Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Cl和pH对高级氧化工艺去除含盐废水中有机物的影响及机理

刘宇程, 杨冰, 李沁蔓, 马丽丽, 李玲丽, 陈明燕. Cl−和pH对高级氧化工艺去除含盐废水中有机物的影响及机理[J]. 环境工程学报, 2021, 15(5): 1487-1499. doi: 10.12030/j.cjee.202009046
引用本文: 刘宇程, 杨冰, 李沁蔓, 马丽丽, 李玲丽, 陈明燕. Cl和pH对高级氧化工艺去除含盐废水中有机物的影响及机理[J]. 环境工程学报, 2021, 15(5): 1487-1499. doi: 10.12030/j.cjee.202009046
LIU Yucheng, YANG Bing, LI Qinman, MA Lili, LI Lingli, CHEN Mingyan. Effects and mechanism of Cl− and pH on organic matter removal in salt-containing wastewater treatment by advanced oxidation processes[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1487-1499. doi: 10.12030/j.cjee.202009046
Citation: LIU Yucheng, YANG Bing, LI Qinman, MA Lili, LI Lingli, CHEN Mingyan. Effects and mechanism of Cl and pH on organic matter removal in salt-containing wastewater treatment by advanced oxidation processes[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1487-1499. doi: 10.12030/j.cjee.202009046

Cl和pH对高级氧化工艺去除含盐废水中有机物的影响及机理

    作者简介: 刘宇程(1977—),男,博士,教授。研究方向:油气田环境化学、油气田开发污染治理。E-mail:liuyc@swpu.edu.cn
    通讯作者: 杨冰(1985—),男,博士,副教授。研究方向:环境污染化学、高级氧化技术。E-mail:yangb2016@swpu.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(21707111);四川省科技计划项目(2020JDTD0018,2019YJ0320);西南石油大学科研“启航计划”项目(2017QHZ018)2017QHZ018)
  • 中图分类号: X52

Effects and mechanism of Cl and pH on organic matter removal in salt-containing wastewater treatment by advanced oxidation processes

    Corresponding author: YANG Bing, yangb2016@swpu.edu.cn
  • 摘要: 高级氧化技术(AOPs)在削减(或去除)工业废水中的有机物方面具有广泛应用。氯离子(Cl)是含盐工业废水中最主要的阴离子,会影响AOPs处理有机污染物过程中的氧化去除效率、卤代有机副产物的生成。然而,实践中Cl的影响常被忽视。针对基于羟基自由基(·OH)、硫酸根自由基(SO4)和非自由基途径3种不同类型的AOPs,从Cl与不同自由基(·OH、SO4)的反应及正逆反应速率常数、Cl浓度与pH的复合影响两方面,探讨了Cl对3类AOPs去除废水中有机物的影响和机理。比较了3类AOPs工艺处理含盐废水适用的Cl理论浓度的高低差异,提出通过调控pH改变主要活性氧化物质、选择不同的氧化方式等途径减弱Cl对有机物去除效率的抑制、减少卤代有机副产物的生成,以期为AOPs工艺处理含盐废水的应用和相关研究提供参考。
  • 高氮磷废水的过量排放会导致水体富营养化和生态破坏[1]。微藻是一种光合微生物,能够吸收氮、磷和有机物等,被用处理各种废水[2]。另一方面,微藻细胞脂类含量高是生物柴油生产的主要原料[3-9],因此,将废水处理与微藻生物量生产相结合可以降低二者生产成本。由于微藻对废水中氮/磷的去除是藻细胞生长代谢的结果即平均去除速率和去除率与藻细胞生长速率和生物量呈正相关,而部分细菌和真菌能够促进微藻的生长(如地衣中的细菌和真菌促进其共生绿藻的生长),因此,将微藻与细菌[10-16]或者真菌[17-26]混合培养,利用微藻和细菌或者真菌之间的协同效应促进微藻生长进而提高氮/磷的去除率成为研究热点。

    雨生红球藻能够在适宜的条件下快速吸收氮和磷进行自养/混合营养生长,而在不利条件下大量合成脂类和高附加值的虾青素(一种红色类胡萝卜素)[27-28],目前已被用于处理不同的废水,并取得了良好的效果[29-33]。然而,与其他藻类相比,雨生红球藻对有害细菌更敏感,这些细菌严重抑制藻细胞生长,限制了其在废水处理中的应用。实际上,有害细菌对所有微藻的生长均构成严重威胁[34]。为了控制微藻培养过程中的有害细菌,通常采用的方法为添加抗生素、高温处理、强光照射[35-36],以及使用次氯酸钠对废水进行预处理[37]。因此,有效控制有害细菌是利用微藻尤其是雨生红球藻处理废水的关键问题。

