-
随着我国经济的快速发展,工业活动产生的废弃地土壤污染问题日益突出,其中以重金属污染最为严重[1]。重金属污染具有隐蔽性、长期性和不可逆性,危害人体健康[2]。为此,国家生态环境部于2016年发布《污染地块土壤环境管理办法(试行)》[3],规定工业污染场地在开发利用前需明确再开发利用废弃场地土壤重金属污染特征及风险状况,为场地治理与修复提供依据。与此同时国内关于废弃场地土壤重金属污染的研究越来越多,如矿区、电镀厂、冶炼厂、焦化厂、钢铁厂、氨基酸厂、化工厂等[4-12],特别是矿区和电镀场地[13],然而仍有一些可能产生重金属污染的工业废弃场地未能引起人们的关注。
硫酸被称为“工业之母”[14],是基础的化工原料。我国硫酸产量居世界首位[15],但近几年在环保、市场、资源等因素的影响下,众多老旧的中小企业相继停产[16-21],遗留了大量的废弃场地。生产硫酸的传统原料为硫铁矿[22],As、Cu、Hg、Pb、Cd、Ni等均是硫铁矿的伴生元素,其中As、Pb是硫铁矿的常见伴生元素[23-24],硫酸的生产涉及硫铁矿原料、废渣和硫酸成品的存放,以及硫铁矿的焙烧等环节,因此利用硫铁矿生产硫酸可能会引起重金属的释放。相关研究显示,硫酸的生产活动造成了严重的土壤重金属污染,如刘晓双等[25]发现硫酸废水污染区中Cd、Pb含量分别为11.83、1052.63 mg·kg−1,远高于标准值,但其研究范围仅是废水污染区;周海燕等[23]发现某待迁硫酸厂土壤中As的含量范围为2.2—1640 mg·kg−1,健康风险远超出可接受水平。以往的研究为硫酸生产引起的土壤重金属污染提供了参考,但关于硫酸场地土壤重金属污染程度及空间分布的研究较少,对场地重金属产生和迁移的主要驱动因素仍不清楚,因此,开展硫酸场地土壤重金属空间污染特征与场地功能区的相关性研究迫在眉睫,其对于揭示硫酸场地土壤重金属的来源及化学迁移机制具有重要的科学意义。
因此,本文以某废弃硫酸厂为例,对该场地不同功能区及不同深度土壤样品中的Pb、Cd、Cu、Ni、As、Hg含量进行分析测试,探讨重金属的来源及迁移行为,并利用内梅罗综合污染指数法和生态风险指数法对重金属污染进行评价,以期为该类废弃硫酸场地土壤污染治理和修复提供科学依据。
某典型废弃硫酸场地土壤重金属污染特征与评价
Heavy metal pollution characteristics and assessment in soil of a typical abandoned sulfuric acid site
-
摘要: 硫酸生产场地可能存在严重的土壤重金属污染,调查并分析硫酸场地土壤重金属污染及迁移规律是其安全利用的基础。本研究以某废弃硫酸场地为例,采集0—3 m深度范围的土壤样品,测定其中的Pb、Cd、Cu、Ni、As、Hg含量,分析重金属的空间分布特征、来源及迁移行为,并对其进行内梅罗综合污染指数和潜在生态风险指数评价。结果表明,Cd、Cu、Ni、Hg的含量均在GB36600—2018中的第二类用地筛选值以下,而Pb、As的超标率分别是8.33%、43.3%。表层重金属主要分布于原料和废渣的堆积区。除Ni外,重金属整体呈表面聚集,同时表现出明显的垂向迁移。Pb仅在硫酸原料区和过磷酸钙原料区超标;As在所有功能区均超标,在土壤层最底部3 m处依然有超标点位,其中最大值出现在硫酸原料区,超标倍数达20.3倍。不同功能区土壤的污染程度和潜在生态风险依次为:过磷酸钙原料区>硫酸原料区>硫酸废渣区>硫酸生产区>成品库区>过磷酸钙生产区>餐厅及仓库区。各功能区均属于重度污染,除过磷酸钙生产区和餐厅及仓库区属于强生态风险外,其它功能区均处于极强生态风险。场地土壤中Pb、Cd主要来自过磷酸钙原料,Cu、As主要受硫酸原料堆积的影响,Hg主要来源于硫酸生产,Ni则同时受到生产活动和地质背景的影响。Abstract: There may be serious pollution of soil with heavy metals in the sulfuric acid production sites, therefore the safe utilization of such sites should be based on the investigation and analysis of soil heavy metals pollution and migration law. This study takes an abandoned sulfuric acid site as an example, the contents of Pb, Cd, Cu, Ni, As and Hg were determined in soil with depth of 0—3 m. The spatial distribution characteristics, the sources and migration behaviors of heavy metals were analyzed. The heavy metals pollution was assessed by the Nemerow comprehensive pollution index and potential ecological risk index. The results showed that the contents of Cd, Cu, Ni and Hg were lower than the filter values of the second type of land in GB36600—2018, while the over-standard rates of Pb and As were 8.33% and 43.3%, respectively. The surface heavy metals were mainly distributed in the accumulation areas of raw materials and waste residues. The heavy metals were aggregated on the surface as a whole except for Ni and showed obvious vertical migration. Pb exceeded the standard only in sulfuric acid and superphosphate raw material area, while As exceeded the standard in all functional areas. There were still sampling points exceeding the standards at the bottom of the soil layer (the depths of 3 m), and the maximum exceeding multiple was 20.3 times in the sulfuric acid raw material area. The pollution levels and potential ecological risks of soil in different functional areas were as follows: superphosphate raw material area > sulfuric acid raw material area > sulfuric acid waste residue area > sulfuric acid production area >finished products warehouse area > superphosphate production area > restaurant and warehouse area. All the functional areas are at the serious pollution level. Except for the superphosphate production area and the restaurant and warehouse area belong to the strong ecological risk, other functional areas are in the extremely strong ecological risk. Pb and Cd in the site soil are mainly derived from the superphosphate materials, Cu and As are mainly affected by the sulfuric acid materials, Hg mainly comes from the production of sulfuric acid, and Ni is both controlled by production activities and geological background.
