-
随着我国经济的快速发展,工业活动产生的废弃地土壤污染问题日益突出,其中以重金属污染最为严重[1]。重金属污染具有隐蔽性、长期性和不可逆性,危害人体健康[2]。为此,国家生态环境部于2016年发布《污染地块土壤环境管理办法(试行)》[3],规定工业污染场地在开发利用前需明确再开发利用废弃场地土壤重金属污染特征及风险状况,为场地治理与修复提供依据。与此同时国内关于废弃场地土壤重金属污染的研究越来越多,如矿区、电镀厂、冶炼厂、焦化厂、钢铁厂、氨基酸厂、化工厂等[4-12],特别是矿区和电镀场地[13],然而仍有一些可能产生重金属污染的工业废弃场地未能引起人们的关注。
硫酸被称为“工业之母”[14],是基础的化工原料。我国硫酸产量居世界首位[15],但近几年在环保、市场、资源等因素的影响下,众多老旧的中小企业相继停产[16-21],遗留了大量的废弃场地。生产硫酸的传统原料为硫铁矿[22],As、Cu、Hg、Pb、Cd、Ni等均是硫铁矿的伴生元素,其中As、Pb是硫铁矿的常见伴生元素[23-24],硫酸的生产涉及硫铁矿原料、废渣和硫酸成品的存放,以及硫铁矿的焙烧等环节,因此利用硫铁矿生产硫酸可能会引起重金属的释放。相关研究显示,硫酸的生产活动造成了严重的土壤重金属污染,如刘晓双等[25]发现硫酸废水污染区中Cd、Pb含量分别为11.83、1052.63 mg·kg−1,远高于标准值,但其研究范围仅是废水污染区;周海燕等[23]发现某待迁硫酸厂土壤中As的含量范围为2.2—1640 mg·kg−1,健康风险远超出可接受水平。以往的研究为硫酸生产引起的土壤重金属污染提供了参考,但关于硫酸场地土壤重金属污染程度及空间分布的研究较少,对场地重金属产生和迁移的主要驱动因素仍不清楚,因此,开展硫酸场地土壤重金属空间污染特征与场地功能区的相关性研究迫在眉睫,其对于揭示硫酸场地土壤重金属的来源及化学迁移机制具有重要的科学意义。
因此,本文以某废弃硫酸厂为例,对该场地不同功能区及不同深度土壤样品中的Pb、Cd、Cu、Ni、As、Hg含量进行分析测试,探讨重金属的来源及迁移行为,并利用内梅罗综合污染指数法和生态风险指数法对重金属污染进行评价,以期为该类废弃硫酸场地土壤污染治理和修复提供科学依据。
-
本文研究的废弃硫酸厂位于河南省主要的硫铁矿产区—焦作市,硫铁矿保有储量3475.5万t,占全省储量的41%[26],区内的冯封硫铁矿是河南省最大的硫铁矿产地[22],本硫酸厂属于区内另一原省管国有硫铁矿矿山。该厂处于焦作北部的剥蚀丘陵地带,地势有起伏,主导风向为东北偏东,场地内土壤质地主要为砂土,部分为黏土。
该厂于1957年开始生产,受所属矿山资源枯竭及市场竞争的影响,至2010年停产,主要产品为硫酸、过磷酸钙,硫酸的生产工艺主要包括硫铁矿的焙烧、含SO2烟气的酸洗净化及转化与吸收。厂区占地面积约73260 m2,分为硫酸原料区、硫酸废渣区、硫酸生产区、过磷酸钙原料区、过磷酸钙生产区和其它配套设施区(图1)。建厂前,该场地为农用地和荒地,根据该地区的城市规划,地块未来规划仍为工业用地。由于原工厂在环境管理方面措施不当,造成了原料、废渣乱堆乱放,废水乱排等现象,形成了潜在的重金属污染源。
-
考虑硫酸厂各项生产活动的范围比较明确,将硫酸场地划分为不同功能区,同时参照《建设用地土壤污染状况调查技术导则》(HJ25.1—2019),采用判断布点法,确定21个采样点(图1)。先用GPS对采样点定位,然后用柱状土壤采样机采集土壤样品,并用能量色散荧光光谱仪对重金属含量进行现场初判和筛选。根据地层状况,地面以下0.1—0.5 m有填土层,部分地区1.5 m以下部分为基岩,土壤层最深到达3 m深度,每个采样点均采集到基岩层上部土壤层,最终0—1.5 m土壤深度采集60个样品,1.5—3 m深度采集26个样品,共采集样品86个。将带回的土壤样品在自然条件下风干,适时地翻动土壤并将植物根系、碎石等杂物取出,充分研磨后过100目尼龙筛,装入自封袋备用。
每个样品称取0.1 g放入消解罐中,依次加入4 mL的HNO3、1.5 mL的HF和1.5 mL的H2O2,在Multiwave Pro 24型微波消解器质谱仪做前处理,最终利用820—MS型ICP—MS质谱仪对Pb、As、Cd、Cu、Ni含量进行测定。通过王水消解法对土壤前处理,然后利用Model—Ⅲ型冷原子荧光测汞仪对Hg含量进行测定。每批实验样品中设置20%的空白和10%的平行,并采用国家标准土样(GBW07401)用于质量控制(表1)。
-
内梅罗综合污染指数法是一种评价土壤重金属污染的传统方法,该方法同时考虑了平均值和最大值的影响,能反应多种重金属的联合污染水平[27]。计算公式为:
式中,Ci、Si、Pi为重金属元素i的实测值、对应的河南省土壤元素背景值及单因子污染指数;
¯P 、Pmax是单因子污染指数的平均值、最大值;P综合是内梅罗综合污染指数。评价分级标准,见表2。 -
潜在生态风险指数法[28]兼顾了重金属的毒性效应、含量等因素,不仅能表明多种重金属的联合影响,还可以指出应该引起关注的元素,有利于污染控制。其计算公式为:
式中,Ci、Si同上,Ei、Ti分别为重金属i的潜在生态风险指数和毒性系数,Pb、As、Hg、Cd、Cu、Ni的毒性系数分别是:5、10、40、30、5、5[29-30];RI为综合潜在生态风险指数。风险分级标准,见表3。
-
地统计学中的克里金插值法已被广泛应用于土壤重金属的空间分布特征分析。克里金插值的前提是数据要符合正态分布[31],若数据不符合正态分布,采用对数转换使其符合正态分布或近似正态分布。利用ArcMap 10.6中的地统计向导功能,对各重金属含量进行半变异函数最优拟合,依据平均误差接近0,均方根误差小于1的原则确定最佳模型和参数[32]。最终得出,所有数据的最佳插值方法均是普通克里金插值,其中表层土壤中的Pb、Cu及综合潜在生态风险指数适应用于指数模型,As、Hg符合球面模型,而Cd、Ni则与高斯模型更贴合。采用Excel 2016和SPSS 21.0进行数据统计、对数转换、正态分布检验及相关性分析,使用Origin 2018制作条形图和箱式图,并用ArcMap 10.6和CoreDRAW X8绘制区位采样图和空间分布图。
-
场地中0—1.5 m土壤样品中各重金属含量结果如表4。与河南省土壤元素背景值[33](下文称背景值)相比,96.67%、80%、100%、76.67%、48.33%、98.33%的土壤样品中Pb、As、Cd、Cu、Ni、Hg含量高于背景值,最高含量分别是背景值的135.71、107.02、40.27、153.3、5.32、56.18倍。Pb、As、Cd、Cu、Ni、Hg在表层土壤的平均含量分别为398.45、294.64、0.88、180.87、37.7、0.78 mg·kg−1,分别是背景值的20.33、25.85、11.82、9.18、1.41、22.95倍。与《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)中的第二类用地筛选值[34](下文称筛选值)相比,Cd、Cu、Ni、Hg的含量均在标准限值范围内,而Pb、As的超标率分别是8.33%、43.3%,表层土壤超标率分别是20.0%、65.0%,最大超标倍数分别是3.33、20.33。
重金属变异系数的大小代表其受外界因素影响的程度[35],表层、中层、下层土壤中各元素的变异系数排序分别为:Pb=Cu>As>Cd>Ni>Hg、Cu>As>Pb>Cd>Hg>Ni、As>Pb>Cd>Cu>Hg>Ni,各土层重金属的变异系数均大于0.36[36],均属于高度变异,表明场地重金属含量受硫酸生产活动影响很大。表层和中层土壤中Pb、Cu的峰度和偏度较大,下层土壤中Pb、As的峰度和偏度较大,表明Pb在各土层均存在局部相对高积累,Cu在表层和中层土壤存在局部相对高积累,As在下层土壤存在局部相对高积累。另外,研究区0—1.5 m深度土壤pH值的范围在3.08—10.25之间,平均值为7.56,场地土壤大部分呈碱性。0—0.5 m、0.5—1.0 m、1.0—1.5 m深度的平均pH值分别为7.27、7.55、7.79,其中强酸性(pH≤5.5)、弱酸性(5.5<pH≤6.5)、中性(6.5<pH≤7.5)、碱性(7.5<pH≤8.5)和强碱性(pH>8.5)土壤样品分别占样品总数的6.7%、5.0%、15.0%、60.0%、13.3%。
类似地,我国也有很多针对场地土壤重金属的研究。其中,关于矿区、电镀场地重金属污染的研究较多,如云南某典型矿区场地[4]0—1.0 m土壤Pb、As、Cd、Cu、Hg的平均值分别为982、26.7、14.6、214、1.14 mg·kg−1,该矿区是典型的金属矿,富含铅锌铜镉元素,与此场地相比,硫酸场地的As含量明显富集。江苏某电镀场地[6]0—1.5 m土壤深度Pb、As、Cd、Cu、Ni、Hg的平均值分别为155.37、9.88、0.20、614.68、324.38、0.59 mg·kg−1,与此场地相比,硫酸场地的Pb、As、Cd含量明显富集。而以煤炭为原料的焦化厂也可能会有重金属污染,研究发现山西某焦化遗留场地[9]表层土壤As、Cu、Hg的平均值分别为11.29、24.51、0.24 mg·kg−1,与此场地相比,硫酸场地的As、Cu、Hg含量明显富集。因此,与相关场地相比,硫酸场地的土壤重金属含量不容忽视,应该引起重视。
-
