东平湖水化学特征及成因分析

张丽, 陈永金, 刘加珍, 逯尧, 刘承志, 许婕, 贾一灿, 吕军生. 东平湖水化学特征及成因分析[J]. 环境化学, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502
引用本文: 张丽, 陈永金, 刘加珍, 逯尧, 刘承志, 许婕, 贾一灿, 吕军生. 东平湖水化学特征及成因分析[J]. 环境化学, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502
ZHANG Li, CHEN Yongjin, LIU Jiazhen, LU Yao, LIU Chengzhi, XU Jie, JIA Yican, LYU Junsheng. Analysis on hydrochemical characteristics and causes of Dongping Lake[J]. Environmental Chemistry, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502
Citation: ZHANG Li, CHEN Yongjin, LIU Jiazhen, LU Yao, LIU Chengzhi, XU Jie, JIA Yican, LYU Junsheng. Analysis on hydrochemical characteristics and causes of Dongping Lake[J]. Environmental Chemistry, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502

东平湖水化学特征及成因分析

    通讯作者: Email:chenyongjin@lcu.edu.cn
  • 基金项目:
    国家科技支撑计划项目(2014BAC15B02),国家级大学生创新训练项目(201810447023,201910447022)和聊城大学大学生创新训练项目(cxcy2019y063)资助

Analysis on hydrochemical characteristics and causes of Dongping Lake

    Corresponding author: CHEN Yongjin, chenyongjin@lcu.edu.cn
  • Fund Project: National Science and Technology Support Program (2014BAC15B02), National Innovation Training Program for College Students (201810447023, 201910447022) and Innovation Training Program for College Students of Liaocheng University (cxcy2019y063)
  • 摘要: 地表水化学参数特征及其成因分析是地表水资源评价与管理的重要组成部分。为研究泰安市东平湖水化学特征及成因,采用空间插值、Piper三线图、Gibbs图以及相关性分析等方法,探讨了研究区不同月份、不同类型东平湖地表水水化学组份特征及影响因素、各离子的来源等问题。结果显示,东平湖湖水属于碱性水体,TDS时空分布差异显著,10月份总体浓度最高,8月份最低;6月湖区TDS含量从湖区东南向西北逐渐递增,10月从湖心向南北两侧逐渐递增。研究区湖水主要水化学类型由SO4-Na→SO4- Na·Ca·Mg→SO4-Ca型转变,该地区地表水的水化学类型易多变;水体中阳离子以Na+为主,Ca2+稍次之,阴离子以SO24为主;水体中K+和Na+来源于大气环流所携带的海盐,HCO3和Mg2+可能来自白云岩等碳酸盐岩或黑云母的风化溶解,SO24则主要来源于人类活动,少量来自石膏溶解, Ca2+则来源于钙长石的风化以及石膏的溶解。由此可见,东平湖水体离子组分基本来源于蒸发结晶,部分组分来源于岩石风化,大气降水的输入作用十分微弱。
  • 我国燃煤电厂烟气超低排放已全面实施[1-5],要求颗粒排放限值为10 mg·m−3或5 mg·m−3,钢厂、水泥厂等也纷纷效仿燃煤电厂,开始实施超低排放。

    常规电除尘技术具有细颗粒荷电不充分、高比电阻反电晕和二次扬尘的技术瓶颈[6],当遇到高比电阻粉尘时,电除尘器出口颗粒物浓度甚至很难低于30 mg·m−3。低低温电除尘技术最早应用于日本,通过控制电除尘器入口烟气温度在90 ℃左右来实现电除尘效率的有效提升[7-8]。国内相关学者也对该技术开展了相关研究,郦建国等[9]和赵海宝等[10]归纳了低低温电除尘技术的发展及技术特点,并对该技术的核心问题及对策措施进行了探讨,为我国燃煤电厂低低温电除尘技术的应用和发展提供了参考,但这些研究主要针对国外文献的综述,未涉及相关实验的研究;叶兴联等[11]通过数值模拟方法,研究了低低温电除尘器的流场参数,并对其烟道布置型式进行了优化设计,但未涉及污染物减排特性。寿春晖等[12]对某1 000 MW机组低低温电除尘器的颗粒物脱除特性进行了实验研究,初步探寻了低低温状态下烟温与除尘效果的关系,研究了低低温电除尘器对各级粒径颗粒物的脱除效果及对主要成灰元素的捕集情况,但未涉及细颗粒物(PM2.5)及SO3脱除性能。刘含笑等[13]对国内近200种煤种的灰硫比进行了计算分析,发现绝大部分煤种的灰硫比均大于100,同时,采用低低温电除尘技术不发生低温腐蚀风险,并对污染物减排特性进行了初步探讨,但对细颗粒物(PM2.5)及SO3脱除性能的描述较少。

    针对上述问题,本研究通过实验室研究及工程实测相结合的手段,旨在对低低温电除尘技术的PM2.5及SO3的减排特性进行较全面的表征,为该技术的大规模推广应用提供参考。

    图1所示,实验系统主要包括燃油热风炉、加灰系统(储料仓泵、射流器等)、混流装置、加SOx系统(SO2、SO3)、烟温调节装置、单室五电场电除尘器、风机等。实验系统设计风量为1 000 m3·h−1(燃油热风炉出口),加料系统所采用的原料为电厂的燃煤飞灰,可通过调整加料系统的加料量来控制电除尘器入口的烟尘浓度,最高可实现40 g·m−3的给料量,实验时分别调整其浓度在40 g·m−3和10 g·m−3左右;加SO3系统可通过调整阀门开度,浓度最高为50 g·m−3,实验时分别调整其浓度为50、30、10 mg·m−3左右;烟温调节装置可通过调整冷却水的流量来控制电除尘器入口的烟气温度,实验时分别调整其温度为130、100、90和80 ℃。

    图 1  实验系统
    Figure 1.  Experiment system

    颗粒物及PM2.5测试方法参照ISO 23210-2009的相关要求,采用低压撞击器(DLPI)采样系统进行采样,采样系统如图2所示。采样时,采样枪须进行加热、保温,温度宜控制在(160 ±5) ℃,根据采样流量和烟气流速,选取合适的采样头直径,以实现等速取样。泵采样烟气流量约为10 L·min−1,烟气通过加热的DLPI撞击器进行粒径分级,DLPI撞击器加热温度约120 ℃。DLPI撞击器共分为13级,各级的累计测试结果为颗粒物的总质量(TSP),另外12级可分别测定PM10(1~12级)、PM2.5(1~9级)、PM1(1~7级)。电除尘器进口采样时,须在DLPI前增设1个旋风分离器,测定TSP时,须用去离子水对旋风内壁进行清洗,并烘干后计入样品总重。

    图 2  DLPI采样系统
    Figure 2.  Sampling system of DLPI

    在SO3测试方面,采用GB/T 21508-2008所规定的控制冷凝法,SO3采样系统如图3所示。水浴温度为65 ℃,石英管采样枪加热温度为300 ℃,抽气流量为20 L·min−1,采样结束后,用80%异丙醇溶液清洗蛇形盘管,硫酸根离子的滴定采用哈希DR 6000紫外-可见分光光度计。

    图 3  SO3采样系统
    Figure 3.  SO3 sampling system

    1)总尘(TSP)。调整实验系统SO3浓度为50 mg·m−3,分别在TSP为40 g·m−3和10 g·m−3左右时,测定不同电除尘器入口烟气温度时除尘效率,结果如图4所示。随着电除尘器进口烟气温度的降低,电除尘效率逐渐提高,这是因为烟温降低后,烟气量下降,电除尘器的比集尘面积增加,且击穿电压提高、粉尘工况比电阻降低等[13],这些因素均可提高电除尘器的除尘效率。当TSP为40 g·m−3左右,电除尘器入口烟气温度分别为130、100、90、80 ℃时,电除尘器的除尘效率分别为99.92%、99.93%、99.97%、99.98%;当TSP为10 g·m−3左右,电除尘器入口烟气温度分别为130、100、90、80 ℃时,电除尘器的除尘效率分别为99.88%、99.89%、99.94%、99.96%。烟气温度从100 ℃降低至90 ℃时,电除尘器的除尘效率增加幅度最为明显,2种工况(TSP为40 g·m−3和10 g·m−3左右)条件下,提效幅度分别为54.78%、50.42%,这是因为这个温度区间内存在烟气的酸露点,当烟气温度降至酸露点以下后,气态的SO3会以硫酸雾滴的形式存在,此时对烟气特性及粉尘性质的改善最为明显。相关研究表明,烟气温度在酸露点前后,粉尘的工况比电阻可降低1~3个数量级[14-15]