-
Key words:
- sulfuric acid site /
- heavy metal in soil /
- spatial distribution /
- migration /
- pollution assessment
-
表 1 标准样品含量及测定结果(mg·kg−1)
Table 1. Content and determination results of standard samples (mg·kg−1)
标准物质
Standard substanceAs Cd Cu Hg Ni Pb GBW07401 标准值 34±4 3.4±0.4 21±2 0.032±0.004 20.4±1.8 98±6 测量值 32.37—34.88 3.32—3.50 18.5—21.7 0.031—0.033 19.5—20.7 97—102 表 2 土壤污染分级标准
Table 2. Soil pollution classification standard
单因子污染指数
Single pollution index污染水平
Pollution grade内梅罗综合污染指数
Nemerow comprehensive pollution index污染水平
Pollution gradePi≤1 清洁 P综合≤0.7 清洁 1<Pi≤2 轻度污染 0.7<P综合≤1.0 尚清洁 2<Pi≤3 中度污染 1.0<P综合≤2.0 轻度污染 Pi>3 重度污染 2.0<P综合≤3.0 中度污染 P综合>3.0 重度污染 表 3 重金属元素潜在生态风险标准
Table 3. Classification of potential ecological risk
潜在生态风险
Potential ecological risk轻度风险
Mild中度风险
Moderate较强风险
Relatively strong很强风险
Strong极强风险
Extremely strong$ {E}_{i} $ <40 40—80 80—160 160—320 ≥320 RI <108 108—216 216—432 432—864 ≥864 表 4 硫酸场地土壤重金属含量分析(mg·kg-1)
Table 4. Heavy metal concentration in soil of sulfuric acid site (mg·kg-1)
土层
Soil layer重金属
Elements含量范围
Content range平均值
Average value变异系数
Coefficient of variation峰度
Kurtosis偏度
Skewness背景值
Background value筛选值
Filter value表层
(0—0.5 m)Pb 28—2660 398.45 1.70 6.01 2.41 19.6 800 As 8.36—871 294.64 1.08 −1.05 0.80 11.4 60 Cd 0.08—2.89 0.88 1.06 0.12 1.26 0.074 65 Cu 2.48—1280 180.87 1.70 8.72 2.88 19.7 18000 Ni 8—120 37.7 0.88 1.07 1.49 26.7 900 Hg 0.03—1.89 0.78 0.63 −0.09 0.72 0.034 38 中层(0.5—1.0 m) Pb 18—435 87.6 1.15 8.02 2.84 19.6 800 As 4.31—1220 213.04 1.68 2.56 1.88 11.4 60 Cd 0.08—1.93 0.65 1.07 −0.92 0.95 0.074 65 Cu 12—3020 221.4 3.00 19.35 4.48 19.7 18000 Ni 12—115 40.65 0.71 0.85 1.26 26.7 900 Hg 0.13—1.91 0.58 0.82 1.74 1.43 0.034 38 下层(1.0—1.5 m) Pb 13—1430 156.25 2.03 15.17 3.77 19.6 800 As 2.1—844 85.49 2.21 15.39 3.80 11.4 60 Cd 0.09—2.98 0.68 1.33 2.31 1.90 0.074 65 Cu 5—463 110.75 1.27 1.38 1.63 19.7 18000 Ni 16—142 47.45 0.78 2.72 1.73 26.7 900 Hg 0.05—1.83 0.48 1.07 1.76 1.64 0.034 38 表 5 土壤重金属及pH的相关性
Table 5. Correlation of heavy metals and pH in soil
元素Element 铅Pb 砷As 镉Cd 铜Cu 镍Ni 汞Hg 酸碱度pH Pb 1 As 0.534* 1 Cd 0.740** 0.535* 1 Cu 0.257 0.690** 0.427 1 Ni 0.290 0.201 0.160 0.144 1 Hg 0.375 0.642** 0.285 0.109 0.157 1 pH −0.039 −0.475* −0202 −0.780** −0.065 −0.035 1 **. P<0.01; *. P<0.05. 表 6 重金属主成分分析成分矩阵
Table 6. Component matrix of principal component analysis of heavy metal concentrations
元素
Element初始因子载荷Initial factor load 旋转后因子载荷Factor load after rotation PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 Pb 0.787 −0.234 −0.175 −0.509 0.893 0.077 0.242 0.185 Cd 0.800 −0.337 −0.247 0.162 0.893 0.292 0.094 0.010 Cu 0.814 −0.199 −0.239 0.345 0.170 0.971 0.016 0.061 As 0.812 0.383 0.147 −0.154 0.343 0.670 0.607 0.077 Hg 0.639 0.703 −0.020 0.118 0.168 0.045 0.969 0.064 Ni 0.536 −0.271 0.790 0.074 0.118 0.068 0.069 0.987 特征值 3.279 0.923 0.795 0.447 1.702 1.596 1.073 1.072 累积方差贡献率 54.652 70.030 83.282 90.724 54.652 70.030 83.282 90.724 表 7 研究区各功能区土壤中重金属污染的内梅罗综合污染评价结果
