤布滤池处理”组合工艺,尾水采用次氯酸钠消毒,出水水质执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。该扩建工程建成运行后,进行了运行模式的实际运行数据分析。结果表明,扩建工程设计中所采用的工艺流程适当,主要构筑物参数合理,达到了预期设计要求。Abstract: The application effect of MBBR process is discussed and verified based on the case study in the No.3 Sewage Disposal Plant in Wuzhong city, Ningxia. The design scale of the expansion project is 3×104 m3·d−1. The combined process of MBBR+ precipitation + filter cloth treatment tank is adopted, the tail water is disinfected with sodium hypochlorite, and the effluent quality met the Class 1A level by the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002). After the operation of the expansion project, the analysis of the operation mode based on the operational data is carried out. Results show that the technological process adopted in the design of the expansion project is appropriate, the main structure parameters are reasonable, and the expected design requirements are met.
-
Key words:
- sewage treatment /
- MBBR process /
- process design /
- run data
-
随着社会经济的发展,柴油的使用量增加,但是柴油在生产、运输、装卸、加工及使用过程中的泄露会对土壤环境造成一定的污染,直接或间接地危害人类的生命与健康[1-2]。因此,解决柴油污染土壤问题已成为世界各国所共同面临的问题[3]。
目前,针对柴油污染土壤修复的方法主要包括机械、物理、化学和生物修复方法等[4]。其中,机械、物理、化学修复方法具有费用高、容易产生二次污染等不足[5-7]。而生物修复技术是一种高效、环境友好、低成本的技术,能够将柴油等污染物通过微生物代谢转化成无毒的终产物[8-9],因而被广泛应用于修复柴油污染土壤之中[10]。刘沙沙等[11]已成功利用醋酸钙不动杆菌降解柴油以及污染物,经过62 d的生物修复实验,柴油去除率为69.8%。然而,柴油组成的复杂性决定了其降解需要有不同菌株的参与[12],TAO等[13]研究了土著细菌联合体与外源芽孢杆菌(Bacillus subtilis)共同培养降解原油的实验,细菌群落分析结果表明,在确定的共培养条件下,细菌多样性降低,降解效率提高,同时证明芽孢杆菌对长链烷烃有很好的降解效果。
大量的研究证明,微生物在修复有机物污染土壤的过程中具有良好的应用前景,但目前对于构建微生物菌群的研究较少,本研究从柴油污染土壤中筛选、分离出能够降解柴油污染物的微生物,采用组合实验构建优势菌群,探究了其柴油生物降解特性,研究分析了该菌群中各菌种之间的互作机制,为构建降解柴油的菌群提供参考。
1. 材料与方法
1.1 实验仪器与原料
紫外分光光度计(UV-2102C,中国上海),GC-MS(Agilent6890/5975I,安捷伦),台式高速冷冻离心机(H-2050R,中国长沙),恒温振荡培养箱(HZQ-X160,中国太仓)。实验所用试剂均为分析纯。