    在此前的研究[37-38]中我们分离到一种蓝藻共生真菌Simplicillium lanosoniveum(DT06)。DT06能够合成一种新抗生素[39]并且能促进衣藻(Chlamydomonas reinhardtii)生长和脂类合成[40]。因此,本研究将雨生红球藻与真菌DT06在高含氮磷废水中混合培养,以期提高雨生红球藻类生长速率和产量以及废水氮/磷的去除速率和去除率。

    1)废水样本。废水来自天津市的某污水处理厂。废水通过0.45 µm滤膜去除不溶性大分子物质,并在4 ℃保存。废水主要性质如下:pH为6.5±0.4;总氮(TN)质量浓度为(553.8±17) mg·L–1;总磷(TP)质量浓度为(90.7±8) mg·L–1,化学需氧量(COD)为(750±22) mg·L–1

    2)微生物菌株。雨生红球藻购自中国武汉水生生物研究所;真菌Simplicillium lanosoniveum DT06由河北工业大学代谢工程与生物合成实验室分离获得,并保藏于中国科学院微生物学研究所菌物标本馆(编号HMAS 242045)。

    1)微藻接种液:5 mL雨生红球藻培养液接种到装有60 mL BBM培养基[27]的100 mL锥形瓶中,置于光照摇床中培养7 d(115 r·min–1、25 °C恒温、60 μmoL·(m2·s)–1持续光照)。雨生红球藻接种液最终的细胞浓度为1.5×105 细胞·mL–1

    2)真菌孢子悬浮液:将真菌DT06划线于PDA培养基平板上,于培养箱(28 ℃)中恒温培养7 d后,从菌落表面轻轻刮取收集DT06孢子,并悬浮于50 mL无菌水中。真菌孢子悬浮液最终细胞浓度为5×106 细胞·mL–1。雨生红球藻细胞和真菌DT06孢子的数量均通显微镜进行计数。

    雨生红球藻与真菌DT06混合培养(简称M组):按10%接种量将雨生红球藻接种到含有200 mL废水的500 mL锥形瓶中,并分别接种对应体积的DT06孢子悬浮液,以达到5∶1、10∶1、30∶1、50∶1的细胞数量接种比例(雨生红球藻:DT06)。以雨生红球藻单独培养(1∶0,雨生红球藻:DT06)作为对照(CK)。

    雨生红球藻-DT06混合添加NaHCO3培养(简称MC组):在每组含有200 mL废水的500 mL锥形瓶中分别添加不同体积的NaHCO3母液(10 g·L–1),使NaHCO3质量浓度达到0(对照,MCK)、0.2、0.4、0.6和0.8 g·L–1,以最佳细胞接种比例分别接种雨生红球藻和DT06孢子悬浮液。

    所有实验均置于光照培养箱中培养12 d(25 °C恒温、60 μmoL·(m2·s)–1持续光照),每天手摇2次,每组实验设置3个重复。

    1)雨生红球藻生物量。雨生红球藻生物量以细胞干重表示,每隔2 d取培养液并采用显微镜计数法计数,根据式(1)计算雨生红球藻生物量,根据式(2)计算雨生红球藻比生长速率。

    X=4.64×108N+0.0035 (1)
    μ=(lnXnlnX0)/(tnt0) (2)

    式中:X为细胞干质量,g·L–1N为细胞浓度, 细胞·mL–1μ为比生长速率,d−1X0Xn分别为第t0天和第tn天的雨生红球藻生物量,g·L–1

    2)细菌总数。根据实验室之前的方法[40-42]对废水中细菌总数做了部分修改。灭菌的LB琼脂板接种1 mL稀释105倍的废水样品,并在培养实验相同的条件下培养3 d。总细菌数表示为每毫升菌落形成单位(CFU·mL−1)。

    3)废水水质。每隔两天取废水样本进行分析。总氮使用过硫酸钾氧化紫外分光光度法;总磷使用钼锑抗分光光度法;COD 使用重铬酸盐法测定;氮、磷的去除率和去除速率根据式(3)和式(4)进行计算。

    N=(N0Nt)/N0×100% (3)
    R=(N0Nt)/(tnt0) (4)