掌握重金属污染的空间分布特征是鉴别土壤高污染区域以及污染来源的有效手段[37],运用普通克里金插值分析,得到各重金属在表层土壤的空间分布(图2)。受生产活动的影响,除Hg外,重金属在场地南部的餐厅及仓库区、过磷酸钙生产区和成品库区浓度较低,在北部的过磷酸钙原料区、硫酸原料区、硫酸废渣区及硫酸生产区的浓度较高。表层土壤中,Pb、Cd、Hg的含量均超过背景值,As和Cu含量大部分超过土壤背景值,Ni的含量部分超过土壤背景值,Pb仅在过磷酸钙区和硫酸生产区的部分点位超标,As在场地的大部分区域均超标。
表层土壤中,各重金属的高含量值主要出现在过磷酸钙原料区的S3、S14、S20号点,硫酸原料区的S8、S21、S1号点,硫酸废渣区的S10、S19号点,因此该场地表层土壤重金属的产生主要是由过磷酸钙原料、硫酸原料及硫酸废渣堆积造成的。各重金属的高含量值均在过磷酸钙原料场出现,表明过磷酸钙原料的堆积会引起Pb、As、Cd、Cu、Ni、Hg的释放。除过磷酸钙原料区外,Cu的最高含量在S19号点,Ni、Cd的最高含量在S10号点,它们的高含量受硫酸废渣的堆积影响最大。Pb的最高含量在S21号点,该点的Pb含量受到硫酸原料的堆积影响严重。As的最高含量在S8号点,同时S19及S1的含量也很高,所以硫酸原料、废渣的堆积都会引起As的大量释放。Hg的最高含量在S11号点,此点位早期利用了硫铁矿渣进行土壤填埋平整,取样时可能采集到了富含Hg的矿渣,导致Hg浓度的异常,具体原因仍待进一步探究。除此点外,Hg浓度在S8号点、S19号点也较高,可能是由硫酸原料、废渣堆积所造成的。另外,由于场地南部的餐厅及仓库区和成品库区距硫酸原料区和过磷酸钙原料区较近,且地势低于硫酸原料区,并在硫酸原料区及过磷酸钙原料区的下风向位置,在地表径流的冲刷和风力的作用下,硫酸原料区和过磷酸钙原料区的重金属迁移至餐厅及仓库区和成品库区,导致表层土壤异常。
各重金属平均含量在0—1.5 m土壤深度的变化如图3所示,所有重金属的平均含量均超过背景值,与筛选值相比,As的平均含量均超标,其它重金属均未超标。除Ni的含量随深度的增加而增加外,其它重金属均呈表面聚集,表现出明显地外源输入,这与李晓晓等[38]统计分析土壤重金属的垂向迁移时得到的重金属主要在表层土壤中积累的结论一致。下层土壤中Pb、As、Cd、Cu、Hg的含量,较表层土壤分别减少61%、71%、22%、39%、38%,相较于某土壤质地为粉质黏土的电镀场地[7],重金属的表面聚集现象较弱,这可能与土壤质地有关,本场地土壤主要为砂土,土壤粒径大,渗透性好,有利于表层土壤中重金属向下迁移。同时,当中层土壤渗透性好,而深层土壤黏性大、保水性好时,重金属的含量会随深度的增加先降低后升高[39],这与本研究的Pb、Cd的垂直分布一致。土壤pH也会影响重金属的迁移,土壤酸性越强,重金属更易溶于水中,更易随水向下迁移[40]。吴燕玉等[41]发现,随着土壤酸性的增强Cd、Pb、Cu的淋失率越大。程睿[42]研究发现,Pb、As含量与pH呈显著负相关。本研究中As、Cu在表层比在中层更易迁移,且场地的平均pH随深度的增加而增加,与前人研究得出的土壤酸性越强重金属越容易迁移的规律一致。除土壤的理化性质外,金属元素自身的性质也会影响其在土壤中的迁移[43],例如史锐等[39]发现,Cu的下移活跃于Pb是由Pb的水溶性低于Cu而导致的。除上述外,当多种重金属共存时,会发生竞争或者促进吸附作用。刘继芳[44]研究发现,竞争性强的Cu可以把Cd从吸附位上交换下来。赵兴敏[45]研究发现,Cr(Ⅵ)和 As(Ⅴ)共存时具有相互促进吸附的作用。因此重金属在土壤中的纵向迁移是一个复杂的过程,它不仅受土壤理化性质的影响,还与元素自身的性质有关,同时当多种重金属共存时情况会更加复杂。
由硫酸场地土壤重金属的空间分布特征可知,重金属的分布与场地功能分区有较强的相关性,选取超标元素As、Pb在各个功能区0—3 m深度土壤的含量,以进一步分析重金属的迁移,如图4所示。受硫酸原料及过磷酸钙原料堆积的影响,Pb仅在过磷酸钙原料区和硫酸原料区超标,表现出明显的垂向迁移,浓度最高点在过磷酸钙原料区的S20号点的1—1.5 m处,浓度是2660 mg·kg−1,超标倍数为3.3倍。As在所有功能区均有超标,浓度最高值在硫酸原料区的S1号点的0.5—1 m深度处,浓度为1220 mg·kg−1,受硫酸原料、废渣及过磷酸钙原料堆积的影响,硫酸原料区、过磷酸钙原料区以及硫酸废渣区超标严重,最大超标倍数分别为20.3、14.5、12.4倍。硫酸生产区内As超标也较严重,最大超标倍数达8.3倍,其中5号点位于焙烧与净化车间之间,净化车间产生的废酸可导致As含量异常,由于该点位的土壤呈碱性,因此As超标可能是由硫铁矿焙烧时产生的矿尘沉降导致的。以上功能区中As均发生了明显的垂向迁移,其中,硫酸原料区和硫酸生产区的浓度最大值均不在土壤表层,且各功能区土壤层最底部均有As超标。另外,餐厅及仓库区、成品库区及过磷酸钙生产区超标相对较轻,仅表层土壤超标,餐厅及仓库区、成品库区可能是硫酸原料区和过磷酸钙原料区的重金属,在地表径流的冲刷和风的影响下迁移造成的;过磷酸钙生产区的超标点位13号点位于熟化车间,可能是对原料进行熟化翻堆时,导致了重金属的释放。
-
重金属的来源是否一致可以通过相关性判断[46]。对重金属含量及pH做相关性分析(表5),重金属Cd与Pb极显著相关,As与Cu、Hg极显著相关、与Pb、Cd显著相关,说明这些重金属来源可能一致。除硫铁矿外,过磷酸钙的生产原料磷矿石中也含有重金属元素[47-49],因此硫酸和过磷酸钙的生产均会引起As、Cu、Hg、Pb、Cd、Ni等重金属的释放。pH值与所有重金属含量都呈负相关,其中pH与Cu、As显著负相关,硫酸的生产活动或者硫铁矿的氧化导致土壤pH值的降低,促进了Cu、As的释放,在本次研究中所有酸性土样中As超标率为85.7%,表层酸性土样中As超标率为100%。
为进一步探究重金属的垂向迁移行为,对0—1.5 m场地土壤间各重金属的含量进行相关性分析,表层和中层土壤间,As、Cd、Hg含量有显著相关性,分别是As(0.624,P<0.01)、Cd(0.623,P<0.01)、Hg(0.572,P<0.05),并且As、Cd、Hg在中层土壤的变异系数高于表层土壤,说明表层土壤中的As、Cd、Hg向中层土壤发生了迁移;中层和下层土壤间,仅Hg、Pb、Ni含量有显著相关性,分别是Hg(0.849,P<0.01)、Pb(0.778,P<0.01)、Ni(0.601,P<0.01),并且Hg、Pb、Ni在底层土壤的变异系数高于中层土壤,表明中层土壤中的Hg、Pb、Ni向下层土壤发生了迁移,这与前述的重金属的垂向分布情况一致。
-
主成分分析可以作为判别重金属来源的有效手段[50]。采用KMO和Bartlett法对土壤中重金属含量数据进行检验,得到KMO为0.534(>0.5),Bartlett球度检验的相伴概率为0.000(<0.05),表明可进行主成分分析[51]。提取4个特征值较大的成分,为使得到的数据更加真实,使用最大方差法,计算出旋转后的成分矩阵,累计方差贡献率为90.724%(表6)。主成分1和2中,分别是Pb-Cd和Cu-As的因子载荷较大,且Pb-Cd、Cu-As显著相关,两组元素含量最高值分布在过磷酸钙原料区和硫酸原料区,并且Cu的含量最高值在0.5—1.0 m处,结合重金属的含量特征和空间分布可知,Pb-Cd、Cu-As的主要来源为过磷酸钙原料和硫酸原料堆积。主成分3中,Hg、As为主要因子,且Hg-As显著相关,Hg含量最高值在硫酸生产区(0.5—1.0 m深度),由上文可知As在硫酸生产区的含量也较高,因此该成分主要来源为硫酸生产。主成分4中,Ni是主要因子,相关研究表明Ni更多来自成土母质[52],结合前文对含量特征、空间分布的分析,Ni的变异系数相对较小,且与其它重金属均不具有相关性,污染程度及生态风险均较低,但Ni中也有存在部分污染,所以Ni可能是自然与人为的混合源。
-
考虑到0.5 m深度以下的土壤仍受硫酸厂生产活动的影响很大,所以对0—1.5 m深度的土壤重金属污染进行评价。由公式(1)、(2),并结合表2,可得重金属污染评价结果(图5、表6)。由图5可明显看出,Hg、As、Cd、Pb是重度污染,Cu、Ni分别是中度和轻度污染,并且重金属Ni的大多数点位Pi值小于1,Cu的Pi值大部分小于2,Hg、As、Cd、Pb的Pi值大部分大于3。以上结果说明Hg、As、Cd、Pb污染严重,以土壤背景值为标准,Hg、As是该硫酸场地最主要的污染因子。
由表6可知,场地土壤中P综合范围为1.73—102.05,平均值为16.29,无清洁和尚清洁级别,轻度污染、中度污染和重度污染分别占1.67%、3.33%、95%,研究区各深度的土壤均受到重金属污染,且大部分为重度污染。各功能区的内梅罗综合污染指数平均值排序为:过磷酸钙原料区>硫酸原料区>硫酸废渣区>硫酸生产区>成品库区>过磷酸钙生产区>仓库及餐厅区,均为重度污染,场地重金属污染受过磷酸钙原料、硫酸原料及硫酸废渣堆积的影响很大。
-
由公式(3)、(4),并结合表2,可得硫酸场地土壤重金属潜在生态风险评价结果(图6、表7)。由图6(a)可以看出,重金属Hg处于极强风险范围,Cd、As处于强风险范围,Pb处于中度风险范围,Cu、Ni元素处于轻度风险范围,各元素的潜在生态风险指数变化范围大,这与场地中存在元素高值点有关,并与前文所述的强空间变异的结果相符。Hg是影响最大的风险因子,既因为其含量高于背景值很多,又因为其毒性系数大。由6(b)可得,场地土壤(0—0.5 m)中重金属RI的范围是206—4084,平均值是1796,场地土壤整体上处于极强潜在生态风险。各区域的潜在生态风险指数排序为:过磷酸钙原料区>硫酸原料区>硫酸废渣区>硫酸生产区>成品库区>过磷酸钙生产区>餐厅及仓库区,硫酸原料区、硫酸生产区及成品库区都是极强生态风险级别,过磷酸钙生产区、餐厅及仓库区是强生态风险级别,由此可见硫酸厂的生产活动对场地各个区域造成的生态风险都较大。