柴油污染土壤取自上海金山卫金山大道城河路;柴油为市售0#柴油(密度:0.84 kg·L−1);菌种:实验所用菌种均为从柴油污染土壤样品中筛选分离得到。
1.2 实验方法
1)微生物菌种生物量的测定方法。将菌落接种于灭菌的种子培养基中,每2 h取样,采用分光光度计在波长600 nm下测定吸光度值,绘制柴油降解细菌的生长曲线。
2)微生物菌种对柴油降解能力的测定方法。残余柴油浓度采用分光光度法[14]进行测定。菌株对柴油的降解能力采用柴油降解率表示。降解率计算公式如式(1)所示。
R=C0−CtC0×100% (1) 式中:R为柴油降解率;C0为柴油的初始浓度,mg·mL−1;Ct为柴油的降解过程测定浓度,mg·mL−1。
3)微生物高效降解柴油的条件优化实验。以构建好的柴油污染物降解菌群为研究对象,考察了初始pH(5.0、6.0、7.0、8.0、9.0)、初始柴油浓度(1.0、3.0、5.0、7.0、9.0 mL·L−1)、初始接种量(体积比5.0%、10.0%、15.0%)对柴油降解率和细菌生物量的影响结果。在30 ℃,150 r·min−1条件下培养5 d,定时取样并测定其中的柴油降解率以及生物量的变化,每组实验重复3次,取其平均值。
4)微生物多样性测试。将培养24 h的菌群混合液按10%的接种量接种到无机盐培养基中,柴油浓度为7.0 mL·L−1,pH=7.0,在30 ℃,150 r·min−1条件下培养,14 d后,将混合菌进行收集,离心弃上清液,收集菌体,测试微生物多样性,该工作由上海美吉医药科技有限公司完成。
5)微生物降解柴油产物的检测。将筛选获得的高效单菌种分别接种到种子培养基中,培养24 h后,离心收集菌体,稀释使其OD600=1.50,并按照最佳的体积比混合后接种于无机盐培养基中,以不加细菌为对照组,柴油浓度为7.0 mL·L−1,在30 ℃、150 r·min−1的恒温振荡培养箱中培养14 d。然后将培养基取出加入1∶1(体积比)硫酸5.0 mL酸化水样,继续加入0.2 g·L−1的氯化钠破乳[15],然后加入石油醚20.0 mL(60~90 ℃)超声10 min。将上述溶液8 000 r·min−1离心10 min,将上清液转移至另一干净的三角瓶中,下层溶液倒入原三角瓶并用石油醚重新提取1次。合并2次提取液,过膜,利用GC-MS测定培养基内降解产物组成及含量。
6)微生物降解十五烷产物的检测。将本研究所构建的混合菌群接种于添加了十五烷(7.0 mL·L−1)的无机盐培养基中,在30 ℃、150 r·min−1的振荡箱里培养14 d,分别取降解3、6、14 d的培养液,按照上述方法处理并检测。
2. 结果与讨论
2.1 柴油降解菌的富集驯化结果
从柴油污染土壤中筛选获得4株具有较强柴油降解能力的菌株,其菌落形态和柴油降解能力结果见表1。
表 1 菌株的菌落形状及柴油降解能力Table 1. Colony shape and diesel degradability of strains菌株号 菌落形态 菌体形态 菌落颜色 降解率/% 1# 菌落为扁平、边缘不整齐、表面粗糙皱褶 杆状 白色 27.0 2# 菌落透明、光滑、有光泽 球形 白色 29.0 3# 菌落微黄、表面光滑、边缘整齐 杆状 微黄色 32.0 4# 菌落淡红色、湿润、不规则 杆状 淡红色 35.0 2.2 高效降解菌的初步鉴定
微生物初步鉴定结果如表2所示。通过16S rRNA测序结果可知,1#、2#、3#、4#菌株分别与Bacillus sp. VOC18、Enterococcus faecalis、Lysinibacillus、Rhodococcus equi有97%、98%、99%、99%的相似性。本研究分别对1#、2#、3#、4#菌株命名为Bacillus sp. VOC18-L1,Enterococcus faecalis-L2,Lysinibacillus-L3,Rhodococcus equi-L4(简称L1,L2,L3和L4)。