Table 7. Results of Nemerow comprehensive pollution evaluation of heavy metal pollution in different functional zone in the study area
区域(样品数量)
Area (Sample quantity)综合污染指数范围(平均值)
Comprehensive pollution
index range (Mean value)各等级土壤样品数占总土壤样品数的比例/%
The proportion of soil samples of each grade to total soil samples轻度污染
Mild pollution中度污染
Medium pollution重度污染
Heavy pollution过磷酸钙原料区(n=9) 7.84—102.05(38.64) 0.00 0.00 100.00 硫酸原料区(n=12) 3.37—78.92(30.69) 0.00 0.00 100.00 硫酸废渣区(n=6) 9.88—49.22(22.44) 0.00 0.00 100.00 硫酸生产区(n=13) 4.69—47.49(18.71) 0.00 0.00 100.00 仓库及餐厅区(n=6) 1.73—16.28(6.82) 16.67 16.67 66.67 过磷酸钙生产区(n=8) 2.50—26.87(8.73) 0.00 12.50 87.50 成品库区(n=6) 6.05—45.84(18.32) 0.00 0.00 100.00 总计(n=60) 1.73—102.05(23.78) 1.67 3.33 95.00 -
[1] 中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[R]. 北京: 中华人民共和国国土资源部, 2014. State Environmental Protection Administration of China, State Environmental Land and Resources Administration of China . Bulletin of national soil pollution survey[R] . Beijing : State Environmental Land and Resources Administration of China, 2014 (in Chinese) .
[2] 滑小赞, 程滨, 赵瑞芬, 等. 太原市农田土壤重金属污染评价与空间分布特征 [J]. 灌溉排水学报, 2021, 40(3): 101-109. HUA X Z, CHENG B, ZHAO R F, et al. Pollution assessment and spatial distribution of heavy metals in the farmland soils of Taiyuan city [J]. Journal of Irrigation and Drainage, 2021, 40(3): 101-109(in Chinese).
[3] 郭登魁, 朱岗辉, 陈坚, 等. 某废弃硫酸厂场地土壤重金属污染特征及健康风险评估 [J]. 环境污染与防治, 2020, 42(9): 1152-1157. GUO D K, ZHU G H, CHEN J, et al. Pollution characteristics and health risk assessment of heavy metal in soil of abandoned sulfuric acid plant site [J]. Environmental Pollution & Control, 2020, 42(9): 1152-1157(in Chinese).
[4] 叶金利, 田路萍, 吴文卫, 等. 云南会泽者海镇典型矿区场地重金属污染特征及健康风险评价 [J]. 环境监测管理与技术, 2019, 31(3): 36-40. doi: 10.3969/j.issn.1006-2009.2019.03.009 YE J L, TIAN L P, WU W W, et al. Characteristics and health risk assessment of heavy metal pollution in typical mining area in zhehai, Huize County, Yunnan Province [J]. The Administration and Technique of Environmental Monitoring, 2019, 31(3): 36-40(in Chinese). doi: 10.3969/j.issn.1006-2009.2019.03.009
[5] 孙厚云, 卫晓锋, 孙晓明, 等. 钒钛磁铁矿尾矿库复垦土地及周边土壤-玉米重金属迁移富集特征 [J]. 环境科学, 2021, 42(3): 1166-1176. SUN H Y, WEI X F, SUN X M, et al. Bioaccumulation and translocation characteristics of heavy metals in a soil-maize system in reclaimed land and surrounding areas of typical vanadium-titanium magnetite tailings [J]. Environmental Science, 2021, 42(3): 1166-1176(in Chinese).