    图 4  不同温度的除尘效率
    Figure 4.  Dust removal efficiency at different temperatures

    为进一步研究SO3冷凝对电除尘提效的影响,调整实验系统TSP为40 g·m−3左右,分别在不同SO3浓度,测定100 ℃和90 ℃时电除尘器出口TSP浓度及提效幅度,测试结果如图5所示。当SO3浓度分别为50、30、10和0 mg·m−3时,降温前后低低温电除尘器的提效幅度分别为54.78%、44.77%、39.07%和24.73%,电除尘器的提效幅度与SO3浓度正相关。这是因为SO3本身就是一种烟气调质剂[16],尤其当烟气温度低于酸露点温度以后,冷凝后的硫酸雾会大幅改善烟气特性及粉尘性质,从而有效提高电除尘器的除尘效率,且烟气中SO3浓度越高,其对粉尘性质的改善作用即调质作用越显著。当烟气中不含SO3时,降温提效则仅依赖于烟气温度,降低后烟气量减少,击穿电压升高[13]等。

    图 5  不同SO3浓度时电除尘提效幅度测试结果
    Figure 5.  The improvement of electric dust removal at different SO3 concentration

    2)粒径分布及PM2.5。调整实验系统SO3浓度为50 mg·m−3,TSP为40 g·m−3和10 g·m−3左右时,测定不同电除尘器入口烟气温度时PM2.5脱除效率,结果如图6所示。电除尘器入口烟气温度分别为130、100、90、80 ℃时,TSP为40 g·m−3左右,电除尘器对PM2.5的除尘效率分别为93.16%、94.08%、96.65%、97.38%;TSP为10 g·m−3左右,电除尘器对PM2.5的除尘效率分别为92.78%、93.69%、96.36%、97.22%。随着电除尘器进口烟气温度的降低,PM2.5脱除效率逐渐提高,这与TSP的减排规律是一致的。烟气温度从100 ℃降低至90 ℃时,电除尘器的PM2.5脱除效率增加幅度最为明显,2种工况条件下提效幅度分别为43.44%、42.37%,较总尘的提效幅度略微低一些。电除尘器对PM2.5的提效幅度随着SO3浓度的增加而提高,如图7所示,当TSP为40 g·m−3左右时,烟温调节装置入口PM2.5质量浓度为206.07 mg·m−3;当SO3浓度分别为50、30、10、0 mg·m−3时,降温前后低低温电除尘器对PM2.5的提效幅度分别为43.44%、41.49%、37.18%、27.19%。

    图 6  不同温度时PM2.5脱除效率测试结果
    Figure 6.  PM2.5 removal efficiency at different temperatures
    图 7  不同SO3浓度时电除尘提效幅度
    Figure 7.  Improvement of electric dust removal at different SO3 concentration

    为进一步研究烟气降温的电除尘提效机制,采用DLPI,在SO3浓度为50 mg·m−3、TSP为40 g·m−3左右时,测定不同烟气温度时的烟气调节装置出口的粒径分布,测试结果如图8所示。当烟气温度从100 ℃降至90 ℃时,烟气调节装置出口的小粒径段颗粒物明显减少,而大粒径段颗粒有所增加,推测引起上述粒径变化的主要原因是,烟气温度降至酸露点以下,硫酸雾对粉尘性质,尤其是表面黏性进行改善,有效促进了细颗粒团聚。刘含笑等[17]曾预测了SO3促进细颗粒团聚的机制,但尚未得到实验观测结果的验证。史文峥等[18]指出,SO3冷凝对小粒径范围的颗粒团聚尤为明显,但该规律是通过理论计算得到的。GUO等[19]使用FESEM电镜扫描技术观测了化学团聚前后的粉煤灰颗粒变化,有效验证了理论推断和计算规律。为证实SO3冷凝对细颗粒团聚促进作用的推断,采用电镜扫描对采样进行观测分析,结果如图9所示,130 ℃时颗粒分布较为分散,单个颗粒也较光滑,而90 ℃时颗粒物聚集较多,且多见到大颗粒表面黏附到小颗粒。

    图 8  不同温度时粒径分布测试结果
    Figure 8.  Particle size distribution test results at different temperatures
    图 9  电镜扫描图
    Figure 9.  SEM images

    3) SO3浓度。调整实验系统SO3浓度为50 mg·m−3,TSP分别为40、10 g·m−3左右时,测定不同电除尘器入口烟气温度时SO3脱除效率,结果如图10所示。电除尘器入口烟气温度分别为130、100、90、80 ℃时,TSP为40 g·m−3左右,电除尘器对SO3的脱除效率分别为10.64%、16.97%、90.79%、93.46%;TSP为10 g·m−3左右,电除尘器对SO3的脱除效率分别为6.54%、10.84%、85.89%、89.37%。130、100 ℃时电除尘器对SO3的脱除效率有限,仅有10%左右,烟气温度从100 ℃降低至90 ℃时,电除尘器的SO3脱除效率增加幅度最为明显,2种工况条件下提效幅度分别为88.92%、84.17%。当电除尘器入口烟气温度为90 ℃时,不同SO3浓度对应的SO3脱除效率测试结果如图11所示,入口SO3浓度越高,所对应的SO3脱除效率越高,且在相同的SO3浓度时,TSP浓度越高,粉尘对冷凝后的硫酸雾吸附就越完全,对应的SO3脱除效率越高。为了进一步验证粉尘对冷凝后硫酸雾的吸附作用,采用792 Basic IC离子色谱仪测定电除尘器入口烟气温度分别为130、90 ℃时电除尘器收集飞灰样品中的硫酸根含量,测定结果如图12所示,降温前后飞灰样品中硫元素质量分数明显增加,且SO3浓度越高,飞灰样品中硫元素质量分数增幅越显著。

    图 10  不同温度时SO3脱除效率测试结果
    Figure 10.  SO3 removal efficiency at different temperatures
    图 11  不同SO3浓度时SO3脱除效率测试结果
    Figure 11.  SO3 removal efficiency at different SO3 concentrations
    图 12  飞灰样品中硫元素质量分数
    Figure 12.  Sulfur content in the fly ash samples

    针对A电厂600 MW机组、B电厂600 MW机组、C电厂1 000 MW机组配套的低低温电除尘器,开展现场测试研究,3个项目的烟气参数、煤种成分分析、飞灰成分分析结果如表1~表3所示,所烧煤种均为低硫煤(≤1%),对应的烟气治理技术路线如图13所示。

    表 1  烟气参数
    Table 1.  Flue gas parameters
    项目 机组/MW 烟气量/(m3·h−1) 入口烟尘浓度/(g·m−3) 入口烟气温度/℃
    A电厂 600 2 624 800 12.68 90
    B电厂 600 2 096 700 29.67 88.5
    C电厂 1 000 8 029 700 10.74 90
     | Show Table
    DownLoad: CSV
    表 2  煤种成分分析
    Table 2.  Analysis of coal composition
    项目 水分/% 灰分/% 硫分/% 低位发热量/(kJ·g−1)
    A电厂 20.1 10.1 0.45 20.9
    B电厂 9.8 16.8 0.53 18.5
    C电厂 15.7 6.5 0.81 24.8
     | Show Table
    DownLoad: CSV
    表 3  飞灰成分分析
    Table 3.  Analysis of fly ash composition %
    项目 氧化硅 氧化铝 氧化钠 氧化钾 氧化钙
    A电厂 44.6 26.5 2.87 0.43 10.4
    B电厂 51.9 17.9 0.65 0.35 6.5
    C电厂 39.7 29.5 0.71 0.68 7.2
     | Show Table
    DownLoad: CSV
    图 13  烟气治理技术路线
    Figure 13.  Flue gas treatment technology

    颗粒物及PM2.5测试方法参照ISO 23210-2009的相关要求,采用低压撞击器(DLPI)进行实测,TSP及PM2.5脱除效率测试结果如图14所示。对于A电厂,烟温降低前后,TSP脱除效率分别为99.85%、99.91%,提效幅度达40.11%,PM2.5脱除效率分别为97.03%、98.15%,提效幅度达37.93%。对于B电厂,烟温降低前后,TSP脱除效率分别为99.93%、99.96%,提效幅度达36.54%,PM2.5脱除效率分别为97.52%、98.22%,提效幅度达28.13%。对于C电厂,烟温降低前后,TSP脱除效率分别为99.88%、99.93%,提效幅度达42.86%,PM2.5脱除效率分别为97.49%、97.84%,提效幅度达14.29%。TSP及PM2.5的提效规律与前文实验一致,但提效幅度的绝对值较实验值略小。