表 2 4种柴油降解菌株的生理生化实验结果Table 2. Physiological and biochemical characteristics of four diesel degrading bacteria实验类型 菌株号 1# 2# 3# 4# 淀粉水解实验 − − − − 明胶实验 + − + + 尿素实验 − + − − 甲基红实验 + − + + V-P实验 + − + − 吲哚实验 − − − − 柠檬酸盐实验 − − − − 硫化氢实验 − − − + 触酶实验 − + − + 葡萄糖发酵实验 + − + + 乳糖发酵实验 − − − − 木糖发酵实验 − − − − 麦芽糖发酵实验 + − + + 蔗糖发酵实验 + − − − 注:“+”表示显阳性,“−”表示显阴性。 2.3 菌株的生长曲线分析结果
每种菌的生长曲线如图1所示。由图1可知,4种细菌在24 h均进入指数生长阶段,在该阶段,微生物生长速度快,活性较强,因此,后续实验均采用培养24 h的菌液为接种液。
2.4 菌群构建的结果分析
菌群构建的结果如表3所示。由表3可知,编号11的菌群组合在5 d内对柴油的降解率最高,可达到39.6%,这可能是由于不同菌种之间的协同作用,使得混合培养的菌群对于柴油污染物的降解效果要优于单菌,因此,选用该混合菌群作为最佳降解菌群进行后续的研究。
表 3 菌种组合对柴油降解效率的实验结果Table 3. Experimental results of degradation efficiency of diesel oil by species strain combination编号 组合 降解率/% 1 L1+L2 20.9 2 L1+L3 26.2 3 L1+L4 26.1 4 L2+L3 25.8 5 L2+L4 30.9 6 L3+L4 29.3 7 L1+L2+L3 23.5 8 L1+L2+L4 31.5 9 L1+L3+L4 25.0 10 L2+L3+L4 21.1 11 L1+L2+L3+L4 39.6 12 空白 10.9 2.5 柴油降解菌群的混合配比及降解柴油的条件优化
1)采用正交实验法确定柴油降解菌群的最佳菌种混合比例。菌群中各菌种的相对含量对柴油等有机物的降解效率有显著的影响。因此,本研究通过正交实验研究了不同混合比例的菌种对柴油降解效率的影响关系,结果如表4所示。由表4可知,降解效果最好的菌种比例为L1∶L2∶L3∶L4=3∶1∶3∶4,在5 d时,降解柴油效率为52.5%,本研究将此比例的微生物组合命名为OCDL-3134。由于该菌群中的每种细菌都具有特定的作用,因此,柴油降解效率明显得到提高[16-17]。然而,将培养了14 d的微生物进行多样性分析结果如图2所示,由图2可以看出,OCDL-3134经过14 d的培养后,菌种之间的比例变为2∶6∶5∶1,这说明在降解过程中,4种菌根据环境的变化发挥着协同作用,并自行调整他们之间的相对丰度,以实现充分利用柴油污染物的目的。此时L2和L3菌种变为优势菌种,说明在培养后期,L2和L3菌种发挥了重要作用,这与其自身的功能是相一致的。同时也表明确定各种微生物的初始接种比例的菌群构建方案具有一定的合理性。有研究[18]表明,一旦长链烷烃耗尽,就会缺乏碳源和能量用于其生长,而由长链烷烃降解形成的短链烃类化合物则被其他菌种继续代谢利用而进一步降解。
表 4 4种柴油降解菌的接种比例和对应的柴油降解效率表Table 4. Inoculation ratio of four diesel oil degrading bacteria and their diesel oil biodegradation efficiency接种比例(L1∶L2∶L3∶L4) 降解率/% 接种比例(L1∶L2∶L3∶L4) 降解率/% 3∶3∶1∶2 16.5 2∶4∶3∶2 14.8 1∶1∶1∶1 39.3 4∶1∶4∶2 18.5 2∶1∶2∶3 15.3 2∶2∶1∶4 15.7 4∶4∶1∶3 21.4 4∶3∶2∶4 19.1 3∶4∶2∶1 15.6 1∶2∶2∶2 25.5 2∶3∶4∶1 13.7 3∶1∶3∶4 52.5 1∶4∶4∶4 22.3 3∶2∶4∶3 13.2 1∶3∶3∶3 13.1 4∶2∶3∶1 11.7 2)初始pH对OCDL-3134菌体生长和柴油降解效率的影响。