[6] 陈洁, 施维林, 张一梅, 等. 电镀厂遗留场地污染分析及健康风险空间分布评价 [J]. 环境工程, 2018, 36(4): 153-159. CHEN J, SHI W L, ZHANG Y M, et al. Pollution analysis and spatial distribution of health risk in electroplating abandoned site [J]. Environmental Engineering, 2018, 36(4): 153-159(in Chinese).
[7] 侯文隽, 龚星, 詹泽波, 等. 粤港澳大湾区丘陵地带某电镀场地重金属污染特征与迁移规律分析 [J]. 环境科学, 2019, 40(12): 5604-5614. HOU W J, GONG X, ZHAN Z B, et al. Heavy metal contamination and migration in correspondence of an electroplating site on the hilly lands of the Guangdong-Hong Kong-Macao greater bay area, China [J]. Environmental Science, 2019, 40(12): 5604-5614(in Chinese).
[8] 孟磊, 王琼, 祝怡斌, 等. 赣州某稀土冶炼场地重金属污染特征 [J]. 有色金属(矿山部分), 2020, 72(4): 115-119. MENG L, WANG Q, ZHU Y B, et al. Pollution characteristics of heavy metals in a rare earth smelt plant in Ganzhou [J]. Nonferrous Metals (Mining Section), 2020, 72(4): 115-119(in Chinese).
[9] 王星星, 王海芳. 山西省某焦化厂土壤重金属污染状况分析与评价 [J]. 应用化工, 2020, 49(4): 850-853. doi: 10.3969/j.issn.1671-3206.2020.04.013 WANG X X, WANG H F. Analysis and evaluation of soil heavy metal pollution in a coking plant in Shanxi Province [J]. Applied Chemical Industry, 2020, 49(4): 850-853(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.04.013
[10] 闫卫军. 钢铁企业污染场地土壤环境评价与修复的探讨 [J]. 节能与环保, 2020(10): 35-36. doi: 10.3969/j.issn.1009-539X.2020.10.013 YAN W J. Discussion on environmental assessment and remediation of contaminated soil in iron and steel enterprises [J]. Energy Conservation and Environmental Protection, 2020(10): 35-36(in Chinese). doi: 10.3969/j.issn.1009-539X.2020.10.013
[11] 邢彤, 郑志侠, 赵纯真, 等. 某氨基酸厂搬迁场地土壤重金属污染特征及健康风险评价 [J]. 绿色科技, 2020(18): 51-55. doi: 10.3969/j.issn.1674-9944.2020.18.019 XING T, ZHENG Z X, ZHAO C Z, et al. Characteristics and health risk assessment of heavy metal pollution in soil of relocation sites of an amino acid factory [J]. Journal of Green Science and Technology, 2020(18): 51-55(in Chinese). doi: 10.3969/j.issn.1674-9944.2020.18.019
[12] 李金林, 罗泽娇. 退役化工场地土壤锑污染特征的研究 [J]. 现代农业科技, 2020(24): 130-132. doi: 10.3969/j.issn.1007-5739.2020.24.057 LI J L, LUO Z J. Study on antimony pollution characteristics in soil of a decommissioned chemical site [J]. Modern Agricultural Science and Technology, 2020(24): 130-132(in Chinese). doi: 10.3969/j.issn.1007-5739.2020.24.057
[13] WANG S Y, KALKHAJEH Y K, QIN Z R, et al. Spatial distribution and assessment of the human health risks of heavy metals in a retired petrochemical industrial area, South China [J]. Environmental Research, 2020, 188: 109661. doi: 10.1016/j.envres.2020.109661 [14] 满瑞林, 贺凤, 李波, 等. 我国硫酸行业现状及新技术的发展 [J]. 现代化工, 2015, 35(9): 6-9. MAN R L, HE F, LI B, et al. Current status and new technology development of sulfuric acid industry in China [J]. Modern Chemical Industry, 2015, 35(9): 6-9(in Chinese).