    图 14  TSP及PM2.5脱除效率
    Figure 14.  TSP and PM2.5 removal efficiency

    SO3采用GB/T 21508-2008规定的控制冷凝法进行实测,各测点SO3测试结果如图15所示。烟气经过SCR后,SO3均有所增加,这是因为SCR脱硝的催化剂在催化氧化NOx的同时,也会将一部分SO2氧化为SO3。催化剂厂家为控制SO2/SO3转化率,一般会降低配方中V2O5的含量[20],目前,超低排放机组对SCR脱硝的SO2/SO3转化率一般要求≤1%。烟温降低前后,A电厂低低温电除尘系统对SO3的脱除效率分别为14.56%、77.18%;B电厂低低温电除尘系统对SO3的脱除效率分别为25.00%、84.06%;C电厂低低温电除尘系统对SO3的脱除效率分别为32.05%、90.80%,3个机组的低低温电除尘系统对SO3的减排幅度分别为73.30%、78.74%、86.46%。SO3的减排规律与前文实验一致,但同样减排幅度的绝对值也较实验值略小。另外,不难发现,湿法脱硫及湿式电除尘器对SO3也有一定的脱除效果,A电厂湿法脱硫对SO3脱除效率分别为44.89%、44.68%;B电厂湿法脱硫对SO3脱除效率分别为34.78%、18.18%,湿式电除尘器对SO3脱除效率分别为72.59%、66.67%,SO3在湿式电除尘器中以硫酸气溶胶颗粒的形式存在,而湿式电除尘器对细颗粒物具有较高的脱除效率[21]

    图 15  各测点SO3测试结果
    Figure 15.  Test results of SO3 at each measuring point

    1)通过开展实验室实验,发现SO3浓度为50 mg·m−3,TSP分别为40、10 g·m−3左右时,电除尘器入口烟气温度从100 ℃降低至90 ℃,电除尘器的除尘效率增加幅度分别为54.78%、54.42%,PM2.5提效幅度分别为43.44%、42.37%,且TSP和PM2.5的提效幅度均与SO3浓度正相关;烟气温度降至酸露点以下,细颗粒物存在明显的团聚现象;在90 ℃时,2种工况条件下电除尘器对SO3脱除效率分别为90.79%、85.89%,与100 ℃相比,电除尘器的SO3提效幅度分别为88.92%、84.17%。

    2)通过3个工程项目的现场实测,进一步验证了低低温电除尘器对PM2.5和SO3的脱除性能。低低温电除尘器对TSP和PM2.5的提效幅度分别为40.11%、36.54%、42.86%,37.93%、28.13%、14.29%,对SO3的减排幅度分别为73.30%、78.74%、86.46%,减排规律与前文实验一致,但减排幅度的绝对值较实验值略小。

  • 图 1  东平湖湿地采样点的位置分布图

    Figure 1.  Distribution of sampling points in the wetland of Dongping LakeDongping Lake

    图 2  不同月份水体TDS含量箱体图

    Figure 2.  Box Chart of TDS Content in Different Months

    图 3  不同月份水体TDS空间分布特征

    Figure 3.  spatial distribution characteristics of TDS in different months

    图 4  不同月份水体的水化学piper图

    Figure 4.  Piper diagram of water chemistry in different months

    图 5  东平湖水化学Gibbs图

    Figure 5.  Gibbs chart of Dongping Lake

    表 1  东平湖4个月份的水化学参数

    Table 1.  Hydrochemical parameters of Dongping Lake in different months

    月份水温/℃TemperaturepHTDS/(mg·L−1)电导率/(μS·cm−1)ConductivityK+s/(mg·L−1)Na+/(mg·L−1)Ca2+/(mg·L−1)Mg2+/(mg·L−1)Cl/(mg·L−1)SO24/(mg·L−1)CO23/(mg·L−1)HCO3/(mg·L−1)
    4月169.0675115013574138932525148
    6月288.00722144635045411012716154
    8月307.49656131525754351812563167
    10月218.1980695533171241071673150
    月份水温/℃TemperaturepHTDS/(mg·L−1)电导率/(μS·cm−1)ConductivityK+s/(mg·L−1)Na+/(mg·L−1)Ca2+/(mg·L−1)Mg2+/(mg·L−1)Cl/(mg·L−1)SO24/(mg·L−1)CO23/(mg·L−1)HCO3/(mg·L−1)
    4月169.0675115013574138932525148
    6月288.00722144635045411012716154
    8月307.49656131525754351812563167
    10月218.1980695533171241071673150
    下载: 导出CSV

    表 2  各月份水化学参数相关系数矩阵

    Table 2.  Monthly matrix of correlation coefficients of hydrochemical parameters

    MonthindexTDSK+Na+Ca2+Mg2+CO23HCO3ClSO24
    4月K+−0.042
    Na+0.0010.627**
    Ca2+0.445**−0.281−0.319*
    Mg2+−0.0640.719**0.667**−0.231
    CO230.0630.391*0.524**0.0080.518**
    HCO30.386*0.706**0.603**0.0390.622**0.396*
    Cl−0.0650.650**0.563**−0.0210.841**0.428**0.477**
    SO24−0.0410.840**0.668**−0.362*0.857**0.517**0.676**0.650**
    6月K+−0.843**
    Na+−0.352*0.438**
    Ca2+−0.912**0.867**0.312*
    Mg2+−0.904**0.853**0.534**0.800**
    CO23−0.595**0.790**0.2550.645**0.676**
    HCO3−0.842**0.839**0.401*0.899**0.808**0.638**
    Cl−0.882**0.946**0.511**0.885**0.939**0.762**0.854**
    SO24−0.926**0.887**0.511**0.892**0.963**0.703**0.836**0.956**
    8月K+0.495**
    Na+0.613**0.463**
    Ca2+−0.320*−0.03−0.184
    8月Mg2+0.015−0.089−0.14−0.394*
    CO230.056−0.0810.326*−0.351*−0.062
    HCO30.2720.621**−0.018−0.1580.07−0.357*
    Cl0.363*0.270.652**−0.184−0.0680.2090.12
    SO24−0.131−0.523**−0.1780.1650.155−0.117−0.324*−0.079
    10月K+0.121
    Na+0.010.203
    Ca2+0.188−0.104−0.223
    Mg2+−0.1830.006−0.002−0.390*
    CO230.020.03−0.1090.177−0.11
    HCO30.083−0.0940.1340.1110.110.183
    Cl0.356*0.2760.080.034−0.0110.016−0.08
    SO24−0.313*0.0420.168−0.1960.585**−0.0670.051−0.018
      ** P<0.01, P<0.05.
    MonthindexTDSK+Na+Ca2+Mg2+CO23HCO3ClSO24
    4月K+−0.042
    Na+0.0010.627**
    Ca2+0.445**−0.281−0.319*
    Mg2+−0.0640.719**0.667**−0.231
    CO230.0630.391*0.524**0.0080.518**
    HCO30.386*0.706**0.603**0.0390.622**0.396*
    Cl−0.0650.650**0.563**−0.0210.841**0.428**0.477**
    SO24−0.0410.840**0.668**−0.362*0.857**0.517**0.676**0.650**
    6月K+−0.843**
    Na+−0.352*0.438**
    Ca2+−0.912**0.867**0.312*
    Mg2+−0.904**0.853**0.534**0.800**
    CO23−0.595**0.790**0.2550.645**0.676**
    HCO3−0.842**0.839**0.401*0.899**0.808**0.638**
    Cl−0.882**0.946**0.511**0.885**0.939**0.762**0.854**
    SO24−0.926**0.887**0.511**0.892**0.963**0.703**0.836**0.956**
    8月K+0.495**
    Na+0.613**0.463**
    Ca2+−0.320*−0.03−0.184
    8月Mg2+0.015−0.089−0.14−0.394*
    CO230.056−0.0810.326*−0.351*−0.062
    HCO30.2720.621**−0.018−0.1580.07−0.357*
    Cl0.363*0.270.652**−0.184−0.0680.2090.12
    SO24−0.131−0.523**−0.1780.1650.155−0.117−0.324*−0.079
    10月K+0.121
    Na+0.010.203
    Ca2+0.188−0.104−0.223
    Mg2+−0.1830.006−0.002−0.390*
    CO230.020.03−0.1090.177−0.11
    HCO30.083−0.0940.1340.1110.110.183
    Cl0.356*0.2760.080.034−0.0110.016−0.08
    SO24−0.313*0.0420.168−0.1960.585**−0.0670.051−0.018
      ** P<0.01, P<0.05.
    下载: 导出CSV
  • [1] 李小倩, 刘运德, 周爱国, 等. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析 [J]. 地球科学-中国地质大学学报, 2014(11): 1547-1554.

    LI X Q, LIU Y D, ZHOU A G, et al. Characteristics of sulfate isotopic composition of river water in the main stream of the Yangtze River and its source analysis [J]. Journal of Earth Science-China University of Geosciences, 2014(11): 1547-1554(in Chinese).

    [2] 黄丽, 张心昱, 袁国富, 等. 我国典型陆地生态系统水化学离子特征及空间分布 [J]. 环境科学, 2019, 40(5): 2086-2093.