对土壤重金属污染进行评价时,选用的标准不同,得出的结果也会不同[53],本研究是以土壤背景值为参比标准进行的污染评价。对比以土壤背景值为参比值的相关场地土壤重金属研究,上海市再开发利用工业场地中重金属RI值范围为87.58—398.59[54];某废弃钨冶炼场地的RI值范围为225.74—669.84[55];某锌厂遗留场地的RI值范围为9.91—1705.19,平均值为465[56];某电石渣堆放场重金属RI值范围为90.5—1273.2[57];某焦化厂土壤重金属RI值范围17.3—5061.6,平均值为1318.4[9];本场地RI平均值均大于以上场地,可以发现废弃硫酸场地土壤的重金属潜在生态风险处于较高水平,因此该类废弃硫酸场地的重金属污染应该引起重视。
-
(1)0—1.5 m土壤中,Pb、As、Cd、Cu、Ni、Hg高于背景值的样品占比分别为96.67%、80%、100%、76.67%、48.33%、98.33%,表层土壤中各重金属的平均含量是背景值的1.41—25.85倍。与筛选值相比,Cd、Cu、Ni、Hg的含量均在标准限值范围内,而Pb、As的超标率分别是8.33%、43.3%。
(2)表层土壤中,重金属在场地南部的餐厅及仓库区、过磷酸钙生产区和成品库区浓度较低,在北部的过磷酸钙原料区、硫酸原料区、硫酸废渣区及硫酸生产区的浓度较高;垂直方向上,重金属整体上呈表面聚集的同时,表现出明显的垂向迁移,另外重金属含量表现出了不同的纵向变化,Ni的含量一直增加,Cu的含量先增加后降低,Cd、Pb的含量先降低后升高,As、Hg的含量一直降低。
(3)Pb仅在硫酸原料区和过磷酸钙原料区超标,最大浓度和超标倍数分别是2660 mg·kg−1和3.3倍。As在所有功能区均超标,硫酸原料区、过磷酸钙原料区、硫酸废渣区超标严重,在土壤层最底部依然超标,最大超标倍数达12.4—20.3倍。另外受硫酸生产工艺的影响,硫酸生产区的As也超标严重,最大超标倍数达8.3倍。
(4)与其它类型场地土壤重金属污染相比,硫酸场地重金属污染严重。以土壤重金属背景值为标准,0—1.5 m深度的场地土壤均被重金属污染,其中95%的土壤处于重度污染水平,主要的污染因子是Hg和As;场地土壤整体上处于极强生态风险,主要的风险因子是Hg。不同功能区的污染程度和潜在生态风险依次为,过磷酸钙原料区>硫酸原料区>硫酸废渣区>硫酸生产区>成品库区>过磷酸钙生产区>餐厅及仓库区。
(5)硫酸及过磷酸钙的生产均会产生Pb、Cd、Cu、Ni、As、Hg污染,场地土壤中Pb、Cd主要来自过磷酸钙原料的堆积,Cu、As主要受硫酸原料堆积的影响,Hg主要受到硫酸生产的影响,而Ni则同时受到生产活动和地质背景的影响。
某典型废弃硫酸场地土壤重金属污染特征与评价
Heavy metal pollution characteristics and assessment in soil of a typical abandoned sulfuric acid site
-
摘要: 硫酸生产场地可能存在严重的土壤重金属污染,调查并分析硫酸场地土壤重金属污染及迁移规律是其安全利用的基础。本研究以某废弃硫酸场地为例,采集0—3 m深度范围的土壤样品,测定其中的Pb、Cd、Cu、Ni、As、Hg含量,分析重金属的空间分布特征、来源及迁移行为,并对其进行内梅罗综合污染指数和潜在生态风险指数评价。结果表明,Cd、Cu、Ni、Hg的含量均在GB36600—2018中的第二类用地筛选值以下,而Pb、As的超标率分别是8.33%、43.3%。表层重金属主要分布于原料和废渣的堆积区。除Ni外,重金属整体呈表面聚集,同时表现出明显的垂向迁移。Pb仅在硫酸原料区和过磷酸钙原料区超标;As在所有功能区均超标,在土壤层最底部3 m处依然有超标点位,其中最大值出现在硫酸原料区,超标倍数达20.3倍。不同功能区土壤的污染程度和潜在生态风险依次为:过磷酸钙原料区>硫酸原料区>硫酸废渣区>硫酸生产区>成品库区>过磷酸钙生产区>餐厅及仓库区。各功能区均属于重度污染,除过磷酸钙生产区和餐厅及仓库区属于强生态风险外,其它功能区均处于极强生态风险。场地土壤中Pb、Cd主要来自过磷酸钙原料,Cu、As主要受硫酸原料堆积的影响,Hg主要来源于硫酸生产,Ni则同时受到生产活动和地质背景的影响。Abstract: There may be serious pollution of soil with heavy metals in the sulfuric acid production sites, therefore the safe utilization of such sites should be based on the investigation and analysis of soil heavy metals pollution and migration law. This study takes an abandoned sulfuric acid site as an example, the contents of Pb, Cd, Cu, Ni, As and Hg were determined in soil with depth of 0—3 m. The spatial distribution characteristics, the sources and migration behaviors of heavy metals were analyzed. The heavy metals pollution was assessed by the Nemerow comprehensive pollution index and potential ecological risk index. The results showed that the contents of Cd, Cu, Ni and Hg were lower than the filter values of the second type of land in GB36600—2018, while the over-standard rates of Pb and As were 8.33% and 43.3%, respectively. The surface heavy metals were mainly distributed in the accumulation areas of raw materials and waste residues. The heavy metals were aggregated on the surface as a whole except for Ni and showed obvious vertical migration. Pb exceeded the standard only in sulfuric acid and superphosphate raw material area, while As exceeded the standard in all functional areas. There were still sampling points exceeding the standards at the bottom of the soil layer (the depths of 3 m), and the maximum exceeding multiple was 20.3 times in the sulfuric acid raw material area. The pollution levels and potential ecological risks of soil in different functional areas were as follows: superphosphate raw material area > sulfuric acid raw material area > sulfuric acid waste residue area > sulfuric acid production area >finished products warehouse area > superphosphate production area > restaurant and warehouse area. All the functional areas are at the serious pollution level. Except for the superphosphate production area and the restaurant and warehouse area belong to the strong ecological risk, other functional areas are in the extremely strong ecological risk. Pb and Cd in the site soil are mainly derived from the superphosphate materials, Cu and As are mainly affected by the sulfuric acid materials, Hg mainly comes from the production of sulfuric acid, and Ni is both controlled by production activities and geological background.