[15] 纪罗军. “十一五”我国硫酸工业回顾及“十二五”展望(一): 有色金属冶炼与烟气制酸 [J]. 硫酸工业, 2011(2): 1-11. doi: 10.3969/j.issn.1002-1507.2011.02.001 JI L J. Review of Eleventh Five-Year Plan and outlook of Twelfth Five-Year Plan in China's sulphuric acid industry(Part one)-Nonferrous metal smelting and metallurgical acid production [J]. Sulphuric Acid Industry, 2011(2): 1-11(in Chinese). doi: 10.3969/j.issn.1002-1507.2011.02.001
[16] 李崇, 廖康程. 2017年中国硫酸行业生产运行状况及2018年展望 [J]. 硫酸工业, 2018(4): 1-5. doi: 10.3969/j.issn.1002-1507.2018.04.002 LI C, LIAO K C. Production and operation of China's sulphuric acid industry in 2017 and outlook for 2018 [J]. Sulphuric Acid Industry, 2018(4): 1-5(in Chinese). doi: 10.3969/j.issn.1002-1507.2018.04.002
[17] 袁俊宏. 我国硫与硫铁矿产业现状及市场分析 [J]. 硫酸工业, 2016(5): 10-17. doi: 10.3969/j.issn.1002-1507.2016.05.002 YUAN J H. Current situation and market analysis of China's sulphur and pyrite industry [J]. Sulphuric Acid Industry, 2016(5): 10-17(in Chinese). doi: 10.3969/j.issn.1002-1507.2016.05.002
[18] 李崇, 廖康程. 2015年中国硫酸行业运行态势分析 [J]. 硫酸工业, 2016(2): 1-4. doi: 10.3969/j.issn.1002-1507.2016.02.002 LI C, LIAO K C. Analysis on production situation of China's sulphuric acid industry in 2015 [J]. Sulphuric Acid Industry, 2016(2): 1-4(in Chinese). doi: 10.3969/j.issn.1002-1507.2016.02.002
[19] 李崇. 2019年我国硫酸行业运行情况及2020年发展趋势 [J]. 硫酸工业, 2020(12): 1-6,10. doi: 10.3969/j.issn.1002-1507.2020.12.001 LI C. Operation of China's sulphuric acid industry in 2019 and development trend in 2020 [J]. Sulphuric Acid Industry, 2020(12): 1-6,10(in Chinese). doi: 10.3969/j.issn.1002-1507.2020.12.001
[20] 李崇. 2018年中国硫酸行业生产运行情况 [J]. 硫酸工业, 2019(5): 11-14,23. doi: 10.3969/j.issn.1002-1507.2019.05.003 LI C. Production and operation of China's sulphuric acid industry in 2018 [J]. Sulphuric Acid Industry, 2019(5): 11-14,23(in Chinese). doi: 10.3969/j.issn.1002-1507.2019.05.003
[21] 廖康程, 李崇. 2018年硫酸行业运行情况及2019年展望 [J]. 硫酸工业, 2019(9): 1-12. doi: 10.3969/j.issn.1002-1507.2019.09.003 LIAO K C, LI C. Production and operation of China's sulphuric acid industry in 2018 and outlook for 2019 [J]. Sulphuric Acid Industry, 2019(9): 1-12(in Chinese). doi: 10.3969/j.issn.1002-1507.2019.09.003
[22] 杨东潮, 宫程, 梅秀杰, 等. 焦作市硫铁矿地质特征及开发利用对策 [J]. 河南理工大学学报(自然科学版), 2007, 26(4): 377-381. YANG D C, GONG C, MEI X J, et al. Developing and utilizing countermeasure of Jiaozuo pyritegeological characteristic [J]. Journal of Henan Polytechnic University (Natural Science), 2007, 26(4): 377-381(in Chinese).
[23] 周海燕, 曹梦华, 王琳玲, 等. 某待搬迁硫酸厂重金属污染土壤健康风险评估 [J]. 环境工程, 2014, 32(8): 127-130. ZHOU H Y, CAO M H, WANG L L, et al. Health risk assessment of a potential heavy metal contaminated site from a sulphuric acid plant [J]. Environmental Engineering, 2014, 32(8): 127-130(in Chinese).
[24] 孙祖眉, 满瑞林, 李波, 等. 硫酸生产中砷的污染治理 [J]. 硫酸工业, 2016(4): 62-67. doi: 10.3969/j.issn.1002-1507.2016.04.017 SUN Z M, MAN R L, LI B, et al. Arsenic pollution treatment in sulphuric acid production [J]. Sulphuric Acid Industry, 2016(4): 62-67(in Chinese). doi: 10.3969/j.issn.1002-1507.2016.04.017
[25] 刘晓双, 亦如瀚, 吴锦标, 等. 硫酸厂废水污染区土壤和植物中重金属分布特征的研究: 以云浮市某硫酸厂为例 [J]. 安徽农业科学, 2009, 37(29): 14319-14320. LIU X S, YI R H, WU J B, et al. Study on the heavy metals distribution of soil and plant in waste water pollution area of a sulphuric plant [J]. Journal of Anhui Agricultural Sciences, 2009, 37(29): 14319-14320(in Chinese).