    HUANG L, ZHANG X Y, YUAN G F, et al. Characteristics and spatial distribution of hydrochemical ions in typical terrestrial ecosystems of China [J]. Environmental Science, 2019, 40(5): 2086-2093(in Chinese).

    [3] 王亚平, 王岚, 许春雪, 等. 长江水系水文地球化学特征及主要离子的化学成因 [J]. 地质通报, 2010, 29(Z1): 446-456.

    WANG Y P, WANG L, XU C X, et al. Hydrogeochemical characteristics and chemical genesis of major ions in the Yangtze river system [J]. Geological Bulletin, 2010, 29(Z1): 446-456(in Chinese).

    [4] 曾妍妍, 周金龙, 贾瑞亮, 等. 新疆祁漫塔格地区地表水水化学特征及成因分析 [J]. 干旱区资源与环境, 2017, 31(6): 64-70.

    ZENG Y Y, ZHOU J L, JIA R L, et al. Analysis of surface water and water chemistry characteristics and genesis of Qimantage Area in Xinjiang [J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 64-70(in Chinese).

    [5] 孙英, 周金龙, 乃尉华, 等. 新疆喀什噶尔河流域地表水水化学季节变化特征及成因分析 [J]. 干旱区资源与环境, 2019, 33(8): 128-134.

    SUN Y, ZHOU J L, NAI W H, et al. Characteristics and causes of seasonal variation of surface water and water chemistry in the Kashgar River Basin of Xinjiang [J]. Journal of Arid Land Resources and Environment, 2019, 33(8): 128-134(in Chinese).

    [6] 朱世丹, 张飞, 张海威. 艾比湖流域河流水化学季节特征及空间格局研究 [J]. 环境科学学报, 2018, 38(3): 892-899.

    ZHU S D, ZHANG F, ZHANG H W. Study on seasonal characteristics and spatial pattern of river water chemistry in aibi lake basin [J]. Chinese Journal of Environmental Science, 2018, 38(3): 892-899(in Chinese).

    [7] 王修华, 曹建华, 吴夏, 等. 漓江流域河流水体离子组成特征及来源 [J]. 水文, 2019, 39(3): 68-74. doi: 10.3969/j.issn.1000-0852.2019.03.012

    WANG XH, CAO JH, WU X, et al. Characteristics and sources of ion composition of river waters in Minjiang River Basin [J]. Hydrology, 2019, 39(3): 68-74(in Chinese). doi: 10.3969/j.issn.1000-0852.2019.03.012

    [8] 沈贝贝, 吴敬禄, 吉力力·阿不都外力, 等. 巴尔喀什湖流域水化学及同位素空间分布及环境特征 [J]. 环境科学, 2020, 41(1): 173-182.

    SHEN B B, WU J L, GELILI A, et al. Spatial chemistry and isotopic spatial distribution and environmental characteristics of the Balkhash Lake Basin [J]. Environmental Science, 2020, 41(1): 173-182(in Chinese).

    [9] 唐玺雯, 吴锦奎, 薛丽洋, 等. 锡林河流域地表水水化学主离子特征及控制因素 [J]. 环境科学, 2014, 35(1): 131-142.

    TANG X W, WU J K, XUE L Y, et al. Characteristics and controlling factors of surface hydrogen main ions in Xilin River basin [J]. Environmental Science, 2014, 35(1): 131-142(in Chinese).

    [10] 张智博, 刘涛, 伍青山, 等. 东平湖湿地土壤有机碳分布特征及其影响因素 [J]. 人民黄河, 2019, 41(7): 92-96, 147. doi: 10.3969/j.issn.1000-1379.2019.07.020

    ZHANG Z B, LIU T, WU Q S, et al. Distribution characteristics of soil organic carbon and its influencing factors in Dongping Lake wetland [J]. Yellow River, 2019, 41(7): 92-96, 147(in Chinese). doi: 10.3969/j.issn.1000-1379.2019.07.020

    [11] 张菊, 何振芳, 董杰, 等. 东平湖表层沉积物重金属的空间分布及污染评价 [J]. 生态环境学报, 2016, 25(10): 1699-1706.

    ZHANG J, HE Z F, DONG J, et al. Spatial distribution and pollution assessment of heavy metals in surface sediments of Dongping Lake [J]. Chinese Journal of Eco-Environment, 2016, 25(10): 1699-1706(in Chinese).

    [12] 宋立明, 李艳琴. 东平湖表层沉积物的理化特性及分布特征研究 [J]. 安徽农业科学, 2011, 39(12): 7425-7427. doi: 10.3969/j.issn.0517-6611.2011.12.182

    SONG L M, LI Y Q. Physicochemical properties and distribution characteristics of surface sediments in Dongping Lake [J]. Anhui Agricultural Sciences, 2011, 39(12): 7425-7427(in Chinese). doi: 10.3969/j.issn.0517-6611.2011.12.182

    [13] 杨丽伟, 张菊, 邓焕广, 等. 东平湖底泥重金属污染及其对摇蚊分布的影响 [J]. 应用与环境生物学报, 2016(4): 680-688.

    YANG L W, ZHANG J, DENG H G, et al. Heavy metal pollution in the sediment of Dongping Lake and its influence on the distribution of chironomids [J]. Chinese Journal of Applied and Environmental Biology, 2016(4): 680-688(in Chinese).

    [14] 路亚坤, 刘加珍, 陈永金, 等. 东平湖湖滨带不同植被类型下春季土壤CO2通量研究 [J]. 中国农学通报, 2012, 28(28): 8-14. doi: 10.3969/j.issn.1000-6850.2012.28.002

    LU Y K, LIU J Z, CHEN Y J, et al. Study on CO2 flux in spring under different vegetation types in Dongping Lake lakeside [J]. Chinese Agricultural Science Bulletin, 2012, 28(28): 8-14(in Chinese). doi: 10.3969/j.issn.1000-6850.2012.28.002

    [15] 路亚坤, 刘加珍, 陈永金, 等. 温带湖泊周边湿地原生草地与人工林土壤碳释放差异性分析 [J]. 生态环境学报, 2013(4): 605-610. doi: 10.3969/j.issn.1674-5906.2013.04.010

    LU Y K, LIU J Z, CHEN Y J, et al. Difference analysis of soil carbon release from native grassland and plantation in temperate lakes [J]. Chinese Journal of Ecology, 2013(4): 605-610(in Chinese). doi: 10.3969/j.issn.1674-5906.2013.04.010

    [16] 路明, 刘加珍, 陈永金. 东平湖环境问题的影响因素与综合治理分析 [J]. 安徽农业科学, 2012, 40(9): 5490-5492. doi: 10.3969/j.issn.0517-6611.2012.09.149

    LU M, LIU JZ, CHEN YJ. Influencing factors and comprehensive management analysis of environmental problems in Dongping Lake [J]. Journal of Anhui Agricultural Sciences, 2012, 40(9): 5490-5492(in Chinese). doi: 10.3969/j.issn.0517-6611.2012.09.149

    [17] 靖淑慧, 刘加珍, 陈永金, 等. 氢氧稳定同位素对东平湖枯水期水环境的指示作用 [J]. 南水北调与水利科技, 2019, 17(1): 120-129, 149.

    JING S H, LIU J Z, CHEN Y J, et al. Indicative effect of hydrogen and oxygen stable isotope on water environment in Dongping Lake during dry season [J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(1): 120-129, 149(in Chinese).

    [18] 冯若昂, 刘加珍, 陈永金, 等. 枯水期东平湖N、P空间自相关及环境影响分析 [J]. 环境工程, 2018, 36(8): 176-182.

    FENG R A, LIU J Z, CHEN Y J, et al. Analysis of N and P space autocorrelation and environmental impact in Dongping Lake during dry season [J]. Environmental Engineering, 2018, 36(8): 176-182(in Chinese).