-
Key words:
- sulfuric acid site /
- heavy metal in soil /
- spatial distribution /
- migration /
- pollution assessment
-
2021年,我国城市剩余污泥年产量达6.5×107 t(80%含水率)[1]。剩余污泥作为污水生物处理过程产生的副产物,主要由微生物及其胞外聚合物组成,组分复杂,含有氮、磷、有机质以及重金属、有机污染物和病原微生物[2]。好氧堆肥是实现污泥稳定化、无害化和资源化的关键技术之一[3],污泥经好氧堆肥后可土地利用,但其土地利用具有潜在的环境健康风险。
有研究表明,我国部分城市污水处理厂产生污泥的汞质量分数较高。污泥中的汞主要来自污水处理过程中汞的迁移,因此,污泥的土地利用将增加土壤的汞污染风险[4]。汞的生物毒性与其形态密切相关。其中,甲基汞具有高的神经毒性、亲脂性和生物累积效应[5]。汞的甲基化主要由硫酸盐还原菌(Sulfate-reducing bacteria,SRB)、铁还原菌(Iron-reduction bacteria,FeRB)和产甲烷菌(Methanogens)等[6]微生物在厌氧环境下以Hg(II)为底物转化为甲基汞。同时,在好氧环境可能发生甲基汞的去甲基化。好氧堆肥由于间歇曝气会导致好氧-缺氧环境的交替形成;而且,污泥中含有大量微生物,可能发生汞的微生物甲基化或甲基汞去甲基化,影响汞的形态及生物毒性。
好氧堆肥主要发生在有机物降解转化为腐殖质的腐熟化过程。溶解性有机物(Dissolved Organic Matter,DOM)是污泥好氧堆肥过程重要的中间产物,其不仅参与微生物代谢活动,也与重金属形态转化有关。DOM与重金属可以形成较强的络合物[7],从而改变重金属形态。ZHANG等[8]发现,生物炭强化了土壤中DOM的释放,进而加强了好氧堆肥过程Zn和Ni的钝化。王鑫宇等[9]在猪粪好氧堆肥中发现,DOM中胡敏酸的羧基、酚羟基官能团能络合重金属,导致重金属Cu、Zn、Pb、Cd转化为络合态和沉淀态。而汞的甲基化和甲基汞去甲基化主要以微生物过程为主,DOM关系到汞形态转化相关微生物的代谢过程。同时,Hg(0)易于挥发,堆肥过程曝气可能导致汞的散失,影响堆肥后污泥汞、甲基汞的质量分数。因此,污泥好氧堆肥对汞特别是汞的甲基化可能产生明显的影响,进而决定了堆肥后产物汞和甲基汞的质量分数,影响其后续土地利用的环境健康风险。同时,明确好氧堆肥过程汞甲基化或去甲基化行为及其变化规律,将有利于对该过程汞污染的控制提供理论指导。
本研究对北方某污泥好氧堆肥过程采样,通过三维荧光光谱分析结合区域积分表征污泥好氧堆肥过程中DOM腐殖酸类变化特征,分析污泥好氧堆肥过程中汞、甲基汞质量分数的变化,通过质量衡算和相关性分析好氧堆肥对污泥中汞、甲基汞的影响。
1. 材料与方法
1.1 实验材料
本实验于北方某污泥好氧堆肥厂开展,污泥取自于厂区周边的污水处理厂污水生物处理过程产生的剩余污泥,经离心脱水后运抵污泥堆肥厂。堆肥辅料为稻壳,以调节堆肥碳氮比和含水率并增加堆体孔隙率,返混料为好氧堆肥结束的出槽物料,为堆体提供接种微生物。物料的基本特征如表1所示。
表 1 堆肥物料的基本特征Table 1. Basic characteristics of raw materials物料种类 含水率/% VS/% pH EC/(μs·cm−1) 污泥 80.6 58.2 7.0 252 稻壳 13.4 82.3 6.8 483 返混料 50.2 41.4 8.3 1 409 混合料 62.8 63.1 7.7 1 257 1.2 实验方法
好氧堆肥采用强制通风静态槽式工艺,发酵槽长37 m、宽5 m、高1.8 m。发酵槽底部有2根平铺的曝气管,管道上每10 cm分布1个曝气孔,经罗茨鼓风机(JGR-MJ300H)正压鼓气曝气。好氧发酵时间为25 d。
堆肥起始,按照污泥湿重的18%加入稻壳(辅料)和200%的比例加入返混料,掺混后入槽。好氧堆肥过程的曝气时间为5.5 h·d−1,翻堆时间为入槽后的第4、10、17 d。于堆肥起始、过程翻堆和堆肥结束取样,即第1、4、10、17、25 d取样。取样位置为槽体中间点,通过专用采样器于堆体垂直方向深度20、90、160 cm处依次采样,并通过“四分法”将样品掺混均匀,取约500 g样品用于实验室分析。
1.3 分析方法
堆肥鲜样经真空冷冻干燥机(FD-1A-50,北京博医康仪器有限公司)冷干后,研磨过100目尼龙筛得到干样品。DOM的提取是将样品干重与超纯水按固液质量比1∶10混合均匀,200 r·min−1水平振荡2 h后离心10 min(4 ℃,10 000 r·min−1),上清液过0.45 μm滤膜,所得滤液为实验所需的DOM溶液[10],三维荧光采用日本HITACHI公司F-4 700测定,总汞质量分数的测定采用固体测汞仪(Hydra Ⅱ,美国利曼)测定。甲基汞(MeHg)采用溶剂萃取-乙基化衍生-气相色谱与冷原子荧光光谱联用法(GC-CVAFS)[11],重金属汞的形态分析采用BCR连续分级提取法提取[12],采用ICP-MS(NexION 300D,美国)测定。三维荧光中区域划分如表2所示。
表 2 荧光积分区域Table 2. Five fluorescence integration regions nm区域 有机物类型 激发波长/Ex 发射波长/Em Ⅰ 芳香蛋白类物质Ⅰ 220~250 280~330 Ⅱ 芳香蛋白类物质Ⅱ 220~250 330~380 Ⅲ 富里酸类物质 220~250 380~500 Ⅳ 溶解性微生物代谢产物 250~280 280~380 Ⅴ 腐殖酸类物质 250~400 380~500 FRI分区的相应计算如式(1)~(3)所示[26]。
Φi,n=MFiΦi=MFi∫Ex∫EmI(λExλEm)dλExλEm (1) ΦT,n=∑5i=1Φi,n (2) Pi,n=Φi,nΦT,n×100% (3) 式中:Φi,n表示荧光积分区域i的积分标准体积,au·nm2;I(λExλEm)表示在发射波长λEm和激发波长λEx下的荧光强度,au;Φi表示荧光积分区域i的积分体积,au·nm2;ΦT,n表示5个荧光区域积分标准体积之和,au·nm2;MFi表示倍增系数,它的值为总的荧光区域积分面积与某一荧光区域i的积分面积的比值;Pi,n为某一荧光区域i的积分标准体积在总积分标准体积中所占的比例。
采用SPSS 22软件进行数据的相关性分析,冗余分析(RDA)则采用Canoco 5软件。总汞以及甲基汞质量衡算是基于堆肥堆体初始物料质量以及堆肥过程中每次采样有机质质量分数数据计算出对应堆体总质量,再根据样品中总汞以及甲基汞质量分数计算得出,堆体质量和水分质量的计算如式(4)~(5)所示。
MDry−n=Mwet−1×(1−Cwater−1)×(1−Corganic−1)1−Corganic−n (4) Mwater−n=MDry−n1−Cwater−n (5) 式中:Cwater-1表示堆肥起始堆体的含水率;Corganic-1表示堆肥起始堆体的有机质质量分数;Mwet-1为堆肥起始堆体的湿重,t;MDry-n表示堆肥第n天的堆体干重,t;Cwater-n为第n天堆体的含水率;Mwater-n为第n天的堆体水分质量,t。
2. 结果与讨论
2.1 污泥堆肥过程中甲基汞变化特征
污泥堆肥起始堆体总汞的质量分数为(3.20±0.30) mg·kg−1,堆体总汞的质量为(272.56±25.71) g,堆肥结束后堆体中总汞质量分数为(3.12±0.19) mg·kg−1,总汞的质量降低到(211.10±12.97) g,总汞质量分数未出现明显变化趋势,总质量下降了22.5%(表3)。程焱等[13]在污泥堆肥研究中发现,堆体中总汞的质量分数在堆肥结束后降低了25.0%,由(1.23±0.09) mg·kg−1降低到(0.93±0.09) mg·kg−1。堆肥过程中由于微生物的分解作用导致有机质降低,堆体质量下降,相应地产生重金属的“相对浓缩效应”[14],重金属质量分数往往在堆肥结束后增加。但对于汞,若其转化形成易于蒸散发的Hg(0),则会导致堆肥过程中污泥中汞的散失,这可能是堆肥后污泥汞质量分数变化不大,但质量下降明显的主要原因。
表 3 堆肥过程总汞及甲基汞质量衡算Table 3. Mass balance calculation of THg and MeHg in composting process时间/d 水分质量/t 干重/t 堆体总质量/t 总汞质量/g 甲基汞质量/g 1 143.81 85.19 229.00 272.56±25.71 0.37±0.02 4 121.96 77.41 199.37 275.94±22.60 0.38±0.02 10 116.34 75.30 191.64 258.50±9.37 0.24±0.01 17 95.78 70.41 166.19 262.30±18.22 0.32±0.03 25 78.32 67.60 145.92 211.10±12.97 0.28±0.01 汞的毒性与其形态密切相关。如图1(b)所示,通过BCR法对堆肥过程中汞的形态变化进行分析,重金属汞的生物可利用态(可交换态+可还原态)占比从第1 d的4.78%下降到堆肥结束的3.82%,残渣态的占比从64.25%升高到74.66%。堆肥过程中汞生物可利用态占比降低而残渣态占比升高。这说明,在堆肥过程中汞逐渐从迁移能力较强、生物可利用性强的形态向更为稳定的残渣态转化[15]。JANOWSKA等[16]的研究同样发现,污泥好氧堆肥过程中汞的生物可利用态从堆肥开始时的0.43%降低到堆肥结束时的0.21%,而残渣态占比从堆肥起始的53.26%上升到堆肥结束的64.55%。
而甲基汞质量分数在堆肥初期为(4.36±0.26) ng·g−1,堆体初期的甲基汞质量为(0.37±0.02) g,堆肥结束时甲基汞质量分数为(4.11±0.21) ng·g−1,堆体甲基汞质量下降到(0.28±0.01) g,甲基汞质量分数并未发生明显改变,但堆体中甲基汞质量减少了24.3%(表3),与总汞的散失量(22.5%)较为接近。这可能发生了甲基汞的去甲基化后,生成易于挥发的Hg(0),随堆肥过程散失。程焱等[13]研究发现,污泥好氧堆肥结束后甲基汞质量分数从(5.9±0.2) ng·g−1下降到(3.2±0.1) ng·g−1。余亚伟等[17]的研究表明,污泥经过堆肥后甲基汞质量分数降低,由堆肥初始的(6.79±0.53) ng·g−1降低到(2.58±0.26) ng·g−1。以上结果与本研究结果相一致,这说明好氧堆肥过程甲基汞会削减,并极有可能转化为Hg(0),进一步导致污泥中汞的散失。
汞的甲基化主要是通过非生物甲基化和生物甲基化2种途径实现[18],非生物甲基化的甲基供体来源是小分子的碘甲烷和大分子的腐殖酸等[19],生物甲基化则主要由厌氧微生物驱动,通过胞内酶促反应将无机汞转化为甲基汞,厌氧微生物的活性是影响微生物汞甲基化过程的重要因素之一[20]。堆肥过程中鼓风曝气和固定翻堆的方式使得堆体一直维持一定的氧气浓度,主要处于好氧环境,容易发生甲基汞的氧化去甲基化作用[13],结合质量衡算(图1(a)),甲基汞在第10 d发生了明显的去甲基化,质量降低,但总汞质量变化不大,去甲基化后形成了Hg(0),在第17 d翻堆以后,于17~25 d开始散失。也因此,汞可氧化态比例随堆肥过程降低,而残渣态比例增加。
2.2 污泥好氧堆肥过程有机物的腐殖化特征
在好氧堆肥过程中,堆体温度是影响堆肥品质的关键因素,高温不仅可以促进堆体中水分的挥发,提高微生物降解有机物的效率,而且根据我国《城镇污水处理厂污泥处理稳定标准》[21]规定,堆肥过程中堆体的温度要到达55~65 ℃,维持3 d以上,才能有效杀灭堆体中的病原微生物。本研究的污泥好氧堆肥过程中,高温期(>55 ℃)维持了13 d(图2),占整个堆肥周期的52%,达到污泥无害化处理的要求,为堆肥腐熟化提供了条件。