[26] 焦作市人民政府, 矿产资源[EB/OL]. [2021-8-10]. http://www.jiaozuo.gov.cn/sitesources/jiaozuo/page_pc/zjjz/zrzy/article6dd9f4e04b6841e0af2e0b433570739c.html. Jiaozuo municipal people’s government, Mineral resources[EB/OL] . [2021-8-10] . http://www.jiaozuo.gov.cn/sitesources/jiaozuo/page_pc/zjjz/ zrzy/article6dd9f4e04b6841e0af2e0b433570739c.html (in Chinese) .
[27] 吕占禄, 张金良, 张晗, 等. 生物质能电厂周边土壤中重金属元素污染特征及评价 [J]. 环境化学, 2020, 39(12): 3480-3494. LV Z L, ZHANG J L, ZHANG H, et al. Pollution characteristics and evaluation of heavy metal pollution in surface soil around the Biomass Power Plant [J]. Environmental Chemistry, 2020, 39(12): 3480-3494(in Chinese).
[28] 穷达卓玛, 汪晶, 周文武, 等. 拉萨垃圾填埋场渗滤液处理站周边土壤重金属含量分析及评价 [J]. 环境化学, 2020, 39(5): 1404-1409. doi: 10.7524/j.issn.0254-6108.2019081401 QIONG D, WANG J, ZHOU W W, et al. Analysis and evaluation of heavy metal content in soil around leachate treatment station of Lhasa landfill site [J]. Environmental Chemistry, 2020, 39(5): 1404-1409(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081401
[29] 王泽亚, 张家泉, 柳山, 等. 鄂东某白茶园土壤特征分析和安全性评价 [J]. 化学试剂, 2021, 43(2): 204-209. WANG Z Y, ZHANG J Q, LIU S, et al. Analysis of soil characteristics and safety evaluation of a white tea garden in east Hubei [J]. Chemical Reagents, 2021, 43(2): 204-209(in Chinese).
[30] 丁婷婷, 杜士林, 王宏亮, 等. 嘉兴市河网重金属污染特征及生态风险评价 [J]. 环境化学, 2020, 39(2): 500-511. doi: 10.7524/j.issn.0254-6108.2019101803 DING T T, DU S L, WANG H L, et al. Pollution characteristics and ecological risk assessment of heavy metals in Jiaxing River Network, Zhejiang Province, China [J]. Environmental Chemistry, 2020, 39(2): 500-511(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101803
[31] 王伟全, 王雪, 高珊, 等. 基于田块尺度土壤重金属空间分布及其生态风险评价[J/OL]. [2021-08-10].农业资源与环境学报: 1-14. WANG W Q, WANG X, GAO S, et al. Spatial distribution and ecological risk assessment of heavy metals in soil at the field scale[J/OL] . [2021-08-10].Journal of Agricultural Resources and Environment: 1-14.(in Chinese).
[32] 董燕, 孙璐, 李海涛, 等. 雄安新区土壤重金属和砷元素空间分布特征及源解析 [J]. 水文地质工程地质, 2021, 48(3): 172-181. DONG Y, SUN L, LI H T, et al. Sources and spatial distribution of heavy metals and arsenic in soils from Xiongan New Area, China [J]. Hydrogeology & Engineering Geology, 2021, 48(3): 172-181(in Chinese).
[33] 国家环境保护局, 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 330-366. State Environmental Protection Administration of China, Total Station of China Environment Monitoring. The Background Concentrations of Soil Elements in China[M]. Beijing: China Environment Science Press, 1990: 330-366(in Chinese).
[34] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 建设用地土壤污染风险管控标准 GB 36600—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecological Environment , State Administration for Market Regulation. National Standard (Mandatory) of the People's Republic of China: Soil environmental quality: Risk control standard for soil contamination of development land. GB 36600—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[35] 马佳燕, 马嘉伟, 柳丹, 等. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价 [J]. 浙江农林大学学报, 2021, 38(2): 336-345. MA J Y, MA J W, LIU D, et al. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu Plain [J]. Journal of Zhejiang A & F University, 2021, 38(2): 336-345(in Chinese).
[36] 段友春, 梁兴光, 臧浩, 等. 日照市典型农用地土壤重金属来源分析及环境质量评价 [J]. 环境污染与防治, 2020, 42(11): 1410-1414,1429. DUAN Y C, LIANG X G, ZANG H, et al. Source analysis and environmental quality assessment of heavy metals in farmland soil in a typical area of Rizhao city [J]. Environmental Pollution & Control, 2020, 42(11): 1410-1414,1429(in Chinese).