    式中:N为COD和氮、磷的去除率,%;R为COD和氮、磷的去除速率,mg·(L·d)–1N0Nt分别为第t0天和第tn天的COD和氮、磷质量浓度,mg·L–1

    4)脂类和虾青素含量。 雨生红球藻脂类和虾青素含量参照我们此前的方法[43]测定。

    1)混合培养对微藻生长的影响。如图1(a)所示,CK中雨生红球藻的生物量在前8 d内缓慢上升,第10天后趋于平稳,最终达到0.27 g·L–1;而雨生红球藻与DT06混合培养过程中雨生红球藻的生物量在前4 d缓慢上升(适应期),在第6天(10:1、30:1)和第8天(5:1、50:1)快速上升,第8天后趋于平稳。最终,雨生红球藻的生物量在5:1、10:1、30:1和50:1下分别为0.64、1.08、 1.39 和 0.74 g·L–1

    图 1  混合培养不同接种比例下雨生红球藻生物量和比生长速率的变化
    Figure 1.  Changes of biomass and specific growth rate of H. pluvialis in mixed cultures under different cells ratios

    生长动力学分析结果(图1(b))显示, CK中雨生红球藻的比生长速率在第4天达到最大值(0.18 d–1),第6天后逐渐降低至0。雨生红球藻与DT06混合培养过程中雨生红球藻的比生长速率均高于CK。比生长速率在10∶1和30∶1时在第6天达到最大值,分别为0.45 d−1和0.54 d−1;在5∶1和50∶1时在第8天达到最大值,分别为0.34 d−1和0.36 d−1。比生长速率此后逐渐降低至0。雨生红球藻与DT06混合培养过程中30∶1表现出最高的生长速率和最高平均比生长速率(0.25 d−1),因此,后续实验以最佳藻菌细胞比30∶1进行实验。

    混合培养中藻类生物量的增加是由于比生长速率的提高,这可归因于2个方面:1)藻类(雨生红球藻)和真菌DT06的共生作用。DT06释放CO2促进雨生红球藻光合作用,并吸收雨生红球藻释放的O2进行有氧代谢,从而解除O2对藻类生长的抑制作用,这与其他菌藻混合培养类似[27,44-47];2)抑制有害细菌的生长。与混合培养相比,对照的生物量异常低,比生长速率过早地下降,表明废水中有害细菌对藻类的生长有显著的抑制作用,混合培养中的生物量持续增加表明DT06释放的抗生素表现出对有害细菌显著的抑制作用。

    2)总细菌数。如图2所示,实验结束时5∶1、10∶1、30∶1和50∶1中细菌总数分别为1.3、1.5、1.6、1.9×106 CFU。雨生红球藻与DT06混合培养过程中的细菌总数与CK(2.8×106 CFU)相比分别下降了54.8%、46.4%、42.9%和30.4%。这表明DT06能够抑制废水中细菌的增长。

    图 2  混合培养不同接种比例细菌总数
    Figure 2.  The total number of bacteria in mixed cultures under different cells ratios

    3)如图3所示,CK中pH持续上升,在实验结束时达到8.65。雨生红球藻与DT06混合培养过程中pH在前4 d持续升高,之后保持相对稳定且显著低于CK。实验结束时5: 1、10: 1、30: 1和50: 1的pH分别稳定在7.83、7.65、7.36和7.92。pH快速升高主要原因是雨生红球藻吸收了生理碱性盐(如硝酸盐)。混合培养中pH保持相对稳定,原因是真菌DT06释放的CO2中和培养液的碱性以及雨生红球藻吸收废水中的NH4+降低了培养液的pH。

    图 3  混合培养不同接种比例pH
    Figure 3.  pH in mixed cultures under different cells ratios

    4)混合培养对COD去除的影响。如图4(a)所示,CK中COD下降缓慢,最终的去除率仅为28.5%,平均去除速率为18.4 mg·(L·d)–1(图4(b))。这表明雨生红球藻和原有的微生物对耗氧有机物(以COD计)的降解能力有限。而在30∶1、10∶1、5∶1和50∶1中,COD分别在第4、6和8天内降至0(去除率100 %)(图4(a)),平均去除率分为183.9、127. 4、96. 8、93.1 mg·(L·d)–1 (图4(b))。结果表明,废水中的难降解耗氧有机化合物(以COD计)可被DT06完全降解为小分子物质和CO2,这些小分子物质被雨生红球藻利用进行混合营养生长。因此,在难降解有机化合物完全降解前后,雨生红球藻的比生长速率快速上升,之后迅速下降(图1(b))。

    图 4  混合培养不同接种比例下COD的变化、去除率和平均去除速率
    Figure 4.  Changes, removal rate and average removal rate of COD in mixed cultures under different cells ratios

