-
近年来,微量有机污染物(药品与个人护理品、内分泌干扰物等)被频繁检出,成为影响环境和公众健康的重大问题[1]。传统的水处理技术无法有效去除多数微量有机污染物,因此,针对水的深度处理技术尤为重要[2]。四环素(TC)是目前世界上应用最为广泛的抗生素之一[3],其有效去除技术受到广泛关注。大量研究结果表明,基于紫外(UV)的高级氧化工艺(UV-AOPs)可有效去除饮用水、废水和再生水中的大多数微量有机污染物[4-8]。其中,UV/H2O2工艺具有流程简单、氧化能力强以及无二次污染等优点,显示出良好的发展潜力和应用前景[9],其反应原理见式(1)。目前,世界上已有以荷兰Andijk、加拿大Cornwall为代表的多家饮用水厂采用UV/H2O2工艺作为水深度处理工艺[10]。
在UV/H2O2工艺中,UV光源的选择至关重要,目前几种常见的UV光源获得了较好的实际应用。低压UV(LPUV)汞灯可发出254 nm单色光,具有效率高和造价低的优点。真空UV/UV(VUV/UV) 汞灯通过对LPUV汞灯灯管材料的改进(采用高纯石英玻璃)及电气参数调节,可同时输出254 nm和185 nm波长的UV光[11],185 nm的VUV可通过光解水产生强氧化性HO·(式(2)),进而氧化有机污染物。
同时,最近的研究表明,双波长(254 nm/185 nm)UV辐照对UV-AOPs具有协同强化作用[12]。中压UV(MPUV) 汞灯的特点是结构紧凑、输出功率高及具有较宽的UV发射光谱(200~400 nm)。但是,MPUV汞灯在UV区(200~300 nm)电光转换效率低及寿命短的缺点限制了其应用。
探讨UV/H2O2工艺去除微量污染物的适合光源需考虑多个方面,包括目标污染物降解动力学、光源在UVC波段的电光转换效率、灯的使用寿命及长期运行的稳定性。其中,通过实验及模型计算对比不同光源下目标污染物降解动力学是关键。污染物降解动力学反映了基于相同辐照剂量下,不同光源激发UV/H2O2工艺对目标污染物的降解效果。由于不同光反应器中平均辐照剂量率不同,为使UV/H2O2实验结果具有对比性,一般采用剂量基动力学进行研究[13-14]。
不同光源降解动力学的对比中,光反应器的选择是关键。目前,序批式光反应器和准平行光束仪应用最为广泛。序批式光反应器易于搭建,形状常为圆筒式,UV光源安装于圆筒反应器轴线处,与实际UV反应器相似,可采用尿苷或阿特拉津等化学感光剂测定辐照剂量。然而,UV光源在反应器中剂量率分布不均,导致剂量准确测定较难,此外,该反应器安装MPUV汞灯时,溶液温度通常较难控制。在准平行光束仪下,辐照剂量可根据UV辐照计在光斑中心测得的数值,结合佩特里系数(petri factor)、发散系数(divergence factor)、反射系数(reflection factor)和水系数(water factor)等参数修正得到[15]。但是,应用VUV/UV光源时,由于VUV在空气中透射率很低且样品到灯管的距离较远,VUV很难辐照到样品上,因此,利用准平行光束仪无法开展VUV辐照实验。本实验室前期开发的细管流光反应系统(MFPS)可准确测量LPUV、VUV/UV和MPUV 3种光源的剂量基反应速率常数[16]。此外,MFPS还具有所需样品量小,最大辐照强度接近实际工程等优点。本研究基于MFPS,实验测定3种UV光源激发UV/H2O2工艺对TC的降解动力学。同时建立相应的光降解动力学模型模拟,探讨各光源的优势。本研究对于UV/H2O2工艺中适宜光源的选择、高效工艺的研发具有重要意义。
不同光源UV/H2O2工艺降解四环素动力学
Degradation kinetics of tetracycline by UV/H2O2 process with various light sources
-
摘要: 光源选择对于基于紫外(UV)的高级氧化工艺(UV-AOPs)十分重要。通过细管流光反应系统(MFPS)对比了低压UV(LPUV)汞灯、中压UV(MPUV)汞灯及真空UV/UV(VUV/UV)汞灯3种UV光源下UV/H2O2工艺对四环素(TC)的降解动力学,并建立了降解动力学模型。结果表明,VUV/UV光源对TC(0.1 mg·L−1和5.0 mg·L−1)的光降解速率常数明显大于LPUV与MPUV光源。随着初始投加H2O2浓度的增大,LPUV/H2O2和MPUV/H2O2对TC(0.1 mg·L−1和5.0 mg·L−1)的降解速率常数快速增大。然而,VUV/UV/H2O2对低质量浓度TC(0.1 mg·L−1)的降解速率常数随H2O2浓度的增大逐渐降低,对高质量浓度TC(5.0 mg·L−1)的降解速率常数逐渐增大。实验结果与降解动力学模型模拟相符。在实际UV-AOPs光源选择中,单纯降解动力学对比具有测试结果准确性高、费用低等优势,但存在无法考虑灯效、氧化剂费用等缺点,因此,还应结合中试实验的能耗对比综合考虑。Abstract: Light source selection is important for ultraviolet (UV) based advanced oxidation processes (UV-AOPs). Through the mini-fluidic photoreaction system (MFPS), the degradation kinetics of tetracycline (TC) by UV/H2O2 process with three different UV light sources including low pressure UV (LPUV) mercury lamp, medium pressure UV (MPUV) mercury lamp and vacuum UV/UV (VUV/UV) mercury lamp were compared, and a degradation kinetic model was established. The results indicated that the degradation rate constants of TC (0.1 mg·L−1 and 5.0 mg·L−1) by VUV/UV/H2O2 were significantly higher than those by MPUV/H2O2 and LPUV/H2O2. With the increase of initial H2O2 concentration, the degradation rate constants of TC (0.1 mg·L−1 and 5.0 mg·L−1) by LPUV/H2O2 and MPUV/H2O2 increased rapidly. However, the degradation rate constant of low-concentration TC (0.1 mg·L−1) by VUV/UV/H2O2 decreased, and that of high-concentration TC (5.0 mg·L−1) increased. The experimental and modeled results agreed with each other. For the light source selection in practical, the degradation kinetics comparison had the advantages of high accuracy and low cost, and the disadvantages such as the neglect of lamp efficiency and oxidant cost. Therefore, it should also consider the energy consumption comparison results in pilot tests.