环境pH可引起细胞膜电荷的变化,从而影响微生物对营养物质的吸收,影响代谢过程中酶的活性,改变营养物质的可给性和有害物质的毒性。本研究探讨了初始pH对OCDL-3134菌体生长和柴油降解效率的影响。由图3(a)可知,当环境pH过高或过低时,会对微生物产生抑制,这可能是由于此条件严重影响了细菌利用柴油的能量和物质代谢进程,从而影响菌体生长,因此会显著降低柴油的生物降解效率。当pH为7.0时,OCDL-3134对柴油降解的效率达到最佳,此时生物量也达到最高,如图3(b)所示。因此,OCDL-3134对柴油的降解效率和生物量的最佳初始pH均为7.0。
3)柴油浓度对OCDL-3134菌体生长和柴油降解效率的影响。柴油浓度是微生物代谢过程的一个重要因素,对微生物降解性能有一定影响[19]。柴油浓度较低时,碳源不足,细菌生长缓慢,对柴油降解效果不佳。随着柴油浓度的增加,碳源可以满足微生物生长,微生物的降解效果也随之增大。但随着柴油浓度继续增加,柴油降解菌的活性受到抑制,同时培养基表面形成一层油膜,使得溶液内的溶解氧浓度降低,抑制微生物的生长繁殖,从而影响对柴油的降解。如图4(a)所示,随着柴油浓度的增大,微生物的柴油降解率呈先上升后下降的趋势,在柴油浓度为7.0 mL·L−1时,降解效果最好,达到50.0%以上。同时,图4(b)为初始柴油浓度对生物量的影响结果,随着柴油初始浓度的增加,生物量呈先增后降的趋势,结果表明OCDL-3134在初始柴油浓度为7.0 mL·L−1时生物量最佳。
4)接种量对OCDL-3134菌体生长和柴油降解效率的影响。如图5所示,接种量在体积比为10.0%时,微生物对柴油的降解率较高。此后,再增加接种量反而导致新增细胞减少,进而使菌株整体活性下降,降解柴油的后劲不足。15.0%的接种量虽然生物量最多,但由于微生物大量繁殖,造成菌株集中,短时间内消耗了培养基中大量营养成分,不利于新菌株的持续生长,从而影响了菌株对柴油的降解率,因此,根据实验结果最佳接种量为10.0%。
2.6 菌群OCDL-3134降解柴油及十五烷过程中的产物分析
1)菌群OCDL-3134降解柴油过程中的产物分析。各单菌种和OCDL-3134对柴油降解的产物结果如图6所示。图6(a)是原始柴油的组分,由此可知,原始柴油的组分非常复杂,主要包括C13~C24的烷烃。图6(b)是L1培养14 d后的产物,通过与图6(a)对比可发现,L1对短链烷烃降解效果好,推测可能是由于该菌在生长代谢过程中产生了相应的表面活性剂[13],促进了微生物与柴油的接触,从而对短链烷烃具有较好的降解效果;图6(c)是L2培养14 d后的产物,通过与图6(a)对比可发现,整体烃类的含量降低。该菌株具有利用该有机物代谢产酸的能力[20],可以将柴油降解的一些产物分解成小分子的酸,因此,在柴油降解过程中发挥着重要作用;图6(d)是L3培养14 d后的产物。与图6(a)对比可发现,短链以及长链烷烃的含量菌有所减少。该菌能够在好氧条件下代谢简单的碳水化合物,因此,在小分子烃类物质的降解过程具有重要作用,同时在柴油降解的后期可能会具有重要贡献,这一点与图3的结果是一致的;图6(e)是L4培养14 d后产物,与图6(a)对比可发现,整体的烃类含量降低,而环苜蓿烯的含量也有明显的下降。有研究[20]表明,该菌株的主要特性是能够有效降解芳香烃,因此,对于柴油中芳香烃的降解具有重要作用。
综上所述,L1、L2、L3、L4对柴油污染物中的有机烃类物质具有一定的降解效果,并且不同的菌种对不同链长的烃类物质降解效果也有显著差异。然而,L1、L2、L3、L4却不能将柴油完全降解。而L1、L2、L3、L4混合形成的菌群OCDL-3134对柴油降解效果显著,如图6(f)所示,相同时间内,柴油几乎被完全降解,转化成无毒无害的酸类小分子、二氧化碳和水。这表明混合菌对柴油的降解效率显著优于单菌株。
