-
室内家具、装饰装修材料释放出的甲醛、VOCs等污染物会威胁人群健康[1-3]。因此,对家具/建材释放污染物等级的检测十分重要。业界普遍采用环境舱对家具/建材进行VOCs释放特征及机理的研究[4-6]。动态环境舱可营造一个真实的室内环境,为家具/建材释放污染物的准确测量提供可靠平台。根据体积大小不同,环境舱可分为微型、小型和全尺寸环境舱,实际常用的主要是小型和全尺寸环境舱[7-8]。
通过调节环境舱中内舱温度、湿度、空气流速等参数,可实现对真实室内环境的有效模拟。家具/建材释放污染物的释放速率、释放浓度等参数显著受到内舱本底、温湿度、空气流速等测试条件的影响[9-10]。在实际应用过程中,内舱本底浓度越小,测得的污染物释放量结果就越精确。目前,关于环境舱的研究多集中于设备的设计、舱内温湿度精确控制和实验测试[11-17],而关于环境舱设计以降低内舱本底浓度的研究鲜有报道。
本研究通过对内舱设计过程中的结构设计、材料选取、接口及配件设计等多方面考虑,实现对内舱的低本底设计,并通过内舱惰性材料涂覆性能测试(涂层厚度测定、附着力评价、耐磨性评价及表面惰性评价),验证环境舱的低本底特性,以期为室内材料的性能评价提供可靠的测试平台。
全文HTML
-
本研究设计的环境舱内舱容积为1 m3,主要由空气供气装置、空气洁净装置、气体流量控制装置、空气湿度调节装置、内舱低温控制系统、内舱高温清洁系统、SDECUI(Software Defined Environment Chamber User Interface)系统及低本底内舱等部分组成(见图1)。环境舱利用高温吹扫完成自清洁,采用内壁硅烷化镀膜技术实现内舱零吸附特性,并通过互联网实现对环境舱的远程操作和监控。
环境舱的核心功能是利用内舱(用于存放测试样品的空间区域)提供特定温度、湿度、流量和压力的大气环境。环境舱内舱大气环境的营造是通过对环境舱外的空气处理后获得,处理流程包括5个阶段,即:1)气体干燥阶段,对空压机产生的压缩大气进行除油、除水和干燥处理;2)气体洁净阶段,对干燥后的大气进行VOC、微小颗粒物及各类杂质的去除和过滤;3)气体控湿度控流量阶段,对洁净后的大气进行湿度和流量调节,调节后气体进入内舱,再根据测试的湿度需求进行补水调节;4)气体控温阶段,对进入内舱的大气进行加热或冷却,实现精确控温;5)采气排气阶段,在对内舱内的气体进行采样和排气过程中实现对内舱气压的调节。
-
为满足实际应用的便利,将容积1 m3的内舱外形设计为长方体卧式结构(见图2(a))。考虑到内舱对低本底的严苛要求,从舱体选材、死角去除、相关接口及配件设计等多个方面进行内舱设计。
1)舱体选材。内舱的舱体选用304镜面不锈钢材料。为使内舱保持较小质量,同时满足结构强度要求,设计舱体壁较薄,并在外部设计加强筋。内舱内壁采用惰性涂层高温涂覆,以减少内壁对污染物的吸附。在内舱周边,选用四氟包覆橡胶进行密封。密封材料须具有无污染、耐高温、弹性好、密封性能优越等特点,可避免舱体本身污染物的释放。
2)死角的处理。内舱采用无死角焊接制造而成,所有焊缝为钝角,便于打磨,使其不利于污染物的吸附。
3)接口及配件设计。为使舱内气流、温度较均匀,在舱内进气口前端设计一体化成型的风扇,使之无死角,在其表面进行钝化处理,并进行了惰性涂层喷涂处理。风扇设计如图2(b)所示。风扇轴承采用磁流体轴承,具有无污染、耐高温、密封性能好等优点。内舱门采用10 mm厚的钢化玻璃门,以解决可视化问题,并降低舱门对污染物的吸附。另外,采用简单实用、利于操作的舱门锁紧装置,并利用可调铰链设计以有效解决密封条软化的问题。
4)高温吹扫。为进一步降低内舱中本底浓度,在检测前对内舱进行高温加热(250 ℃),并进行吹扫,以实现对内部污染残留物的有效清除。
1.1. 环境舱的结构及功能
1.2. 内舱结构设计要点
-
根据《色漆和清漆漆膜厚度的测定》(GB/T 13452.2-2008),对内舱内壁所涂覆惰性涂层的厚度进行测定。测试结果为58~60 μm,说明惰性涂层的厚度适宜。