好氧堆肥是利用微生物的分解作用将不稳定的有机质降解转化为稳定的腐殖质过程[22],DOM是参与该过程的主要物质,随着好氧堆肥的进行,DOM中的有机组分也趋于稳定。其中,DOM特定的有机组分具有的荧光特性能反映堆肥过程中腐殖质转化及堆肥腐熟化[10]。堆肥过程中的DOM三维荧光光谱如图3所示。其中,峰A(λEx/λEm=225 nm/315 nm)、峰B(λEx/λEm=230 nm/330 nm)代表类蛋白质组分(如类酪氨酸和类色氨酸),与芳香族氨基酸有关,峰C(λEx/λEm=280 nm/335 nm)不但与可溶性的微生物降解副产物有关,还与苯酚类化合物有关[23]。
在堆肥的第4 d开始,峰A和峰B的荧光强度开始减弱。这说明,堆体中溶解性蛋白质类组分被微生物分解,荧光强度减弱。毛宇翔等[24]同样发现,污泥好氧堆肥过程类蛋白物质逐渐被微生物降解,其荧光强度逐渐降低。在堆肥第10 d,峰A、峰B、峰C的荧光强度进一步降低。这说明,小分子的蛋白类有机物和微生物代谢产物基本在堆肥高温期被微生物降解[25],好氧堆肥微生物代谢活跃。
为了进一步揭示堆肥过程中DOM组分的变化,通过对不同荧光区域进行体积积分(FRI),从而对DOM的不同荧光组分半定量分析[10]。将EEM图谱划分成5个区域(图3),其中区域Ⅰ、区域Ⅱ表示芳香类蛋白物质,区域Ⅲ表示富里酸类物质,区域Ⅳ表示溶解性微生物代谢产物,区域Ⅴ表示腐殖酸类物质[26]。如图4所示,堆肥过程中PⅠ,n和PⅡ,n(Pi,n表示第i区域的积分面积占比)在堆肥过程中逐渐降低,在第10 d达到最低值。这说明,堆体中大量小分子的蛋白类物质在堆肥高温期被微生物降解利用,第17~25 d基本保持稳定。PⅢ,n和PⅤ,n在堆肥的前10 d迅速上升。这说明,在堆肥前期,大量的蛋白类物质被微生物降解转化为富里酸类和腐殖酸类物质(PⅠ,n、PⅡ,n和PⅢ,n、PⅤ,n均呈显著负相关,PⅠ,n和PⅢ,n、PⅤ,n相关系数分别为−0.997和−0.999,且均p<0.01,PⅡ,n和PⅢ,n、PⅤ,n相关系数分别为−0.945和−0.976,且均p<0.05),在17~25 d,基本维持不变,说明堆肥稳定腐熟。而堆肥前10 d为有机物的快速腐熟阶段,微生物代谢活性高,有机物快速降解转化生成腐殖质。
2.3 汞、甲基汞与堆肥腐熟化特征的关系
如图5(a)所示,基于RDA冗余分析,汞的质量变化主要与堆肥过程堆体含水率和有机质变化呈正相关,而甲基汞质量的变化则主要与荧光光谱区域I、II、IV体积积分呈正相关性,和区域III和V呈负相关。具体为,堆肥过程汞的质量与堆肥过程含水率的变化呈正相关关系(r=0.903,p<0.05)(图5(b))。与其他重金属不同,Hg(0)在常温常压下便易于蒸散发。GIOVANELLA等[27]研究认为,拥有merA基因操纵子的细菌能够通过酶反应将Hg(II)还原为Hg(0)。根据BISSWANGER等[28]研究发现,当温度升高时(55 ℃),汞还原酶及其底物的动能增加,酶和底物之间碰撞频率增加,酶活性增强,本实验中堆肥过程堆体温度达55 ℃以上的天数占整个堆肥周期的52%,微生物生化反应活性高,有利于发生Hg(II)向Hg(0)转化的酶催化反应,并在翻堆、曝气过程随着水蒸汽散失。
而甲基汞质量与3D-EEM光谱区域Ⅲ体积积分占比呈负相关关系(r=−0.897,p<0.05)(图5(c)),与区域Ⅳ体积积分占比呈正相关关系(r=0.933,p<0.05)(图5(d))。这说明,甲基汞的去甲基化可能与好氧堆肥过程有机物的降解而腐熟化有关联。汞的微生物甲基化与去甲基化作用是2个竞争过程,二者共同控制着甲基汞的净产生和生物积蓄[29]。HU等[30]发现,甲基汞与类胡敏酸类物质能够形成复合物。类胡敏酸类物质的质量分数的增加能够增强甲基汞的去甲基化,而类胡敏酸类物质在堆肥过程中会随着富里酸向类胡敏酸转化而增多[31]。通过FRI可以看出,堆肥过程中会有大量的富里酸类物质生成(区域Ⅲ),而类胡敏酸作为腐殖质的主要构成物质(区域Ⅴ),在堆肥过程中同样大量生成。富里酸、胡敏酸等腐殖酸与无机汞络合降低生物甲基化作用后,汞的去甲基化作用占主导。区域Ⅳ即溶解性微生物代谢产物其主要成分是多糖、类蛋白质等,随着堆肥反应的进行,微生物活性逐渐减弱,这些物质会逐步被微生物降解转化成更加稳定的富里酸、胡敏酸等腐殖质类物质并与无机汞结合,促使堆肥过程中汞呈现净去甲基化,甲基汞质量逐渐降低。因此,EEM中溶解性微生物代谢副产物和甲基汞质量成正相关。由此说明,堆肥前期(本研究中的堆肥前10 d)的有机物快速腐熟化,一方面增加了微生物的代谢活性,另一方面,生成的腐殖质类物质也进一步促进了甲基汞的去甲基化,但该推测仍需进一步的研究加以证明。污泥好氧堆肥过程甲基汞形态转化形成Hg(0)可能进而蒸发散失。好氧堆肥一方面促进甲基汞的去甲基化降低堆肥产物中汞的健康风险,另一方面,堆肥过程散失的汞可能需要采取一定的控制措施,避免其进入大气环境。
3. 结论
1)堆肥前后堆体汞质量下降了22.5%。同时,汞的生物可利用态降低,残渣态占比升高。甲基汞质量分数未有明显变化,但堆肥前后堆体中甲基汞质量减少了24.3%。
2)污泥好氧堆肥前10 d发生着芳香类蛋白物质、溶解性微生物代谢产物的快速降解,相应地,富里酸和腐殖酸类物质增加,且好氧堆肥的有机物腐熟化与堆肥过程甲基汞质量的变化具有显著的正相关性。
3)甲基汞在好氧堆肥快速腐熟期(第10 d)发生去甲基化,堆肥生成的富里酸、胡敏酸等腐殖质类物质与甲基汞形成复合物,促使甲基汞去甲基化并可能生成了可挥发态的Hg(0),在堆肥17 d后随翻堆、曝气作用而散失。
-
表 1 标准样品含量及测定结果(mg·kg−1)
Table 1. Content and determination results of standard samples (mg·kg−1)
标准物质Standard substance As Cd Cu Hg Ni Pb GBW07401 标准值 34±4 3.4±0.4 21±2 0.032±0.004 20.4±1.8 98±6 测量值 32.37—34.88 3.32—3.50 18.5—21.7 0.031—0.033 19.5—20.7 97—102 表 2 土壤污染分级标准
Table 2. Soil pollution classification standard
单因子污染指数Single pollution index 污染水平Pollution grade 内梅罗综合污染指数Nemerow comprehensive pollution index 污染水平Pollution grade Pi≤1 清洁 P综合≤0.7 清洁 1<Pi≤2 轻度污染 0.7<P综合≤1.0 尚清洁 2<Pi≤3 中度污染 1.0<P综合≤2.0 轻度污染 Pi>3 重度污染 2.0<P综合≤3.0 中度污染 P综合>3.0 重度污染 表 3 重金属元素潜在生态风险标准
Table 3. Classification of potential ecological risk
潜在生态风险Potential ecological risk 轻度风险Mild 中度风险Moderate 较强风险Relatively strong 很强风险Strong 极强风险Extremely strong Ei <40 40—80 80—160 160—320 ≥320 RI <108 108—216 216—432 432—864 ≥864 表 4 硫酸场地土壤重金属含量分析(mg·kg-1)
Table 4. Heavy metal concentration in soil of sulfuric acid site (mg·kg-1)
土层Soil layer 重金属Elements 含量范围Content range 平均值Average value 变异系数Coefficient of variation 峰度Kurtosis 偏度Skewness 背景值Background value 筛选值Filter value 表层(0—0.5 m) Pb 28—2660 398.45 1.70 6.01 2.41 19.6 800 As 8.36—871 294.64 1.08 −1.05 0.80 11.4 60 Cd 0.08—2.89 0.88 1.06 0.12 1.26 0.074 65 Cu 2.48—1280 180.87 1.70 8.72 2.88 19.7 18000 Ni 8—120 37.7 0.88 1.07 1.49 26.7 900 Hg 0.03—1.89 0.78 0.63 −0.09 0.72 0.034 38 中层(0.5—1.0 m) Pb 18—435 87.6 1.15 8.02 2.84 19.6 800 As 4.31—1220 213.04 1.68 2.56 1.88 11.4 60 Cd 0.08—1.93 0.65 1.07 −0.92 0.95 0.074 65 Cu 12—3020 221.4 3.00 19.35 4.48 19.7 18000 Ni 12—115 40.65 0.71 0.85 1.26 26.7 900 Hg 0.13—1.91 0.58 0.82 1.74 1.43 0.034 38 下层(1.0—1.5 m) Pb 13—1430 156.25 2.03 15.17 3.77 19.6 800 As 2.1—844 85.49 2.21 15.39 3.80 11.4 60 Cd 0.09—2.98 0.68 1.33 2.31 1.90 0.074 65 Cu 5—463 110.75 1.27 1.38 1.63 19.7 18000 Ni 16—142 47.45 0.78 2.72 1.73 26.7 900 Hg 0.05—1.83 0.48 1.07 1.76 1.64 0.034 38 表 5 土壤重金属及pH的相关性
Table 5. Correlation of heavy metals and pH in soil
元素Element 铅Pb 砷As 镉Cd 铜Cu 镍Ni 汞Hg 酸碱度pH Pb 1 As 0.534* 1 Cd 0.740** 0.535* 1 Cu 0.257 0.690** 0.427 1 Ni 0.290 0.201 0.160 0.144 1 Hg 0.375 0.642** 0.285 0.109 0.157 1 pH −0.039 −0.475* −0202 −0.780** −0.065 −0.035 1 **. P<0.01; *. P<0.05. 表 6 重金属主成分分析成分矩阵
Table 6. Component matrix of principal component analysis of heavy metal concentrations
元素Element 初始因子载荷Initial factor load 旋转后因子载荷Factor load after rotation PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 Pb 0.787 −0.234 −0.175 −0.509 0.893 0.077 0.242 0.185 Cd 0.800 −0.337 −0.247 0.162 0.893 0.292 0.094 0.010 Cu 0.814 −0.199 −0.239 0.345 0.170 0.971 0.016 0.061 As 0.812 0.383 0.147 −0.154 0.343 0.670 0.607 0.077 Hg 0.639 0.703 −0.020 0.118 0.168 0.045 0.969 0.064 Ni 0.536 −0.271 0.790 0.074 0.118 0.068 0.069 0.987 特征值 3.279 0.923 0.795 0.447 1.702 1.596 1.073 1.072 累积方差贡献率 54.652 70.030 83.282 90.724 54.652 70.030 83.282 90.724 表 7 研究区各功能区土壤中重金属污染的内梅罗综合污染评价结果