2)菌群OCDL-3134降解十五烷过程中的产物分析。使用GC-MS检测了以柴油作为碳源的微生物降解的产物,实验结果表明,混合菌群对柴油的降解效果显著优于单菌种的效果。对此已有大量研究[21]证明了微生物对柴油等有机污染物的降解作用,但是生物降解长链烷烃的机理研究报道并不多见,而且对其降解途径也缺乏了解。由于柴油属于混合物,且主要的烷烃为十五烷和十六烷,因此,本研究选择十五烷作为研究对象,初步探讨微生物降解十五烷的机理,如图7所示。由图7(a)可知,第3天样品中的主要成分是十五烷,这表明在前3 d菌种要先适应新环境,降解效率低。而到第6天,OCDL-3134中的各菌种在协同作用下将十五烷降解为C13H28、C13H26O2等化合物,如图7(b)所示。据报道[15],微生物对直链烷烃最常见的降解途径为烷烃末端氧化,微生物攻击直链烷烃的末端甲基,由加氧酶、脱氢酶、水化酶等混合功能氧化酶催化,生成伯醇,再进一步氧化为醛和脂肪酸,脂肪酸接着通过氧化进一步代谢,被彻底氧化成二氧化碳和水。如图7(c)所示,在第15天,十五烷以及产物被OCDL-3134彻底降解为水和二氧化碳等小分子物质。
3) OCDL-3134降解柴油过程中细菌代谢功能的预测。图8是从KEGG数据库中获得的代谢丰度图,碳水化合物代谢的丰度最好,表明微生物一开始是对柴油的代谢,而氨基酸的代谢功能丰度是其次的,可能发挥的作用是对中间代谢产物脱氨基,从而进一步代谢成醛、酮、酸等小分子物质,因此,细菌首先利用柴油,并将柴油分解成中间代谢产物,然后经过代谢途径分解成酸类小分子物质。其他的代谢途径如能量代谢、辅因子和维生素的代谢、核酸代谢等也参与进来,最终一起合作完成降解柴油的任务。而且可以发现,4种菌种的异质降解和代谢丰度较好,这一代谢丰度说明微生物具有增强降解柴油的能力,这与TAO等[13]的研究结果相一致,但由于是混合菌,故不能判断是哪一种菌种产生的作用。代谢功能预测进一步证明了混合菌在柴油完全降解方面优于单种菌种。
3. 结论
1)通过排列组合的方式将筛选出的微生物菌种进行组合,得出高效柴油降解菌群OCDL-3134,通过正交实验得出它们之间接种量最优比例为3∶1∶3∶4,同时对混合菌柴油降解性能进行优化,实验测得微生物降解柴油的最优条件为pH=7.0,初始柴油的浓度为7.0 mL·L−1,初始接种量为10.0%,在此优化条件下,测得第14天柴油的最佳降解率为89.0%,这说明所筛选的混合菌种具有较高的应用价值。
2)通过GC-MS检测和微生物多样性功能预测分析证明了微生物对柴油以及十五烷的协同作用高于单菌株的降解效果,4种菌种之间存在协同作用,能够将长链烷烃降解为短链烷烃和小分子物质,并获得自身生长与代谢的能源和碳源。KEGG数据库中获得的代谢丰度图也进一步证明了混合菌在柴油完全降解方面优单种菌种。
-
表 1 设计进水与出水水质指标
Table 1. Designed influent and effluent quality
mg·L-1 进水或出水 COD BOD5 SS NH3-N TN TP 进水 550 230 300 45 65 6 出水 ≤50 ≤10 ≤10 ≤5(8) ≤15 ≤0.5 注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12 ℃时的控制指标。 表 2 MBBR池设计参数
Table 2. Design parameters of the MBBR unit
需硝化的氮/(mg·L−1) 需反硝化的氮/(mg·L−1) 有效水深/m 污泥浓度/(mg·L−1) 总回流比 气量/(m3·h−1) 好氧区有效生物膜面积/m2 总停留时间/h 48.5 38.5 5.7 4 000 250%~400% 12 028 1.54×106 18.9 表 3 处理单元设计参数
Table 3. Design parameters of the treatment units