    [19] 孙栋, 段登选, 王志忠, 等. 东平湖水质监测与评价 [J]. 淡水渔业, 2006(4): 13-16. doi: 10.3969/j.issn.1000-6907.2006.04.003

    SUN D, DUAN D X, WANG Z Z, et al. Water quality monitoring and evaluation in Dongping Lake [J]. Freshwater Fisheries, 2006(4): 13-16(in Chinese). doi: 10.3969/j.issn.1000-6907.2006.04.003

    [20] 后希康, 高伟, 徐鹏, 等. 流域社会经济发展对山东省东平湖水环境影响评估及优化调控 [J]. 湖泊科学, 2014, 26(2): 313-321. doi: 10.18307/2014.0219

    HOU X K, GAO W, XU P, et al. Evaluation and optimization of water environment impact of Dongping Lake in Shandong Province by socio-economic development [J]. Journal of Lake Science, 2014, 26(2): 313-321(in Chinese). doi: 10.18307/2014.0219

    [21] 冷春梅, 董贯仓, 王亚楠, 等. 南水北调运行初期东平湖浮游植物群落特征分析 [J]. 水产学杂志, 2019, 32(1): 22-27. doi: 10.3969/j.issn.1005-3832.2019.01.005

    LENG C M, DONG G C, WANG Y N, et al. Analysis of phytoplankton community characteristics in Dongping Lake in the early stage of operation of South-to-North Water Transfer Project [J]. Journal of Fisheries of China, 2019, 32(1): 22-27(in Chinese). doi: 10.3969/j.issn.1005-3832.2019.01.005

    [22] 殷山红, 张智博, 肖燕, 等. 东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征 [J]. 环境化学, 2019, 38(3): 635-643. doi: 10.7524/j.issn.0254-6108.2018051203

    YIN S H, ZHANG Z B, XIAO Y, et al. The occurrence characteristics of mercury and arsenic in the equator-overlying water-sediment system of Dongping Lake [J]. Environmental Chemistry, 2019, 38(3): 635-643(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051203

    [23] 梁莉莉, 于泉洲, 邓焕广, 等. 基于时序NDVI的东平湖菹草(Potamogeton crispus L.)遥感提取及时空格局 [J]. 湖泊科学, 2019, 31(2): 529-538. doi: 10.18307/2019.0221

    LIANG L L, YU Q Z, DDENG H G, et al. Remote sensing extraction of temporal and spatial patterns of Potamogeton crispus L. based on time series NDVI [J]. Journal of Lake Science, 2019, 31(2): 529-538(in Chinese). doi: 10.18307/2019.0221

    [24] 朱红豆, 刘晓, 于泉洲, 等. 近30年东平湖湿地景观格局演变研究 [J]. 山东国土资源, 2019, 35(6): 44-49.

    ZHU H D, LIU X, YU Q Z, et al. Study on the landscape pattern evolution of Dongping Lake wetland in recent 30 years [J]. Land and Resources in Shandong, 2019, 35(6): 44-49(in Chinese).

    [25] 王瑷玲, 刘洁, 王彩艳, 等. 1987-2009年东平湖湿地时空演变及其驱动力 [J]. 中国人口·资源与环境, 2014(s3): 160-163.

    WANG Y L, LIU J, WANG C Y, et al. Temporal and spatial evolution and driving forces of Dongping Lake wetland from 1987 to 2009 [J]. China Population • Resources and Environment, 2014(s3): 160-163(in Chinese).

    [26] 陈诗越, 董杰, 张重阳. 东平湖生态环境现状及流域可持续发展对策研究 [J]. 安徽农业科学, 2007, 35(5): 1436-1437. doi: 10.3969/j.issn.0517-6611.2007.05.090

    CHEN S Y, DONG J, ZHANG C Y. Study on the present situation of Dongping Lake ecological environment and countermeasures for sustainable development of watershed [J]. Journal of Anhui Agricultural Sciences, 2007, 35(5): 1436-1437(in Chinese). doi: 10.3969/j.issn.0517-6611.2007.05.090

    [27] 王新锐, 梁秀娟, 肖长来, 等. 白城市潜水水化学特征及成因分析 [J]. 水电能源科学, 2019, 37(3): 37-41.

    WANG X R, LIANG X J, XIAO C L, et al. Chemical characteristics and genesis analysis of diving water in Baicheng City [J]. Hydroelectric Energy Science, 2019, 37(3): 37-41(in Chinese).

    [28] 叶慧君, 张瑞雪, 吴攀, 等. 六盘水矿区关键带岩溶水水化学演化特征及驱动因子 [J]. 地球科学, 2019, 44(9): 2887-2898.

    YE H J, ZHANG R X, WU P, et al. Chemical evolution characteristics and driving factors of karst water in key zones of Liupanshui mining area [J]. Geoscience, 2019, 44(9): 2887-2898(in Chinese).

    [29] 朱谱成, 耿新新, 马琳娜, 等. 悖牛川上中游区地下水水化学特征及其成因分析 [J]. 科学技术与工程, 2018, 18(19): 162-169. doi: 10.3969/j.issn.1671-1815.2018.19.025

    ZHU P C, GENG X X, MA L N, et al. Hydrochemical characteristics of groundwater and its genesis in the upper and middle reaches of Xiniuchuan basin [J]. Science, Technology and Engineering, 2018, 18(19): 162-169(in Chinese). doi: 10.3969/j.issn.1671-1815.2018.19.025

    [30] HAN G L, LIU C. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China [J]. Chemical Geology, 2004, 204(1/2): 1-21. doi: 10.1016/j.chemgeo.2003.09.009
    [31] 文泽伟, 汝旋, 谢彬彬, 等. 龙江-柳江-西江流域的水化学特征及其成因分析 [J]. 环境化学, 2016, 35(9): 1853-1864. doi: 10.7524/j.issn.0254-6108.2016.09.2016013002

    WEN Z W, RU X, XIE B B, et al. Hydrochemical characteristics and genesis analysis of Longjiang-Liujiang-Xijiang river basin [J]. Environmental Chemistry, 2016, 35(9): 1853-1864(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016013002

    [32] 靖淑慧. 东平湖湖水蒸发对水环境影响的氢氧同位素解释[D]. 聊城: 聊城大学, 2019.

    JING S H. Hydrogen and oxygen isotopic interpretation of the impact of evaporation of Dongping Lake on water environment[D]. Liaocheng: Liaocheng University, 2019(in Chinese).

    [33] 郭巧玲, 熊新芝, 姜景瑞. 窟野河流域地表水-地下水的水化学特征 [J]. 环境化学, 2016, 35(7): 1372-1380. doi: 10.7524/j.issn.0254-6108.2016.07.2015110301

    GUO Q L, XIONG X Z, JIANG J R. Hydrochemical characteristics of surface water and groundwater in Kuye River Basin [J]. Environmental Chemistry, 2016, 35(7): 1372-1380(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.07.2015110301

    [34] 王海雷, 郑绵平. 青藏高原湖泊水化学与盐度的相关性初步研究 [J]. 地质学报, 2010, 84(10): 1517-1522.

    WANG H L, ZHENG M P. Preliminary study on the correlation between water chemistry and salinity in lakes on the qinghai-tibet plateau [J]. Acta Geologica Sinica, 2010, 84(10): 1517-1522(in Chinese).

    [35] 何锦, 张幼宽, 赵雨晴, 等. 鲜水河断裂带虾拉沱盆地断面地下水化学特征及控制因素 [J]. 环境科学, 2019, 40(3): 1236-1244.

    HE J, ZHANG Y K, ZHAO Y Q, et al. Groundwater chemical characteristics and control factors of the section of Yanlatuo basin in Xianshuihe fault zone [J]. Environmental Science, 2019, 40(3): 1236-1244(in Chinese).

    [36] ATTAR A. Global environment: Water, air and geochemical cycles [J]. International Journal of Environmental Studies, 2013, 70(1): 155-156. doi: 10.1080/00207233.2012.753739
    [37] 寇永朝, 华琨, 李洲, 等. 泾河支流地表水地下水的水化学特征及其控制因素 [J]. 环境科学, 2018, 39(7): 3142-3149.

    KOU Y C, HUA K, LI Z, et al. Hydrochemical characteristics and control factors of surface water groundwater in tributary of Jing river [J]. Environmental Science, 2018, 39(7): 3142-3149(in Chinese).

    [38] 王鹏, 尚英男, 沈立成, 等. 青藏高原淡水湖泊水化学组成特征及其演化 [J]. 环境科学, 2013,34(3): 874-881.

    WANG P, SHANG Y N, SHEN L C, et al. Characteristics and evolution of water chemistry of freshwater lakes on the Qinghai-Tibet Plateau [J]. Environmental Science, 2013,34(3): 874-881(in Chinese).

    [39] 陈星, 郑刘根, 姜春露, 等. 安徽淮北临涣矿区地表水水化学及硫氢氧同位素组成特征 [J]. 地球与环境, 2019, 47(2): 177-185.

    CHEN X, ZHENG L G, JIANG C L, et al. Characteristics of hydrochemistry and sulfur, hydrogen and oxygen isotope composition of surface water in Linhuan mining area, Huaibei, Anhui Province [J]. Earth and Environment, 2019, 47(2): 177-185(in Chinese).

    [40] 刘加珍, 陈永金, 陈诗越, 等. 东平湖湿地水质动态及其净化功能分析 [J]. 南水北调与水利科技, 2014, 12(4): 57-61,101.

    LIU J Z, CHEN Y J, CHEN S Y, et al. Analysis of water quality dynamics and purification function of wetland in Dongping Lake [J]. South-to-North Water Diversion and Water Conservancy Technology, 2014, 12(4): 57-61,101(in Chinese).