Table 7. Results of Nemerow comprehensive pollution evaluation of heavy metal pollution in different functional zone in the study area
区域(样品数量)Area (Sample quantity) 综合污染指数范围(平均值)Comprehensive pollution index range (Mean value) 各等级土壤样品数占总土壤样品数的比例/%The proportion of soil samples of each grade to total soil samples 轻度污染Mild pollution 中度污染Medium pollution 重度污染Heavy pollution 过磷酸钙原料区(n=9) 7.84—102.05(38.64) 0.00 0.00 100.00 硫酸原料区(n=12) 3.37—78.92(30.69) 0.00 0.00 100.00 硫酸废渣区(n=6) 9.88—49.22(22.44) 0.00 0.00 100.00 硫酸生产区(n=13) 4.69—47.49(18.71) 0.00 0.00 100.00 仓库及餐厅区(n=6) 1.73—16.28(6.82) 16.67 16.67 66.67 过磷酸钙生产区(n=8) 2.50—26.87(8.73) 0.00 12.50 87.50 成品库区(n=6) 6.05—45.84(18.32) 0.00 0.00 100.00 总计(n=60) 1.73—102.05(23.78) 1.67 3.33 95.00 -
[1] 中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[R]. 北京: 中华人民共和国国土资源部, 2014. State Environmental Protection Administration of China, State Environmental Land and Resources Administration of China . Bulletin of national soil pollution survey[R] . Beijing : State Environmental Land and Resources Administration of China, 2014 (in Chinese) .
[2] 滑小赞, 程滨, 赵瑞芬, 等. 太原市农田土壤重金属污染评价与空间分布特征 [J]. 灌溉排水学报, 2021, 40(3): 101-109. HUA X Z, CHENG B, ZHAO R F, et al. Pollution assessment and spatial distribution of heavy metals in the farmland soils of Taiyuan city [J]. Journal of Irrigation and Drainage, 2021, 40(3): 101-109(in Chinese).
[3] 郭登魁, 朱岗辉, 陈坚, 等. 某废弃硫酸厂场地土壤重金属污染特征及健康风险评估 [J]. 环境污染与防治, 2020, 42(9): 1152-1157. GUO D K, ZHU G H, CHEN J, et al. Pollution characteristics and health risk assessment of heavy metal in soil of abandoned sulfuric acid plant site [J]. Environmental Pollution & Control, 2020, 42(9): 1152-1157(in Chinese).
[4] 叶金利, 田路萍, 吴文卫, 等. 云南会泽者海镇典型矿区场地重金属污染特征及健康风险评价 [J]. 环境监测管理与技术, 2019, 31(3): 36-40. doi: 10.3969/j.issn.1006-2009.2019.03.009 YE J L, TIAN L P, WU W W, et al. Characteristics and health risk assessment of heavy metal pollution in typical mining area in zhehai, Huize County, Yunnan Province [J]. The Administration and Technique of Environmental Monitoring, 2019, 31(3): 36-40(in Chinese). doi: 10.3969/j.issn.1006-2009.2019.03.009
[5] 孙厚云, 卫晓锋, 孙晓明, 等. 钒钛磁铁矿尾矿库复垦土地及周边土壤-玉米重金属迁移富集特征 [J]. 环境科学, 2021, 42(3): 1166-1176. SUN H Y, WEI X F, SUN X M, et al. Bioaccumulation and translocation characteristics of heavy metals in a soil-maize system in reclaimed land and surrounding areas of typical vanadium-titanium magnetite tailings [J]. Environmental Science, 2021, 42(3): 1166-1176(in Chinese).
[6] 陈洁, 施维林, 张一梅, 等. 电镀厂遗留场地污染分析及健康风险空间分布评价 [J]. 环境工程, 2018, 36(4): 153-159. CHEN J, SHI W L, ZHANG Y M, et al. Pollution analysis and spatial distribution of health risk in electroplating abandoned site [J]. Environmental Engineering, 2018, 36(4): 153-159(in Chinese).
[7] 侯文隽, 龚星, 詹泽波, 等. 粤港澳大湾区丘陵地带某电镀场地重金属污染特征与迁移规律分析 [J]. 环境科学, 2019, 40(12): 5604-5614. HOU W J, GONG X, ZHAN Z B, et al. Heavy metal contamination and migration in correspondence of an electroplating site on the hilly lands of the Guangdong-Hong Kong-Macao greater bay area, China [J]. Environmental Science, 2019, 40(12): 5604-5614(in Chinese).
[8] 孟磊, 王琼, 祝怡斌, 等. 赣州某稀土冶炼场地重金属污染特征 [J]. 有色金属(矿山部分), 2020, 72(4): 115-119. MENG L, WANG Q, ZHU Y B, et al. Pollution characteristics of heavy metals in a rare earth smelt plant in Ganzhou [J]. Nonferrous Metals (Mining Section), 2020, 72(4): 115-119(in Chinese).
[9] 王星星, 王海芳. 山西省某焦化厂土壤重金属污染状况分析与评价 [J]. 应用化工, 2020, 49(4): 850-853. doi: 10.3969/j.issn.1671-3206.2020.04.013 WANG X X, WANG H F. Analysis and evaluation of soil heavy metal pollution in a coking plant in Shanxi Province [J]. Applied Chemical Industry, 2020, 49(4): 850-853(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.04.013
[10] 闫卫军. 钢铁企业污染场地土壤环境评价与修复的探讨 [J]. 节能与环保, 2020(10): 35-36. doi: 10.3969/j.issn.1009-539X.2020.10.013 YAN W J. Discussion on environmental assessment and remediation of contaminated soil in iron and steel enterprises [J]. Energy Conservation and Environmental Protection, 2020(10): 35-36(in Chinese). doi: 10.3969/j.issn.1009-539X.2020.10.013
[11] 邢彤, 郑志侠, 赵纯真, 等. 某氨基酸厂搬迁场地土壤重金属污染特征及健康风险评价 [J]. 绿色科技, 2020(18): 51-55. doi: 10.3969/j.issn.1674-9944.2020.18.019 XING T, ZHENG Z X, ZHAO C Z, et al. Characteristics and health risk assessment of heavy metal pollution in soil of relocation sites of an amino acid factory [J]. Journal of Green Science and Technology, 2020(18): 51-55(in Chinese). doi: 10.3969/j.issn.1674-9944.2020.18.019
[12] 李金林, 罗泽娇. 退役化工场地土壤锑污染特征的研究 [J]. 现代农业科技, 2020(24): 130-132. doi: 10.3969/j.issn.1007-5739.2020.24.057 LI J L, LUO Z J. Study on antimony pollution characteristics in soil of a decommissioned chemical site [J]. Modern Agricultural Science and Technology, 2020(24): 130-132(in Chinese). doi: 10.3969/j.issn.1007-5739.2020.24.057
[13] WANG S Y, KALKHAJEH Y K, QIN Z R, et al. Spatial distribution and assessment of the human health risks of heavy metals in a retired petrochemical industrial area, South China [J]. Environmental Research, 2020, 188: 109661. doi: 10.1016/j.envres.2020.109661 [14] 满瑞林, 贺凤, 李波, 等. 我国硫酸行业现状及新技术的发展 [J]. 现代化工, 2015, 35(9): 6-9. MAN R L, HE F, LI B, et al. Current status and new technology development of sulfuric acid industry in China [J]. Modern Chemical Industry, 2015, 35(9): 6-9(in Chinese).