处理单元 设计参数 粗细格栅间、提升泵房及沉砂池 粗格栅2套,采用回转式机械粗格栅,栅宽1.2 m,栅条间隙20 mm,安装角度70°; 潜污泵4台(3用1备),单台流量600 m·h−1,扬程15 m,功率45 kW,变频控制; 细格栅2套,采用内进水孔板细格栅,渠道宽1.4 m,孔径3 mm,安装角度90°; 旋流沉砂池2座,池内径3.05 m,旋流沉砂设备2套,砂水分离器1台。 MBBR反应池 厌氧区:潜水搅拌器5台(4用1备),叶轮直径400 mm,转速980 r·min−1,功率4 kW; 缺氧区:低速推流器9台(8用1备),叶轮直径2 000 mm,转速42 r·min−1,功率6.5 kW; 好氧区:管式微孔曝气器2772套,规格:DN65、长度1.0 m、EPDM材质;拦截筒48个,规格:直径600 mm,长度1 200 mm、材质SS304;穿墙回流泵3台(2用1备),规格:流量520 L·s−1,叶轮直径600 mm,功率7.5 kW。 二沉池 辐流式沉淀池2座,直径30 m,表面负荷0.88 m·m−·h−1,有效水深为4 m。 深度处理车间 采用滤布滤池,平均滤速4.17 m·h−1,峰值滤速≤6.25 m·h−1,吸洗耗水率≤1%~3%。320 m过滤面积;反冲洗系统2套,反洗水泵流量54 m·h−1,扬程17 m,功率3.7 kW。 曝气系统 空气悬浮风机3台(2用1备),变频控制,流量101 m·min−1,压力 80 kPa,功率190 kW。 加药系统 除磷药剂:聚合氯化铝;外加碳源:乙酸钠;消毒药剂:次氯酸钠。 接触池及计量渠 有效容积700 m3,加氯量12 mg· L−1,不锈钢巴氏计量装置一套,喉宽0.5 m。 污泥处理系统 储泥池1座,有效容积250 m,双曲面搅拌机1台,功率2.2 kW; 离心式脱水机2台(1用1备),处理能力25~30 m·h−1,工作时间24 h·d−1。 -
[1] 张自杰, 林荣忱, 金儒霖, 等. 排水工程[J]. 5版. 北京: 中国建筑工业出版社, 2015: 174-248,371-376. [2] 沈耀良, 王宝贞. 废水生物处理新技术: 理论与应用[M]. 2版. 北京: 中国环境科学出版社, 2006. [3] 刘晨阳. 我国常用污水处理工艺概述[J]. 四川水利, 2018(1): 78-79. [4] 庄磊, 黄勇. 城市污水处理厂升级改造的探讨[J]. 工业用水与废水, 2010, 41(1): 14-18. doi: 10.3969/j.issn.1009-2455.2010.01.004 [5] 李景贤, 罗麟, 杨慧霞. MBBR工艺的应用现状及其研究进展[J]. 四川环境, 2007, 26(5): 97-101. doi: 10.3969/j.issn.1001-3644.2007.05.025 [6] 孙逊, 谢新各, 焦文海, 等. MBBR工艺强化污水脱氮除磷中试[J]. 中国给水排水, 2010, 26(21): 152-156. [7] 王翥田, 宇振滨, 宋美芹. MBBR工艺在污水处理厂升级改造中的应用[C]//2009水业高级技术论坛论文集, 2009: 223-227. [8] 王翥田, 叶亮, 张新彦, 等. MBBR工艺用于无锡芦村污水处理厂的升级改造[J]. 中国给水排水, 2010, 26(2): 71-73. [9] 孟涛, 刘杰, 杨超, 等. MBBR工艺用于青岛李村河污水处理厂升级改造[J]. 中国给水排水, 2013, 29(2): 59-61. doi: 10.3969/j.issn.1000-4602.2013.02.016 [10] 韩萍, 许斌, 宋美芹, 等. 团岛污水厂MBBR工艺的升级改造及运行效果[J]. 中国给水排水, 2014, 30(12): 110-114. [11] 施汉昌. 污水处理厂一级A提标改造中的节能降耗技术[J]. 水工业市场, 2014(4): 32-34. [12] 穆亚东, 俞晶, 穆瑞林. UCT工艺在污水处理工程设计中的应用[J]. 给水排水, 2007, 33(3): 30-33. doi: 10.3969/j.issn.1002-8471.2007.03.008 [13] 郭姣, 高健磊, 李枫, 等. 进水方式与比例对UCT工艺脱氮除磷效果的影响[J]. 河南科学, 2010, 28(10): 1331-1333. doi: 10.3969/j.issn.1004-3918.2010.10.028 -