    [41] 胡尊芳, 孙建峰, 宋印胜, 等. 基于云模型的东平湖枯水期地下水水质评价 [J]. 水资源保护, 2016, 32(5): 74-78. doi: 10.3880/j.issn.1004-6933.2016.05.015

    HU Z F, SUN J F, SONG Y S, et al. Evaluation of groundwater quality in the dry season of Dongping Lake based on cloud model [J]. Water Resources Protection, 2016, 32(5): 74-78(in Chinese). doi: 10.3880/j.issn.1004-6933.2016.05.015

    [42] 柳凤霞, 史紫薇, 钱会, 等. 银川地区地下水水化学特征演化规律及水质评价 [J]. 环境化学, 2019, 38(9): 2055-2066. doi: 10.7524/j.issn.0254-6108.2019043003

    LIU F X, SHI Z W, QIAN H, et al. Evolution law of groundwater chemical characteristics and water quality evaluation in Yinchuan Area [J]. Environmental Chemistry, 2019, 38(9): 2055-2066(in Chinese). doi: 10.7524/j.issn.0254-6108.2019043003

    [43] 杨森, 李义连, 姜凤成, 等. 高店子幅水化学特征及水质评价 [J]. 地质科技情报, 2019, 38(2): 226-234.

    YANG S, LI Y L, JIANG F C, et al. Hydrochemical characteristics and water quality evaluation of Gaodianzi section [J]. Geological Science and Technology Information, 2019, 38(2): 226-234(in Chinese).

    [44] 王强民, 孙洁, 刘基, 等. 神府榆矿区地表水化学特征及水环境质量评价 [J]. 干旱区资源与环境, 2018, 32(9): 190-195.

    WANG QM, SUN J, LIU J, et al. Chemical characteristics of surface water and water environmental quality evaluation in Shenfuyu mining area [J]. Resources and Environment in Arid Areas, 2018, 32(9): 190-195(in Chinese).

    [45] 任孝宗, 李建刚, 刘敏, 等. 浑善达克沙地东部地区天然水体的水化学组成及其控制因素 [J]. 干旱区研究, 2019, 36(4): 791-800.

    REN X Z, LI J G, LIU M, et al. Hydrochemical composition of natural water body and its controlling factors in the eastern part of Hunshandak sandy land [J]. Arid zone research, 2019, 36(4): 791-800(in Chinese).

    [46] 刘久潭, 周丹, 高宗军, 等. 青岛西海岸新区地下水水化学特征及水质评价 [J]. 山东科技大学学报(自然科学版), 2019, 38(2): 14-24.

    LIU J T, ZHOU D, GAO Z J, et al. Groundwater chemical characteristics and water quality evaluation in west coast new area of Qingdao [J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2019, 38(2): 14-24(in Chinese).

    [47] 范广群, 张德忠, 张建明, 等. 银川平原水体氢氧同位素及主要水化学参数特征 [J]. 干旱区研究, 2018, 35(5): 1040-1049.

    FAN G Q, ZHANG D Z, ZHANG J M, et al. Characteristics of hydrogen and oxygen isotopes and main hydrochemical parameters in water body of Yinchuan plain [J]. Arid Zone Research, 2018, 35(5): 1040-1049(in Chinese).

    [48] 李瑞, 张飞, 高宇潇, 等. 艾比湖区域地表水水化学特征干湿季变化及其控制因素 [J]. 冰川冻土, 2016, 38(5): 1394-1403.

    LI R, ZHANG F, GAO Y X, et al. Water chemical characteristics and control factors of surface water in Aibi Lake region in dry and wet seasons [J]. Journal of Glacial Permafrost, 2016, 38(5): 1394-1403(in Chinese).

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.5 %DOWNLOAD: 2.5 %HTML全文: 75.1 %HTML全文: 75.1 %摘要: 22.4 %摘要: 22.4 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 88.5 %其他: 88.5 %Beijing: 5.3 %Beijing: 5.3 %Hangzhou: 0.9 %Hangzhou: 0.9 %XX: 4.3 %XX: 4.3 %济南: 0.3 %济南: 0.3 %深圳: 0.6 %深圳: 0.6 %其他BeijingHangzhouXX济南深圳Highcharts.com
图( 5) 表( 2)
计量
  • 文章访问数:  4979
  • HTML全文浏览数:  4979
  • PDF下载数:  132
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-25
  • 刊出日期:  2021-05-27
张丽, 陈永金, 刘加珍, 逯尧, 刘承志, 许婕, 贾一灿, 吕军生. 东平湖水化学特征及成因分析[J]. 环境化学, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502
引用本文: 张丽, 陈永金, 刘加珍, 逯尧, 刘承志, 许婕, 贾一灿, 吕军生. 东平湖水化学特征及成因分析[J]. 环境化学, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502
ZHANG Li, CHEN Yongjin, LIU Jiazhen, LU Yao, LIU Chengzhi, XU Jie, JIA Yican, LYU Junsheng. Analysis on hydrochemical characteristics and causes of Dongping Lake[J]. Environmental Chemistry, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502
Citation: ZHANG Li, CHEN Yongjin, LIU Jiazhen, LU Yao, LIU Chengzhi, XU Jie, JIA Yican, LYU Junsheng. Analysis on hydrochemical characteristics and causes of Dongping Lake[J]. Environmental Chemistry, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502

东平湖水化学特征及成因分析

基金项目:
国家科技支撑计划项目(2014BAC15B02),国家级大学生创新训练项目(201810447023,201910447022)和聊城大学大学生创新训练项目(cxcy2019y063)资助

摘要: 地表水化学参数特征及其成因分析是地表水资源评价与管理的重要组成部分。为研究泰安市东平湖水化学特征及成因,采用空间插值、Piper三线图、Gibbs图以及相关性分析等方法,探讨了研究区不同月份、不同类型东平湖地表水水化学组份特征及影响因素、各离子的来源等问题。结果显示,东平湖湖水属于碱性水体,TDS时空分布差异显著,10月份总体浓度最高,8月份最低;6月湖区TDS含量从湖区东南向西北逐渐递增,10月从湖心向南北两侧逐渐递增。研究区湖水主要水化学类型由SO4-Na→SO4- Na·Ca·Mg→SO4-Ca型转变,该地区地表水的水化学类型易多变;水体中阳离子以Na+为主,Ca2+稍次之,阴离子以SO24为主;水体中K+和Na+来源于大气环流所携带的海盐,HCO3和Mg2+可能来自白云岩等碳酸盐岩或黑云母的风化溶解,SO24则主要来源于人类活动,少量来自石膏溶解, Ca2+则来源于钙长石的风化以及石膏的溶解。由此可见,东平湖水体离子组分基本来源于蒸发结晶,部分组分来源于岩石风化,大气降水的输入作用十分微弱。

English Abstract

  • 湖泊和河流是生活、农业和工业用水的重要来源之一,作为海洋和陆地物质循环的关键性纽带,在全球生物地球化学循环中起着关键作用[1]。水体离子组成主要受蒸发-结晶、风化作用、侵蚀、大气降水以及人类活动等因素的影响,且离子间存在一定的相关关系[2],相关研究指出,我国东部地区如长江等水系主要离子化学特征受碳酸盐和蒸发岩矿物影响较大[3],西部地区如新疆祁漫塔格地区[4],喀什噶尔河流域[5]以及艾比湖流域[6]受岩石风化溶解和蒸发-浓缩作用的影响较大,其他区域如漓江流域,岩石风化溶解对河水中主要离子的影响较大,另外还受一定的人类活动的影响[7]。水体中的化学离子是水化学研究的重要内容,水化学组成是水体在大气、土壤等循环过程中与其所处的周边环境长时间相互作用的结果[8],其成分组成可以对地表风化作用过程和水体自身的迁移和转化过程具有一定的指示作用,而且还可以反映区域水化学元素的来源、组成及含量特征[59],水化学组成成分已经成为影响社会发展和人类生存的重要问题而受到普遍关注。

    近几年来,对于东平湖环境方面研究的学者较多,主要集中于土壤、沉积物以及水体同位素等方面[10-18],但是针对其水化学方面的探索却鲜有报道。在过去的几十年里,东平湖水类型由碳酸盐型(CCaCCa)转变成为硫酸盐型(SCaSCa[19],溶解性硫酸盐变成该地表水中重要的组分,硫酸根参与了碳酸盐岩风化过程,与大气中CO2的释放过程有着密切的关系,从而对全球碳循环产生影响,所以,硫酸盐的来源解析是需要关注的问题[1],另外,离子组成的来源也至关重要。

    本文运用空间插值法、数理统计法、Piper三线图、箱型图、相关系数分析以及Gibbs图等方法分析了东平湖主要的水化学参数特征及成因,不但对浅水湖泊与多河流水环境的关系研究具有理论意义,也对缓解北方部分地区水资源短缺问题具有重要的战略意义[20],比如为南水北调东线工程河流-湖泊水资源的合理配置提供科技支撑;除此之外,还可以为今后研究我国东平湖区域以及其他地区地表水的水化学变化、水质特征、合理利用以及对水资源的保护提供依据。