[37] 孟晓飞, 郭俊娒, 杨俊兴, 等. 河南省典型工业区周边农田土壤重金属分布特征及风险评价 [J]. 环境科学, 2021, 42(2): 900-908. MENG X F, GUO J M, YANG J X, et al. Spatial distribution and risk assessment of heavy metal pollution in farmland soils surrounding a tpical industrial area of Henan Province [J]. Environmental Science, 2021, 42(2): 900-908(in Chinese).
[38] 李晓晓, 韩瑞芳, 陈倩倩, 等. 土壤重金属迁移转化领域研究的文献计量分析 [J]. 土壤通报, 2020, 51(3): 733-740. LI X X, HAN R F, CHEN Q Q, et al. Bibliometric analysis for migration and transformation of heavy metals in soils [J]. Chinese Journal of Soil Science, 2020, 51(3): 733-740(in Chinese).
[39] 史锐, 岳荣, 张红. 有色金属采选冶基地周边土壤中重金属纵向分层研究 [J]. 土壤通报, 2016, 47(1): 186-191. SHI R, YUE R, ZHANG H. Research on vertical distribution of heavy metal in soil around non-ferrous metal industry area [J]. Chinese Journal of Soil Science, 2016, 47(1): 186-191(in Chinese).
[40] 韩张雄, 万的军, 胡建平, 等. 土壤中重金属元素的迁移转化规律及其影响因素 [J]. 矿产综合利用, 2017(6): 5-9. doi: 10.3969/j.issn.1000-6532.2017.06.002 HAN Z X, WAN D J, HU J P, et al. Migration and transformation of heavy metals in soil and its influencing factors [J]. Multipurpose Utilization of Mineral Resources, 2017(6): 5-9(in Chinese). doi: 10.3969/j.issn.1000-6532.2017.06.002
[41] 吴燕玉, 王新, 梁仁禄, 等. Cd、Pb、Cu、Zn、As复合污染在农田生态系统的迁移动态研究 [J]. 环境科学学报, 1998, 18(4): 407-414. doi: 10.3321/j.issn:0253-2468.1998.04.013 WU Y Y, WANG X, LIANG R L, et al. Dynamic migration of Cd, Pb, Cu, Zn and As in agricultural ecosystem [J]. Acta Scientiae Circumstantiae, 1998, 18(4): 407-414(in Chinese). doi: 10.3321/j.issn:0253-2468.1998.04.013
[42] 程睿. 江西某铜矿弃渣场下游农田土壤重金属分布特征研究 [J]. 江西农业学报, 2019, 31(11): 52-57. CHENG R. Distribution characteristics of heavy metals in downstream farmland soil of copper mine spoil yard in Jiangxi Province [J]. Acta Agriculturae Jiangxi, 2019, 31(11): 52-57(in Chinese).
[43] 窦韦强, 安毅, 秦莉, 等. 农田土壤重金属垂直分布迁移特征及生态风险评价 [J]. 环境工程, 2021, 39(2): 166-172. DOU W Q, AN Y, QIN L, et al. Characteristics of vertical distribution and migration of heavy metals in farmland soils and ecological risk assessment [J]. Environmental Engineering, 2021, 39(2): 166-172(in Chinese).
[44] 刘继芳, 曹翠华, 蒋以超, 等. 重金属离子在土壤中的竞争吸附动力学初步研究Ⅱ. 铜与镉在褐土中竞争吸附动力学 [J]. 土壤肥料, 2000(3): 10-15. LIU J F, CAO C H, JIANG Y C, et al. Preliminary study on competitive adsorption kinetics of heavy metal ions in soilⅡ. Competitive adsorption kinetics of Copper and Cadmium in cinnamon soil [J]. Soils and Fertilizers, 2000(3): 10-15(in Chinese).
[45] 赵兴敏, 董德明, 陈瑜, 等. 溶液化学环境对Cr(Ⅵ)和As(V)在农田土壤中吸附和垂向迁移的影响 [J]. 农业环境科学学报, 2008, 27(6): 2233-2239. doi: 10.3321/j.issn:1672-2043.2008.06.019 ZHAO X M, DONG D M, CHEN Y, et al. Effects of chemical environment in solution on the adsorption and vertical transport of Cr(Ⅵ) and as(Ⅴ) in farmland soil [J]. Journal of Agro-Environment Science, 2008, 27(6): 2233-2239(in Chinese). doi: 10.3321/j.issn:1672-2043.2008.06.019
[46] 郑影怡, 刘杰, 蒋萍萍, 等. 河池市某废弃冶炼厂周边农田土壤重金属污染特征及风险评价 [J]. 环境工程, 2021, 39(5): 238-245. ZHENG Y Y, LIU J, JIANG P P, et al. Pollution assessment of heavy metals in farmland soils around an abandoned smelter in Hechi, China [J]. Environmental Engineering, 2021, 39(5): 238-245(in Chinese).