-
表 1 UV/H2O2降解TC的主要反应和参数
Table 1. Principal reactions and parameters during the TC degradation by UV/H2O2
化学反应 量子产率/(mol·einstein−1) 参考文献 化学反应 速率常数/(L·(mol·s)−1) 参考文献 H2O2 + hv→2HO· 1.11 [18] H2O2 + HO·→HO2·+H2O 2.7×107 [20] H2O + hv185→HO· + H· 0.33 [11] + HO·→${\rm{HPO}}_4^{2 - }$ + HO−${\rm{HPO}}_4^{\cdot - }$ 1.5×105 [21] H2O + hv185→HO· +H+ +eq— 0.045 [11] + HO·→${{\rm{H}}_2}{\rm{PO}}_4^ - $ + H2O${\rm{HPO}}_4^{\cdot - }$ 2.0×104 [21] TC+ hv→产物 0.003 8 [19] TC + HO·→产物 4.6×109 [22] 表 2 不同溶质在不同波长下的摩尔吸光系数
Table 2. Molar absorption coefficients of various solution components at various wavelengths
波长/nm 摩尔吸光系数/(L·(mol·cm)−1) H2O2 TC H2O 185 341.00 18 000 0.032 200~204 179.21 12 648 0.005 405 205~209 155.84 11 881 0.004 505 210~214 132.23 11 821 0.003 784 215~219 110.12 11 736 0.003 063 220~224 89.97 10 932 0.002 523 225~229 72.07 9 097 0.001 982 230~234 55.83 7 725 0.001 441 235~239 43.28 7 884 0.001 081 240~244 33.45 8 624 0.000 721 245~249 25.31 9 148 0.000 36 250~254 19.02 9 255 0.000 18 255~259 14.13 9 361 0 260~264 10.47 10 016 0 265~269 7.68 12 390 0 270~274 5.57 12 731 0 275~279 3.99 12 044 0 280~284 2.83 11 197 0 285~289 1.94 10 589 0 290~294 1.32 10 192 0 295~299 0.88 10 044 0 表 3 不同浓度H2O2下、不同光源UV/H2O2工艺对TC的降解速率
Table 3. Degradation rates of TC by UV/H2O2 process with different light sources at different concentrations of H2O2
H2O2初始浓度/
(mg·L−1)[TC]0= 0.1 mg·L−1 [TC]0= 5.0 mg·L−1 /$k'_{\rm{MPUV/H_2O_2}} $
(m2·einstein−1) /$k'_{\rm{LPUV/H_2O_2}} $
(m2·einstein−1) /$k'_{\rm{VUV/UV/H_2O_2}} $
(m2·einstein−1) /$ k'_{\rm{MPUV/H_2O_2}} $
(m2·einstein−1) /$k'_{\rm{LPUV/H_2O_2}} $
(m2·einstein−1) /$k'_{\rm{VUV/UV/H_2O_2}} $
(m2·einstein−1)0 124.8 62.2 1 458.1 72.6 28.0 880.1 0.5 106.8 110.7 1 331.3 75.5 67.1 910.5 5.0 814.3 306.3 1 192.0 123.1 272.4 950.8 25.0 1 412.6 598.5 891.0 233.0 450.0 1 432.6 -
[1] BAEZA C, KNAPPE D R U. Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV /H2O2 advanced oxidation processes[J]. Water Research, 2011, 45(15): 4531-4543. doi: 10.1016/j.watres.2011.05.039 [2] SNYDER S A, WESTERHOFF P, YOON Y, et al. Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry[J]. Environmental Engineering Science, 2003, 20(5): 449-469. doi: 10.1089/109287503768335931 [3] MARTINEZ J L. Environmental pollution by antibiotics and by antibiotic resistance determinants[J]. Environmental Pollution, 2009, 157(11): 2893-2902. doi: 10.1016/j.envpol.2009.05.051 [4] KONG X J, JIANG J, MA J, et al. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products[J]. Water Research, 2016, 90: 15-23. doi: 10.1016/j.watres.2015.11.068 [5] SOLTERMANN F, WIDLER T, CANONICA S, et al. Photolysis of inorganic chloramines and efficiency of trichloramine abatement by UV treatment of swimming pool water[J]. Water Research, 2014, 56: 280-291. doi: 10.1016/j.watres.2014.02.034 [6] KEEN O S, LINDEN K G. Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent[J]. Environmental Science & Technology, 2013, 47(22): 13020-13030. [7] WOLS B A, HOFMAN-CARIS C H M. Modelling micropollutant degradation in UV/H2O2 systems: Lagrangian versus Eulerian method[J]. Chemical Engineering Journal, 2012, 210: 289-297. doi: 10.1016/j.cej.2012.08.088 [8] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3): 1859-1868. [9] FANG Y, HU C, HU X X, et al. Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2[J]. Water Research, 2009, 43(6): 1766-1774. doi: 10.1016/j.watres.2009.01.008 [10] IMOBERDORF G, MOHSENI M. Kinetic study and modeling of the vacuum-UV photoinduced degradation of 2, 4-D[J]. Chemical Engineering Journal, 2012, 187: 114-122. doi: 10.1016/j.cej.2012.01.107 [11] ZOSCHKE K, BORNICK H, WORCH E. Vacuum-UV radiation at 185 nm in water treatment: A review[J]. Water Research, 2014, 52: 131-145. doi: 10.1016/j.watres.2013.12.034 [12] LI M K, HAO M Y, YANG L X, et al. Trace organic pollutant removal by VUV/UV/chlorine process: Feasibility investigation for drinking water treatment on a mini-fluidic VUV/UV photoreaction system and a pilot photoreactor[J]. Environmental Science & Technology, 2018, 52: 7426-7433. [13] ROSENFELDT E J, LINDEN K G. The ROH, UV concept to characterize and the model UV/H2O2 process in natural waters[J]. Environmental Science & Technology, 2007, 41(7): 2548-2553. [14] BOLTON J R, MAYOR-SMITH I, LINDEN K G. Rethinking the concepts of fluence (UV Dose) and fluence rate: The importance of photon-based units: A systemic review[J]. Photochemistry and Photobiology, 2015, 91(6): 1252-1262. doi: 10.1111/php.12512 [15] BOLTON J R, LINDEN K G. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments[J]. Journal of Environmental Engineering, 2003, 129(3): 209-215. doi: 10.1061/(ASCE)0733-9372(2003)129:3(209) [16] LI M K, Li W T, WEN D, et al. Micropollutant degradation by the UV/H2O2 process: Kinetic comparison among various radiation sources[J]. Environmental Science & Technology, 2019, 53(9): 5241-5248. [17] LI M K, LI W T, BOLTON J R, et al. Organic pollutant degradation by VUV/UV/H2O2 process: Inhibition and enhancement roles of H2O2[J]. Environmental Science & Technology, 2019, 53: 912-918. [18] WANG D, BOLTON J R, HOFMANN R. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water[J]. Water Research, 2012, 46 (15): 4677-4686. [19] WOLS B A, HOFMAN-CARIS C H M. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water[J]. Water Research, 2012, 46(9): 2815-2827. doi: 10.1016/j.watres.2012.03.036 [20] CRITTENDEN J C, HU S, HAND D W, et al. A kinetic model for H2O2/UV process in a completely mixed batch reactor[J]. Water Research, 1999, 33: 2315-2328. doi: 10.1016/S0043-1354(98)00448-5 [21] ROSS A B, BIELSKI B H J, BUXTON G V, et al. NIST Standard Reference Database 40: NDRL/NIST Solutions Kinetics Database V. 3.0[S]. Gaithersburg, MD, 1998. [22] XU M Y, DENG J, CAI A H, et al. Comparison of UVC and UVC/persulfate processes for tetracycline removal in water[J]. Chemical Engineering Journal, 2020, 384: 123320. doi: 10.1016/j.cej.2019.123320