-
在实际使用过程中,受外力、高低温等因素的影响,表面惰性涂层可能会剥离脱落,因此,惰性涂层应具备较好的附着力。根据《色漆和清漆漆膜的划格试验》(GB/T 9286-1998),采用划格法对惰性涂层在不锈钢表面的附着力进行评价。同时,考虑到内舱在使用过程中需经常进行高温清洁,以排出内壁的残留污染物,所以,惰性涂层应具有极好的耐热性,应分别对高温热处理前后惰性涂层的附着力进行评价。将惰性涂层在250 ℃进行热处理,每次处理3 h,共计处理10次,得到的测试结果如图3所示。照片显示涂层划格无明显变化。经测试,热处理前后惰性涂层的附着力均为0级,附着力非常好,完全符合环境舱内舱的使用要求。
-
实际应用过程中,内舱表面受样品及支架的摩擦作用,因此内舱表面的惰性涂层应具备较好的耐磨性。根据《色漆和清漆耐磨性的测定旋转橡胶砂轮法》(GB/T 1768-1998),对热处理前后的惰性涂层耐磨性进行了评价,结果如图4所示。由图4可见,热处理前后的惰性涂层的耐磨性非常好,称量发现热处理前后涂层质量均为16 mg,大大优于木地板的耐磨性要求(不超过30 mg),符合环境舱内舱的使用要求。
-
根据《家具中挥发性有机化合物检测用气候舱通用技术条件》(GB/T 31107-2014) ,利用甲苯、正十二烷进行内舱壁吸附率实验。为充分表征内舱壁惰性化处理的实际效果,参照《塑料薄膜与水接触角的测量》(GB/T 30693-2014),分别测定了甲苯、正十二烷、水在普通镜面不锈钢及惰性涂层表面的接触角,结果如图5所示。接触角测试结果见表1。从图表的数据可知,不同极性的液体在惰性涂层表面的接触角有较大提高,说明惰性处理后表面极性、与不同极性污染物的相容性,以及对不同极性污染物的吸附能力均明显下降。
2.1. 涂层厚度测定标准
2.2. 涂层附着力评价
2.3. 涂层耐磨性评价
2.4. 内舱表面惰性评价
-
为避免给环境舱本底带来不利影响,对惰性处理后的内舱的污染物释放量进行了测评。选用60 L内舱作为测试舱,利用1 m3环境舱对其进行了污染物释放量测试(实物见图6)。具体测试方法如下,测试结果如表2和图7所示。
1)制作60 L镜面不锈钢内舱,内表面经惰性处理。
2)开启现有1 m3环境舱,设定好舱内条件(温度:23 ℃;相对湿度:45 %RH;空气交换率:1 h−1;风速:0.1~ 0.3 m·s−1),运行正常后,监测舱内甲醛、苯、甲苯、乙苯、二甲苯和TVOC的空白值。
3)确认1 m3环境舱空白值符合要求(甲醛浓度≤0.006 mg·m−3,单一VOC浓度≤0.005 mg·m−3,TVOC浓度≤0.05 mg·m−3),将60 L镜面不锈钢(惰性涂层)内舱放入1 m3环境舱内,并关闭舱门。
4)分别在24 h、72 h、168 h 共3个时刻采集1 m3环境舱内的空气,并测定各污染物的浓度。甲醛测定按照GB/T 31106-2014中4.1酚试剂分光光度法,苯、甲苯、乙苯、二甲苯、TVOC测定按照GB/T 31106-2014中5二级热解吸—气相色谱-质谱法。
由表2和图7中数据及峰值可知,经惰性处理后的60 L内舱中甲醛、苯、甲苯、乙苯、二甲苯、TVOC等污染物在不同时间段的释放量与本底值相近,表明惰性处理未引入其他污染物,不会影响环境舱的本底值。对比文献[14-15]的研究结果,本研究内舱中甲醛、苯、甲苯和二甲苯等污染物的释放情况有明显改善,这也证明了内舱结构设计的有效性。
-
1)对惰性材料涂覆性能测试表明,其厚度、耐磨性及附着力均满足环境舱使用要求。通过测量甲苯、正十二烷、水在普通镜面不锈钢及惰性涂层表面接触角发现,不同极性的液体在惰性涂层表面的接触角均有较大提高,说明惰性处理后表面对污染物的吸附能力明显下降。
2)对内舱污染物的释放量进行测试发现,甲醛、苯、甲苯、乙苯、二甲苯、TVOC的释放量均与测试舱本底值接近,证明惰性处理未引入污染物,不会对环境舱本底值带来不利影响。该环境舱的设计研制可为室内材料的性能评价提供可靠的测试平台。