  • 东平湖(35°30′—36°20′N,116°00′—116°30′E)位于山东东平县的西部[21],地处黄河与汶河冲积平原相交的条状洼地处[16],东通清河,西连黄河,北起清河口门,南至金线岭围堤,是山东省第二大淡水湖,形似锤[22],湖区总面积约627 km2,常年水面124.3 km2,平均水深2.5 m,蓄水总量3亿m3,东平湖分老湖区与滞洪区两部分,中以二级湖堤分开[23]。老湖区在东北部,面积约209 km2,常年蓄水,即一般所称的东平湖。研究区湖泊所在地为暖温带大陆性半湿润季风气候[24],年均气温为13.30 ℃,年均降水量为640.50 mm[25]。东平湖作为山东省第二大湖泊以及南水北调东线工程重要的调蓄枢纽,在黄河洪峰削峰蓄洪、南水北调工程蓄水、保障区域生态环境安全等方面都具有重要作用[26]

  • 先后于2018年4月、6月、8月、10月对东平湖及周边进行实地考察并进行水质监测和采集,野外采样区域主要包括东平湖湖区、柳长河、小清河、大清河及黄河等,采集水样数量分别为76、84、84、85个。在出发之前都先做好采样点与调查点位置图(图1),对于湖周的水样采集可以利用校对好的GPS测量仪沿湖取点采集,使用采水器进行采水,首先利用便携式温度计(采用美国M316P型便携式电导率仪)测量水温、用TDS测量仪测量TDS等参数,用pH计(采用国产SX620型便携式酸度计)测量pH,随后再用聚乙烯透明塑料瓶采集现场水样用签字笔做好标记,且注意采样前至少润洗3次塑料瓶,随时记录好周边的环境,对于湖心样品的采集要用同样的方法乘船采集。带回实验室的水样进行检测时,首先对水样进行过滤,将过滤好的水样装瓶备用,然后进行水化学组成(Na+ 、Ca2+、Mg2+、K+HCO3CO23SO24、Cl)的分析测试:Na+ 、K+用火焰光度计进行测定,CO23、HCO采用双指标滴定法测定,C1采用硝酸银滴定法测定,Ca2+、Mg2+SO24采用EDTA容量法等。

    根据实际地形和野外调查的GPS数据运用ArcGIS 10绘制采样点示意图,运用ArcGIS 10中的普通克里格插值方法(Kriging)进行空间插值;运用piper三线图图软件绘制的piper图;运用Origin 2015绘制的箱型图;运用SPSS 18软件统计的相关系数矩阵;运用Excel 2010 绘制的Gibbs图以及其他图表。

  • 通过对不同时期东平湖水化学组成进行分析得(表1),4月阳离子质量浓度由大到小依次为Na+ > Ca2+ > Mg2+ >K+,阴离子质量浓度由大到小依次为SO24>HCO3>Cl>CO23。阳离子质量浓度的平均值依次为57、41、38、3 mg·L−1,阴离子质量浓度平均值依次为252、148、93、5 mg· L−1。6月阳离子质量浓度由大到小依次为Na+>Ca2+>Mg2+>K+,阴离子质量浓度由大到小依次为SO24>HCO3>Cl>CO23。阳离子质量浓度的平均值依次为50、45、41、3 mg· L−1,阴离子质量浓度平均值依次为271、154、101、6 mg· L−1。8月阳离子质量浓度由大到小依次为Na+ > Ca2+ > Mg2+ >K+,阴离子质量浓度由大到小依次为SO24>Cl>HCO3>CO23.阳离子质量浓度的平均值依次为57、54、35、2 mg·L−1,阴离子质量浓度的平均值依次为256、181、167、3 mg·L−1。10月阳离子质量浓度由大到小依次为Ca2+>Na+>Mg2+>K+,阴离子质量浓度由大到小依次为SO24>HCO3>Cl>CO23。阳离子质量浓度的平均值依次为71、31、24、3 mg· L−1,阴离子质量浓度平均值为167、150、107、3 mg·L−1

    4月和8月SO24含量接近,说明这两个月湖区水质状况近似;10月份 Ca2+含量最高,这主要由于大清河上游河水中钙离子含量较高;8月Cl含量最高,分析原因发现,8 月降雨量增加以及湖区旅游活动频繁,Cl会在降水形成的地表径流的作用下从地表土壤进入湖区,再者8月份该地区旅游业较发达人为的增加了湖水的Cl含量。

    pH和TDS是反应水中酸碱综合平衡和溶质质量的指标。由表1可知,4月的平均TDS为751 mg·L−1,电导率为1501 μS·cm−1,6月平均TDS为722 mg·l−L,电导率为1446 μS·cm−1,8月平均TDS为656 mg·L−1,电导率为1315 μS·cm−1,10月平均TDS为806 mg·L−1,电导率为955 μS·cm−1。一般情况下,电导率越高,盐分越高,TDS越高。在不同的采样地点所测得的TDS的最大值和最小值相差较大,但是从总体水平上看,各个季节的相差水平不大,其中电导率在一年中前几个月差别略微,但10月数值显著降低。就pH看,4月水体pH9.06,6月pH8.00,8月pH7.49,10月pH8.19,由此可知,研究区水体pH数值在7—9范围附近波动,4月水体的碱性最大,6、8月由于降水等原因数值明显下降,呈现弱碱性,10月pH又略微提高,总体来看呈现碱性且在丰水期有下降趋势,淡水和微咸水各占54.5%和45.5%[27]。研究区域在采样期间温度均保持在20 ℃左右,湖面蒸发较大,且随着湖水温度的不断提高和湖面蒸发的不断增大,各种化学离子浓度亦呈现出不断升高的趋势。

  • TDS能够代表水中溶质质量的综合特征[28],具有一定的代表性,若单独分析各离子会相对繁琐,此外,TDS和电导率相关性极高[29],且pH和水温的变化不明显,因此只选择TDS进行分析。

    为了排除异常值对数据的干扰,并有效比较数据的分布规律,用Origin 2015软件将所得数据绘制于箱形图中,分析东平湖水中 TDS 含量统计特征[29]。从图2中可以看出,不同月份水体的 TDS 值分布存在较明显差别,从整体来看,8月TDS值范围分布的最为集中且水体TDS含量最少,为710—785 mg·L−1,6月分布最为分散,TDS范围为635—899 mg·L−1,其次为4月,其TDS范围为710—785 mg·L−1,水体TDS在10月份含量最高,其范围为786—836 mg·L−1,分析各月的离散程度,可知各研究月份东平湖水水体TDS都存在远离四分位值达1.5倍四分位距的异常值。研究区水体的TDS值均高于世界主要大河的均值(283 mg·L−1)[30],也高于文泽伟等[31]研究的龙江-柳江-西江流域4月份和10月份的TDS均值(分别为204.81 mg·L−1和234.20 mg·L−1)。

    根据研究区湖区TDS空间插值变化(图3)可得,4月至10月东平湖湖区TDS空间分布差异较大。从4月湖区TDS的空间分布图可知,柳长河入湖口处TDS含量最低,在673.40—722.24 mg·L−1 之间,而湖区TDS最高,出现在湖心岛东侧水域和腊山附近,并且围绕最高值形成了一个高值区[32],该区域菹草生长旺盛而且面积狭小,水流速度缓慢,使得水中溶解大量物质。6月湖区TDS含量由西北向东南呈递减趋势,最小值位于大清河入湖口处,为245 mg·L−1,这说明大清河上游河水中溶解性物质较少,TDS含量较低;最高值出现在小清河出湖口附近,该处由于大量湖水流经此处而且水域面积狭小,造成水中物质沉积,水速相对变缓;导致湖区西部水域 TDS含量较高的原因是由于湖区采沙和开挖航道活动频繁,使得底泥中的溶解性物质大量的溶解到湖水中[32]。8月份图像中呈现出从西北向东南延伸的条带状高值区,在大清河入湖口处和戴庙镇附近水域TDS值最低,说明该处水流速度快,水中溶解物质较少。10月份湖区TDS呈现南北两侧高,中间低的趋势,最低值出现在大清河入湖口处,研究期间大清河属于汛期,河水水量较多,大量的河水从上游涌入湖区,且该河水TDS含量低,流动速度较快,停留时间短,使得入湖口处TDS含量较低;最高值出现在小清河出湖口处和柳长河入湖口处,柳长河是南水北调东线工程从南四湖向东平湖输水的主要河道,在7月初邓楼和八里湾泵站停止工作[32],导致该水域水流速度慢,水中溶解物较多,湖区北部水域狭窄,大量湖水从此处流出,导致北部水体停留时间较长,所以这两处水域 TDS含量较高,表明南水北调工程对东平湖有改善水质的作用。