    5)混合培养对氮磷去除的影响。如图5(a)所示,CK中TN质量浓度在前2 d迅速下降,之后缓慢下降,最终达到340 mg·L–1,去除率为37.9 %,平均去速除率为17.3 mg·(L·d)–1 (图5(b))。相比之下,雨生红球藻与DT006混合培养过程中TN质量浓度持续下降,下降速度均高于CK(图5(a))。其中, 30∶1中TN去除率最高为83.33%,平均去除速率为39.8 mg·(L·d)–1。而5∶1、10∶1、50∶1中TN的平均去除速率分别为24.8、33.0、27.0 mg·(L·d)–1;去除率分别为53.1%、69.1 %、57.9 % (图5(b))。

    图 5  混合培养不同接种比例下TN和TP的变化及其去除率和平均去除速率的变化
    Figure 5.  Changes of removal rate and average removal rate of TN and TP in mixed cultures under different cells ratios

    TP变化与TN变化规律相似(图5(c)),TP在CK中下降最慢,最终为56.6 mg·L–1;在 30:1中下降最快,最终为10.6 mg·L–1。最低和最高的TP去除率分别为37.1%和88.2%,平均TP去除率分别为2.8 mg·(L·d)–1和6.6 mg·(L·d)–1 (图5(d))。

    混合培养氮、磷去除率的提高归因于藻类生长速率的提高。如图6所示,在第6天和第8天之前,所有混合培养中的TN和TP去除速率持续增加,随后骤然下降,这与雨生红球藻比生长速率在初始升高和随后下降一致(图1(b))。而如上所述,雨生红球藻比生长速率的骤然下降主要是由于雨生红球藻进行快速异养生长对作为碳源的COD的快速消耗。也就是说,混合培养中有机碳源(如COD)的存在促进了雨生红球藻的生长,进而提高氮、磷的去除率。然而,在实验结束时,雨生红球藻与DT06混合培养组中残余的氮、磷含量仍然很高(图5(a)和5(c))。因此,在混合培养中需要添加额外的碳源来进一步提高氮、磷的去除率。

    图 6  混合培养不同接种比例下TN和TP去除速率的变化
    Figure 6.  Changes of TN and TP removal rates in mixed cultures under different cells ratios

    有研究表明,添加有机碳源会造成不可避免的二次污染[47],并提高废水处理成本。廉价的无机碳源,例如碳酸氢盐(NaHCO3),是产生HCO3促进雨生红球藻光合营养生长的最佳替代物。因此,为了进一步提高氮磷去除率,本研究在最佳细胞接种比例30∶1的基础上添加NaHCO3进行后续的实验。

    1)添加NaHCO3混合培养对微藻生长的影响。如图7(a)所示,MCK中雨生红球藻生物量在第4天后快速上升,第6天后缓慢上升,最终达到1.36 g·L–1。而添加NaHCO3混合培养过程中雨生红球藻的生物量在第2天后快速上升,第8天后达到稳定期,最终添加0.2、0.4、0.6、0.8 g·L–1 NaHCO3中雨生红球藻的生物量分别为1.58、1.71、1.95、1.44 g·L–1。生长动力学分析结果表明(图7(b)),添加NaHCO3混合培养组中雨生红球藻的比生长速率在第2天上升,并在第4天达到最大值,随后快速下降。添加0.6 g·L–1 NaHCO3中雨生红球藻的比生长速率最高,为0.85 d–1,比MCK(0.51 d–1)高1.66倍。以上结果表明混合培养中添加0.6 g·L–1 的NaHCO3最适合雨生红球藻的生长。

    图 7  添加不同质量浓度NaHCO3的混合培养中雨生红球藻生物量和比生长速率的变化
    Figure 7.  Changes of biomass and specific growth rate of H. pluvialis in mixed cultures supplemented with different concentrations of NaHCO3

    与MCK相比,添加NaHCO3混合培养过程中雨生红球藻的适应期缩短,比生长速率有所升高。这表明NaHCO3产生的HCO3被雨生红球藻同化为光合底物,从而促进微藻的光合作用。而延长的指数期和比生长速率的下降是由于以下2点:HCO3的吸收导致pH升高限制了雨生红球藻细胞的生长, 这也是添加0.8 g·L–1 NaHCO3中雨生红球藻的生物量低于添加0.6 g·L–1 NaHCO3的原因(图8);废水中氮、磷质量浓度的下降(图9)导致雨生红球藻细胞生长停止以及孢子的形成(图7)。