[15] 纪罗军. “十一五”我国硫酸工业回顾及“十二五”展望(一): 有色金属冶炼与烟气制酸 [J]. 硫酸工业, 2011(2): 1-11. doi: 10.3969/j.issn.1002-1507.2011.02.001 JI L J. Review of Eleventh Five-Year Plan and outlook of Twelfth Five-Year Plan in China's sulphuric acid industry(Part one)-Nonferrous metal smelting and metallurgical acid production [J]. Sulphuric Acid Industry, 2011(2): 1-11(in Chinese). doi: 10.3969/j.issn.1002-1507.2011.02.001
[16] 李崇, 廖康程. 2017年中国硫酸行业生产运行状况及2018年展望 [J]. 硫酸工业, 2018(4): 1-5. doi: 10.3969/j.issn.1002-1507.2018.04.002 LI C, LIAO K C. Production and operation of China's sulphuric acid industry in 2017 and outlook for 2018 [J]. Sulphuric Acid Industry, 2018(4): 1-5(in Chinese). doi: 10.3969/j.issn.1002-1507.2018.04.002
[17] 袁俊宏. 我国硫与硫铁矿产业现状及市场分析 [J]. 硫酸工业, 2016(5): 10-17. doi: 10.3969/j.issn.1002-1507.2016.05.002 YUAN J H. Current situation and market analysis of China's sulphur and pyrite industry [J]. Sulphuric Acid Industry, 2016(5): 10-17(in Chinese). doi: 10.3969/j.issn.1002-1507.2016.05.002
[18] 李崇, 廖康程. 2015年中国硫酸行业运行态势分析 [J]. 硫酸工业, 2016(2): 1-4. doi: 10.3969/j.issn.1002-1507.2016.02.002 LI C, LIAO K C. Analysis on production situation of China's sulphuric acid industry in 2015 [J]. Sulphuric Acid Industry, 2016(2): 1-4(in Chinese). doi: 10.3969/j.issn.1002-1507.2016.02.002
[19] 李崇. 2019年我国硫酸行业运行情况及2020年发展趋势 [J]. 硫酸工业, 2020(12): 1-6,10. doi: 10.3969/j.issn.1002-1507.2020.12.001 LI C. Operation of China's sulphuric acid industry in 2019 and development trend in 2020 [J]. Sulphuric Acid Industry, 2020(12): 1-6,10(in Chinese). doi: 10.3969/j.issn.1002-1507.2020.12.001
[20] 李崇. 2018年中国硫酸行业生产运行情况 [J]. 硫酸工业, 2019(5): 11-14,23. doi: 10.3969/j.issn.1002-1507.2019.05.003 LI C. Production and operation of China's sulphuric acid industry in 2018 [J]. Sulphuric Acid Industry, 2019(5): 11-14,23(in Chinese). doi: 10.3969/j.issn.1002-1507.2019.05.003
[21] 廖康程, 李崇. 2018年硫酸行业运行情况及2019年展望 [J]. 硫酸工业, 2019(9): 1-12. doi: 10.3969/j.issn.1002-1507.2019.09.003 LIAO K C, LI C. Production and operation of China's sulphuric acid industry in 2018 and outlook for 2019 [J]. Sulphuric Acid Industry, 2019(9): 1-12(in Chinese). doi: 10.3969/j.issn.1002-1507.2019.09.003
[22] 杨东潮, 宫程, 梅秀杰, 等. 焦作市硫铁矿地质特征及开发利用对策 [J]. 河南理工大学学报(自然科学版), 2007, 26(4): 377-381. YANG D C, GONG C, MEI X J, et al. Developing and utilizing countermeasure of Jiaozuo pyritegeological characteristic [J]. Journal of Henan Polytechnic University (Natural Science), 2007, 26(4): 377-381(in Chinese).
[23] 周海燕, 曹梦华, 王琳玲, 等. 某待搬迁硫酸厂重金属污染土壤健康风险评估 [J]. 环境工程, 2014, 32(8): 127-130. ZHOU H Y, CAO M H, WANG L L, et al. Health risk assessment of a potential heavy metal contaminated site from a sulphuric acid plant [J]. Environmental Engineering, 2014, 32(8): 127-130(in Chinese).
[24] 孙祖眉, 满瑞林, 李波, 等. 硫酸生产中砷的污染治理 [J]. 硫酸工业, 2016(4): 62-67. doi: 10.3969/j.issn.1002-1507.2016.04.017 SUN Z M, MAN R L, LI B, et al. Arsenic pollution treatment in sulphuric acid production [J]. Sulphuric Acid Industry, 2016(4): 62-67(in Chinese). doi: 10.3969/j.issn.1002-1507.2016.04.017
[25] 刘晓双, 亦如瀚, 吴锦标, 等. 硫酸厂废水污染区土壤和植物中重金属分布特征的研究: 以云浮市某硫酸厂为例 [J]. 安徽农业科学, 2009, 37(29): 14319-14320. LIU X S, YI R H, WU J B, et al. Study on the heavy metals distribution of soil and plant in waste water pollution area of a sulphuric plant [J]. Journal of Anhui Agricultural Sciences, 2009, 37(29): 14319-14320(in Chinese).
[26] 焦作市人民政府, 矿产资源[EB/OL]. [2021-8-10]. http://www.jiaozuo.gov.cn/sitesources/jiaozuo/page_pc/zjjz/zrzy/article6dd9f4e04b6841e0af2e0b433570739c.html. Jiaozuo municipal people’s government, Mineral resources[EB/OL] . [2021-8-10] . http://www.jiaozuo.gov.cn/sitesources/jiaozuo/page_pc/zjjz/ zrzy/article6dd9f4e04b6841e0af2e0b433570739c.html (in Chinese) .
[27] 吕占禄, 张金良, 张晗, 等. 生物质能电厂周边土壤中重金属元素污染特征及评价 [J]. 环境化学, 2020, 39(12): 3480-3494. LV Z L, ZHANG J L, ZHANG H, et al. Pollution characteristics and evaluation of heavy metal pollution in surface soil around the Biomass Power Plant [J]. Environmental Chemistry, 2020, 39(12): 3480-3494(in Chinese).
[28] 穷达卓玛, 汪晶, 周文武, 等. 拉萨垃圾填埋场渗滤液处理站周边土壤重金属含量分析及评价 [J]. 环境化学, 2020, 39(5): 1404-1409. doi: 10.7524/j.issn.0254-6108.2019081401 QIONG D, WANG J, ZHOU W W, et al. Analysis and evaluation of heavy metal content in soil around leachate treatment station of Lhasa landfill site [J]. Environmental Chemistry, 2020, 39(5): 1404-1409(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081401
[29] 王泽亚, 张家泉, 柳山, 等. 鄂东某白茶园土壤特征分析和安全性评价 [J]. 化学试剂, 2021, 43(2): 204-209. WANG Z Y, ZHANG J Q, LIU S, et al. Analysis of soil characteristics and safety evaluation of a white tea garden in east Hubei [J]. Chemical Reagents, 2021, 43(2): 204-209(in Chinese).
[30] 丁婷婷, 杜士林, 王宏亮, 等. 嘉兴市河网重金属污染特征及生态风险评价 [J]. 环境化学, 2020, 39(2): 500-511. doi: 10.7524/j.issn.0254-6108.2019101803 DING T T, DU S L, WANG H L, et al. Pollution characteristics and ecological risk assessment of heavy metals in Jiaxing River Network, Zhejiang Province, China [J]. Environmental Chemistry, 2020, 39(2): 500-511(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101803
[31] 王伟全, 王雪, 高珊, 等. 基于田块尺度土壤重金属空间分布及其生态风险评价[J/OL]. [2021-08-10].农业资源与环境学报: 1-14. WANG W Q, WANG X, GAO S, et al. Spatial distribution and ecological risk assessment of heavy metals in soil at the field scale[J/OL] . [2021-08-10].Journal of Agricultural Resources and Environment: 1-14.(in Chinese).
[32] 董燕, 孙璐, 李海涛, 等. 雄安新区土壤重金属和砷元素空间分布特征及源解析 [J]. 水文地质工程地质, 2021, 48(3): 172-181. DONG Y, SUN L, LI H T, et al. Sources and spatial distribution of heavy metals and arsenic in soils from Xiongan New Area, China [J]. Hydrogeology & Engineering Geology, 2021, 48(3): 172-181(in Chinese).
[33] 国家环境保护局, 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 330-366. State Environmental Protection Administration of China, Total Station of China Environment Monitoring. The Background Concentrations of Soil Elements in China[M]. Beijing: China Environment Science Press, 1990: 330-366(in Chinese).
[34] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 建设用地土壤污染风险管控标准 GB 36600—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecological Environment , State Administration for Market Regulation. National Standard (Mandatory) of the People's Republic of China: Soil environmental quality: Risk control standard for soil contamination of development land. GB 36600—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[35] 马佳燕, 马嘉伟, 柳丹, 等. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价 [J]. 浙江农林大学学报, 2021, 38(2): 336-345. MA J Y, MA J W, LIU D, et al. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu Plain [J]. Journal of Zhejiang A & F University, 2021, 38(2): 336-345(in Chinese).