  • 图4得出,4月湖水的主要水化学类型是SO4-Na、SO4-Ca·Mg 型;河水的主要水化学类型是SO4-Ca、HCO3·SO4-Ca型;大坝水的主要水化学类型是SO4-Ca型。6月湖水的主要水化学类型为SO4-Na·Ca·Mg 型;河水的主要水化学类型是SO4-Na·Ca·Mg 型;大坝水的主要水化学类型是SO4-Ca型。8月湖水的主要水化学类型是SO4-Na、SO4-Ca·Mg 型;河水的主要水化学类型是SO4-Ca 型;大坝水的主要水化学类型是SO4-Ca型。10月湖水的主要水化学类型为SO4-Ca 型;河水的主要水化学类型是HCO3·SO4-Ca 型;大坝水的主要水化学类型是SO4-Ca型。在所分析的水样中,阳离子Na+含量最高,Ca2+稍次之,阴离子SO42-含量最高,研究区水域优势阳离子和窟野河流域地表水[33]相同,阴离子却不同,且只有4月份河水的水化学类型与之相似。湖泊水化学的类型一般会遵循碳酸盐型-硫酸钠型-硫酸镁型-氯化物型的演化规律[34],所以根据水化学类型可以确定东平湖已经处于湖泊演化的中间阶段,属于较为成熟的湖泊。

  • 通过水化学参数相关性分析,可大致推断出各离子之间的关系及来源[35]。用SPSS 18软件统计数据,大致可知,TDS与各离子之间的相关系数较为密切。各月份水化学参数相关系数矩阵见表2.

    由4月的数值可以得出,K+和Na+、Mg2+、Cl之间都具极显著相关性;HCO3和Na+、K+、Mg2+的相关性系数较大。由6月的数值可以得出,TDS和K+、Ca2+、Mg2+CO23HCO3、ClSO24都有着极显著负相关性,相关性系数依次为−0.843、−0.912、−0.904、−0.595、−0.842、−0.882、−0.926,说明这些离子对TDS的贡献较大,尤其是Ca2+、Mg2+SO24相关系数均在−0.9以上,说明这3种离子对TDS的贡献起着决定性的作用。在8月中,Ca2+CO23的相关性系数较大。在10月中,TDS与ClSO24显著相关,SO24和Mg2+的相关性较强,为0.585,其他各离子之间没有极显著相关性。

    由相关性分析可得,K和Na普遍具有较强的相关性,具有相似的来源,东平湖水4月Cl/Na数值为1.61,6月Cl/Na值为2.03,8月Cl/Na值为3.20,10月Cl/Na值为3.49,要高于世界海水比值(Cl/Na=1.15)[36],这表明大气环流所携带的海盐对湖水离子组分贡献率很大,并且一年内随月份增加贡献率趋势逐渐增大。K+一般来源于云母、钾长石等的风化,湖水水体中K/Na比值在4个月份的变化范围为0.041—0.084,平均值为0.061,表明研究区Na明显比K高,说明对于一部分钾长石可能并未完全风化,其风化程度很低[3]。研究区HCO3和Mg2+可能来源于白云岩等碳酸盐岩或黑云母的风化溶解,对于SO24,在6月与Ca2+的相关性为0.892,4月份是显著负相关,其他月份均没有明显的相关性,表明除了6月强烈的风化作用使得部分石膏溶解,主要还是来源于人类活动,说明人类活动对水化学的影响在枯水期较汛期更显著一些[37]。硅酸岩流域水体中的Ca2+主要来源于钙长石的风化[38],在10月其作为湖水的主要阳离子,表明钙长石风化也是区域主要的风化过程,同时也说明大清河上游河水中钙离子含量较高。

    东平湖地区地表水类型较复杂多变,阴离子硫酸盐的浓度很高,主要原因是强烈的蒸发作用蒸发岩溶解等以及外源贡献[39],其中主要是由于东平湖附近工矿业或者是农业种植等人为活动的影响带来的有机污染物所致[40-41],农业生产中使用农药、化肥、农膜、农作物秸秆,农村生活污水、生活垃圾及畜禽养殖造成的污染等会对地表水环境造成污染,[42]该研究区的部分离子来源与高店子幅地表水[43]和神府榆矿区[44]窟野河类型以及任孝宗[45]等研究的浑善达克沙地东部地区天然水体也有类似之处,但与泾河支流地表水[37]类型有较大差异,主要因后者水体阴离子中Cl含量较高。

  • 在不考虑人为因素下,Gibbs模式图解常用来识别自然水体中各离子的起源,如岩石风化、大气降水和蒸发结晶作用[46]。Gibbs半对数坐标图纵坐标为对数坐标,表示水体中溶解性离子TDS的总量;横坐标为普通坐标,用Na+/(Na++Ca2+)或Cl/(Cl+HCO3−)的比值表示。从整体上来看,在Gibbs图(图5)中,水样点多分布在图的中上部,TDS值较高,大多在600—800之间,Na+/(Na++Ca2+)或Cl /(Cl+HCO3−)比值在0.2—0.8之间分布不等,表明东平湖及其周边水体各离子的来源基本上都来自蒸发结晶,部分来自岩石风化,大气降水的输入作用十分微弱;另外大部分水样的水化学组成分布在Gibbs图内,但也有部分水样在Gibbs图外[37],说明水化学组分还受到一定程度的季风气候和人为干扰的影响[44]

    对于东平湖水在4月,阴阳离子比值大都分布在0.2—0.7之间分布,有较高TDS范围,以蒸发结晶影响为主,以岩石风化作用为辅;对于湖周边的河水则主要受岩石风化以及人为活动的影响;大坝(主指戴村坝)则主要受人为活动的影响。在6月,对于东平湖水及其周边河水阳离子比值分布较为集中,且TDS含量很高,表示该地表水阳离子主要受强烈的蒸发作用,而对于阴离子比值则较为分散,比值在0.2—0.6范围内,同样的TDS含量很高,说明该处地表水阴离子来源较为分散,同时受岩石风化、蒸发结晶和人类活动影响的作用。然而8月的阴阳离子起源恰好和6月相反:阳离子多来自岩石风化,阴离子多来自蒸发结晶,对于10月,阳离子比值数据点往右偏移,因此研究区水化学受蒸发浓缩作用的影响强于岩石风化作用,湖水相对于河水受蒸发浓缩作用更明显,而由阴离子比值图则可以看出研究区水化学主要受岩石风化和人为因素的影响,并且阳离子比值要明显大于阴离子比值,说明了阴阳离子的起源具有明显的差别。

    研究区各水体在Gibbs图上分布相对集中,表明不同水体的离子成分有相同的来源、补给源,且相互之间水力联系密切[47]。研究区水体离子组分主要来源于蒸发结晶,部分组分来源于岩石风化, 大气降水的输入作用十分微弱,且由于地表水的水-岩作用时间短,二氧化碳供给充分,因而来自岩石风化的部分多来自于碳酸盐岩风化。该地区4月和10月为春秋季节,降水较少,径流量及降水量减少,地表水被稀释作用影响较小,同时受到人为活动的影响较大;6月和8月为夏季,降水较多,流量和降水的增加稀释了人为因素对水体造成的影响[16],所以对于东平湖地区,人为活动的影响春秋季节大于夏季。此结果与李瑞[48]、朱世丹[6]等研究的艾比湖区域地表水化学来源类似,说明地表水化学起源都大同小异。

  • (1)东平湖地表水整体呈现碱性,地表水阳离子中Na+和Ca2+占主导地位,阴离子中SO24占主导地位;研究区地表水TDS和总硬度总体偏高,TDS时空分布差异显著,8月份的TDS值明显低于其他3个月份,10月份总体浓度最高,6月湖区TDS含量从湖区西北向东南逐渐递减,10月从湖心向南北两侧逐渐递增。对于TDS的研究得南水北调东线工程的通水有利于东平湖湖水环境的改善。

    (2)研究区地表水湖水的主要水化学类型由SO4-Na→SO4-Ca·Mg→SO4-Ca型转变;河水的主要水化学类型是SO4-Ca、SO4-Ca·Mg 型;大坝水的主要水化学类型是SO4-Ca型。水体K+ 和Na+来源于大气环流所携带的海盐,HCO3和Mg2+可能来源于白云岩等碳酸盐岩或黑云母的风化溶解,SO24则主要来源于人类活动,少量来自石膏溶解, Ca2+则来源于钙长石的风化以及石膏的溶解。

    (3)研究区水体离子组分主要来源于蒸发结晶,部分组分来源于岩石风化,大气降水的输入作用十分微弱,另外受到人为活动的影响较大。

参考文献 (48)

返回顶部

目录

/

返回文章
返回