[47] 杨威杉, 於方, 赵丹, 等. 滇池周边磷矿复垦区土壤重金属污染特征研究 [J]. 生态环境学报, 2018, 27(6): 1145-1152. YANG W S, YU F, ZHAO D, et al. Characteristics of heavy metals in reclaimed soils of a phosphorite-mining area around Dianchi lake [J]. Ecology and Environmental Sciences, 2018, 27(6): 1145-1152(in Chinese).
[48] 安堃达, 贺小敏, 程继雄. 某磷矿城镇土壤重金属污染及空间变异特征 [J]. 环境科学与技术, 2020, 43(Sup1): 104-109. AN K D, HE X M, CHENG J X. The pollution and spatial variability of soil heavy metal in phosphate mining town [J]. Environmental Science & Technology, 2020, 43(Sup1): 104-109(in Chinese).
[49] 石振情, 毕陈权, 谭伟, 等. 典型磷矿区表层土壤重金属空间分布特征研究 [J]. 化工环保, 2020, 40(4): 442-448. SHI Z Q, BI C Q, TAN W, et al. Spatial distribution characteristics of heavy metals in surface soil of typical phosphate mine area [J]. Environmental Protection of Chemical Industry, 2020, 40(4): 442-448(in Chinese).
[50] 张炜华, 于瑞莲, 杨玉杰, 等. 厦门某旱地土壤垂直剖面中重金属迁移规律及来源解析 [J]. 环境科学, 2019, 40(8): 3764-3773. ZHANG W H, YU R L, YANG Y J, et al. Migration and source analysis of heavy metals in vertical soil profiles of the drylands of Xiamen City [J]. Environmental Science, 2019, 40(8): 3764-3773(in Chinese).
[51] 王昌宇, 张素荣, 刘继红, 等. 雄安新区某金属冶炼区土壤重金属污染程度及风险评价[J/OL]. 中国地质, 1-16[2021-06-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20210301.1753.015.html. WANG C Y, ZHANG S R, LIU J H, et al . Pollution level and risk assessment of heavy metals in a metal smelting area of Xiong’an New Area[J/OL] . Geology in China, 1-16[2021-06-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20210301.1753.015.html(in Chinese) .
[52] 赖书雅, 董秋瑶, 宋超, 等. 南阳盆地东部山区土壤重金属分布特征及生态风险评价[J/OL]. 环境科学, 1-13[2021-07-12]. https: //doi. org/10.13227/j. hjkx. 202103019.
LAI S Y, DONG Q Y, SONG C, et al . Distribution characteristics and ecological risk assessment of soil heavy metals in the eastern mountainous area of Nanyang Basin[J/OL] . Environmental Science, 1-13[2021-07-12].https://doi.org/10.13227/j.hjkx.202103019(in Chinese) .[53] 樊文华, 白中科, 李慧峰, 等. 复垦土壤重金属污染潜在生态风险评价 [J]. 农业工程学报, 2011, 27(1): 348-354. doi: 10.3969/j.issn.1002-6819.2011.01.056 FAN W H, BAI Z K, LI H F, et al. Potential ecological risk assessment of heavy metals in reclaimed soils [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 348-354(in Chinese). doi: 10.3969/j.issn.1002-6819.2011.01.056
[54] 沈城, 刘馥雯, 吴健, 等. 再开发利用工业场地土壤重金属含量分布及生态风险 [J]. 环境科学, 2020, 41(11): 5125-5132. SHEN C, LIU F W, WU J, et al. Distribution and ecological risk of heavy metals in the soil of redevelopment industrial sites [J]. Environmental Science, 2020, 41(11): 5125-5132(in Chinese).
[55] 董志询, 陈素华, 李中浤. 江西某废弃钨冶炼厂场地土壤重金属污染特征与风险评价 [J]. 南昌航空大学学报(自然科学版), 2019, 33(3): 105-110. DONG Z X, CHEN S H, LI Z H. In-situ soil pollution by heavy metal in an abandoned tungsten smelting plant [J]. Journal of Nanchang Hangkong University (Natural Sciences), 2019, 33(3): 105-110(in Chinese).
[56] 董法秀. 某锌厂遗留场地土壤重金属污染特征及风险评价[D]. 长沙: 湖南师范大学, 2019. DONG F X. Heavy metal pollution characteristics and risk assessment of soil in a zinc plant[D]. Changsha: Hunan Normal University, 2019(in Chinese).
[57] 曹阳, 杨耀栋, 应耀明. 电石渣堆放场重金属生态风险评价与成因分析 [J]. 中国环境科学, 2021, 41(3): 1293-1299. doi: 10.3969/j.issn.1000-6923.2021.03.033 CAO Y, YANG Y D, YING Y M. Ecological risk assessment and cause analysis of heavy metals in carbide slag dump [J]. China Environmental Science, 2021, 41(3): 1293-1299(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.033