[36] 段友春, 梁兴光, 臧浩, 等. 日照市典型农用地土壤重金属来源分析及环境质量评价 [J]. 环境污染与防治, 2020, 42(11): 1410-1414,1429. DUAN Y C, LIANG X G, ZANG H, et al. Source analysis and environmental quality assessment of heavy metals in farmland soil in a typical area of Rizhao city [J]. Environmental Pollution & Control, 2020, 42(11): 1410-1414,1429(in Chinese).
[37] 孟晓飞, 郭俊娒, 杨俊兴, 等. 河南省典型工业区周边农田土壤重金属分布特征及风险评价 [J]. 环境科学, 2021, 42(2): 900-908. MENG X F, GUO J M, YANG J X, et al. Spatial distribution and risk assessment of heavy metal pollution in farmland soils surrounding a tpical industrial area of Henan Province [J]. Environmental Science, 2021, 42(2): 900-908(in Chinese).
[38] 李晓晓, 韩瑞芳, 陈倩倩, 等. 土壤重金属迁移转化领域研究的文献计量分析 [J]. 土壤通报, 2020, 51(3): 733-740. LI X X, HAN R F, CHEN Q Q, et al. Bibliometric analysis for migration and transformation of heavy metals in soils [J]. Chinese Journal of Soil Science, 2020, 51(3): 733-740(in Chinese).
[39] 史锐, 岳荣, 张红. 有色金属采选冶基地周边土壤中重金属纵向分层研究 [J]. 土壤通报, 2016, 47(1): 186-191. SHI R, YUE R, ZHANG H. Research on vertical distribution of heavy metal in soil around non-ferrous metal industry area [J]. Chinese Journal of Soil Science, 2016, 47(1): 186-191(in Chinese).
[40] 韩张雄, 万的军, 胡建平, 等. 土壤中重金属元素的迁移转化规律及其影响因素 [J]. 矿产综合利用, 2017(6): 5-9. doi: 10.3969/j.issn.1000-6532.2017.06.002 HAN Z X, WAN D J, HU J P, et al. Migration and transformation of heavy metals in soil and its influencing factors [J]. Multipurpose Utilization of Mineral Resources, 2017(6): 5-9(in Chinese). doi: 10.3969/j.issn.1000-6532.2017.06.002
[41] 吴燕玉, 王新, 梁仁禄, 等. Cd、Pb、Cu、Zn、As复合污染在农田生态系统的迁移动态研究 [J]. 环境科学学报, 1998, 18(4): 407-414. doi: 10.3321/j.issn:0253-2468.1998.04.013 WU Y Y, WANG X, LIANG R L, et al. Dynamic migration of Cd, Pb, Cu, Zn and As in agricultural ecosystem [J]. Acta Scientiae Circumstantiae, 1998, 18(4): 407-414(in Chinese). doi: 10.3321/j.issn:0253-2468.1998.04.013
[42] 程睿. 江西某铜矿弃渣场下游农田土壤重金属分布特征研究 [J]. 江西农业学报, 2019, 31(11): 52-57. CHENG R. Distribution characteristics of heavy metals in downstream farmland soil of copper mine spoil yard in Jiangxi Province [J]. Acta Agriculturae Jiangxi, 2019, 31(11): 52-57(in Chinese).
[43] 窦韦强, 安毅, 秦莉, 等. 农田土壤重金属垂直分布迁移特征及生态风险评价 [J]. 环境工程, 2021, 39(2): 166-172. DOU W Q, AN Y, QIN L, et al. Characteristics of vertical distribution and migration of heavy metals in farmland soils and ecological risk assessment [J]. Environmental Engineering, 2021, 39(2): 166-172(in Chinese).
[44] 刘继芳, 曹翠华, 蒋以超, 等. 重金属离子在土壤中的竞争吸附动力学初步研究Ⅱ. 铜与镉在褐土中竞争吸附动力学 [J]. 土壤肥料, 2000(3): 10-15. LIU J F, CAO C H, JIANG Y C, et al. Preliminary study on competitive adsorption kinetics of heavy metal ions in soilⅡ. Competitive adsorption kinetics of Copper and Cadmium in cinnamon soil [J]. Soils and Fertilizers, 2000(3): 10-15(in Chinese).
[45] 赵兴敏, 董德明, 陈瑜, 等. 溶液化学环境对Cr(Ⅵ)和As(V)在农田土壤中吸附和垂向迁移的影响 [J]. 农业环境科学学报, 2008, 27(6): 2233-2239. doi: 10.3321/j.issn:1672-2043.2008.06.019 ZHAO X M, DONG D M, CHEN Y, et al. Effects of chemical environment in solution on the adsorption and vertical transport of Cr(Ⅵ) and as(Ⅴ) in farmland soil [J]. Journal of Agro-Environment Science, 2008, 27(6): 2233-2239(in Chinese). doi: 10.3321/j.issn:1672-2043.2008.06.019
[46] 郑影怡, 刘杰, 蒋萍萍, 等. 河池市某废弃冶炼厂周边农田土壤重金属污染特征及风险评价 [J]. 环境工程, 2021, 39(5): 238-245. ZHENG Y Y, LIU J, JIANG P P, et al. Pollution assessment of heavy metals in farmland soils around an abandoned smelter in Hechi, China [J]. Environmental Engineering, 2021, 39(5): 238-245(in Chinese).
[47] 杨威杉, 於方, 赵丹, 等. 滇池周边磷矿复垦区土壤重金属污染特征研究 [J]. 生态环境学报, 2018, 27(6): 1145-1152. YANG W S, YU F, ZHAO D, et al. Characteristics of heavy metals in reclaimed soils of a phosphorite-mining area around Dianchi lake [J]. Ecology and Environmental Sciences, 2018, 27(6): 1145-1152(in Chinese).
[48] 安堃达, 贺小敏, 程继雄. 某磷矿城镇土壤重金属污染及空间变异特征 [J]. 环境科学与技术, 2020, 43(Sup1): 104-109. AN K D, HE X M, CHENG J X. The pollution and spatial variability of soil heavy metal in phosphate mining town [J]. Environmental Science & Technology, 2020, 43(Sup1): 104-109(in Chinese).
[49] 石振情, 毕陈权, 谭伟, 等. 典型磷矿区表层土壤重金属空间分布特征研究 [J]. 化工环保, 2020, 40(4): 442-448. SHI Z Q, BI C Q, TAN W, et al. Spatial distribution characteristics of heavy metals in surface soil of typical phosphate mine area [J]. Environmental Protection of Chemical Industry, 2020, 40(4): 442-448(in Chinese).
[50] 张炜华, 于瑞莲, 杨玉杰, 等. 厦门某旱地土壤垂直剖面中重金属迁移规律及来源解析 [J]. 环境科学, 2019, 40(8): 3764-3773. ZHANG W H, YU R L, YANG Y J, et al. Migration and source analysis of heavy metals in vertical soil profiles of the drylands of Xiamen City [J]. Environmental Science, 2019, 40(8): 3764-3773(in Chinese).
[51] 王昌宇, 张素荣, 刘继红, 等. 雄安新区某金属冶炼区土壤重金属污染程度及风险评价[J/OL]. 中国地质, 1-16[2021-06-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20210301.1753.015.html. WANG C Y, ZHANG S R, LIU J H, et al . Pollution level and risk assessment of heavy metals in a metal smelting area of Xiong’an New Area[J/OL] . Geology in China, 1-16[2021-06-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20210301.1753.015.html(in Chinese) .
[52] 赖书雅, 董秋瑶, 宋超, 等. 南阳盆地东部山区土壤重金属分布特征及生态风险评价[J/OL]. 环境科学, 1-13[2021-07-12]. https: //doi. org/10.13227/j. hjkx. 202103019.LAI S Y, DONG Q Y, SONG C, et al . Distribution characteristics and ecological risk assessment of soil heavy metals in the eastern mountainous area of Nanyang Basin[J/OL] . Environmental Science, 1-13[2021-07-12].https://doi.org/10.13227/j.hjkx.202103019(in Chinese) .
[53] 樊文华, 白中科, 李慧峰, 等. 复垦土壤重金属污染潜在生态风险评价 [J]. 农业工程学报, 2011, 27(1): 348-354. doi: 10.3969/j.issn.1002-6819.2011.01.056 FAN W H, BAI Z K, LI H F, et al. Potential ecological risk assessment of heavy metals in reclaimed soils [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 348-354(in Chinese). doi: 10.3969/j.issn.1002-6819.2011.01.056
[54] 沈城, 刘馥雯, 吴健, 等. 再开发利用工业场地土壤重金属含量分布及生态风险 [J]. 环境科学, 2020, 41(11): 5125-5132. SHEN C, LIU F W, WU J, et al. Distribution and ecological risk of heavy metals in the soil of redevelopment industrial sites [J]. Environmental Science, 2020, 41(11): 5125-5132(in Chinese).
[55] 董志询, 陈素华, 李中浤. 江西某废弃钨冶炼厂场地土壤重金属污染特征与风险评价 [J]. 南昌航空大学学报(自然科学版), 2019, 33(3): 105-110. DONG Z X, CHEN S H, LI Z H. In-situ soil pollution by heavy metal in an abandoned tungsten smelting plant [J]. Journal of Nanchang Hangkong University (Natural Sciences), 2019, 33(3): 105-110(in Chinese).
[56] 董法秀. 某锌厂遗留场地土壤重金属污染特征及风险评价[D]. 长沙: 湖南师范大学, 2019. DONG F X. Heavy metal pollution characteristics and risk assessment of soil in a zinc plant[D]. Changsha: Hunan Normal University, 2019(in Chinese).
[57] 曹阳, 杨耀栋, 应耀明. 电石渣堆放场重金属生态风险评价与成因分析 [J]. 中国环境科学, 2021, 41(3): 1293-1299. doi: 10.3969/j.issn.1000-6923.2021.03.033 CAO Y, YANG Y D, YING Y M. Ecological risk assessment and cause analysis of heavy metals in carbide slag dump [J]. China Environmental Science, 2021, 41(3): 1293-1299(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.033
-