    图 8  添加不同质量浓度NaHCO3的混合培养中pH
    Figure 8.  pH in mixed cultures supplemented with different concentrations of NaHCO3
    图 9  添加不同质量浓度NaHCO3的混合培养中TN和TP的变化及其去除率和平均去除速率
    Figure 9.  Changes, removal rate and average removal rate of TN and TP in mixed cultures supplemented with different concentrations of NaHCO3

    2)如图8所示,MCK 中pH在前4 d持续升高,之后稳定在7.3~7.5直到实验结束。由于添加了NaHCO3,添加NaHCO3混合培养过程中初始pH均高于MCK。添加0.2、0.4和0.6 g·L–1 NaHCO3的pH在前4 d逐渐升高,之后保持相对稳定,实验结束时pH分别7.71、8.12和8.55。而添加0.8 g·L–1 NaHCO3的pH持续升高,最终达到10.11。

    3)添加NaHCO3混合培养过程中混合培养对氮磷去除的影响。如图9(a)所示,添加NaHCO3混合培养过程中TN质量浓度急剧下降。其中添加0.6 g·L–1 NaHCO3中TN质量浓度下降最快,在第10天达到检出限,达到最高去除率(100%),平均去除速率为55.5 mg·(L·d)–1 (图9(b))。相比之下,添加0.2、0.4、0.8 g·L–1 NaHCO3和MCK中TN质量浓度下降缓慢,最终分别为30.8、10.9、71.5和95.7 mg·L–1。添加0.2、0.4、0.8 g·L–1 NaHCO3和MCK中TN平均去除速率分别为 43.6、45.4、40.4、38.1 mg·(L·d)–1,去除率分别为94.4%、98%、87.1%、82.7%。

    TP变化与TN变化规律相似,TP质量浓度在添加0.6 g·L–1 NaHCO3中的第8天便达到检出限,达到最高去除率100%,平均去除速率为8.9 mg·(L·d)–1。而添加0.2、0.4、0.8 g·L–1 NaHCO3和MCK中TP质量浓度在实验结束时分别为3.2、1.9、7.9和11.6 mg·L–1(图9(c))。添加0.2、0.4、0.8 g·L–1 NaHCO3和MCK中TP平均去除速率分别为7.2、7.2、6.9、6.6 mg·(L·d)–1;去除率分别为96.4%、97.9%、91.2%、87.9% (图9(d))。

    添加NaHCO3混合培养过程和MCK中TN/TP的变化表明,混合培养中添加NaHCO3促进藻类生长,可提高氮、磷去除率。添加NaHCO3混合培养过程中的TN/TP去除率和平均去除速率(图9(b)和图9(d))与细胞比生长速率和生物量(图7)变化同步,在MC0.6中达到最大值。

    为了评估不同培养体系对雨生红球藻脂类和虾青素合成的影响,分析比较了雨生红球藻添加0.6 g·L–1 NaHCO3、 30:1(MCK)和CK中的脂类和虾青素含量。如图10所示,添加0.6 g·L–1 NaHCO3中脂类含量最高(392.2 mg·g–1),分别比MCK(259.6 mg·g–1)和CK(194.7 mg·g–1)提高了51.1%和101.4%。添加0.6 g·L–1 NaHCO3中雨生红球藻的虾青素含量达到最高(27.9 mg·g–1),分别是MCK(19.0 mg·g–1)和CK(5.9 mg·g–1)的1.5倍和4.7倍。脂类和虾青素的变化规律相似,主要是由于呈脂溶性虾青素分散在藻类细胞的脂滴中[48],因此,与脂类的合成呈相同的变化趋势(图10)。

    图 10  不同培养体系下脂类和虾青素的含量
    Figure 10.  Contents of lipid and astaxanthin in different culture modes

    与CK和MCK相比,添加0.6 g·L–1 NaHCO3中雨生红球藻的脂类和虾青素含量逐渐增加。主要原因是氮、磷质量浓度的快速下降,尤其是氮(图7(a))。添加0.6 g·L–1 NaHCO3对总氮的快速去除导致早期氮的含量相对不足/缺乏(氮饥饿),使得藻细胞将碳通量引导至脂类合成路径,从而促进脂类和虾青素的合成[48-49]

    1)与雨生红球藻的单独培养(CK)相比,雨生红球藻与DT06混合培养促进了雨生红球藻生长。雨生红球藻与DT06混合培养过程的COD先后均被完全去除,氮、磷的去除效果也得到显著提升。

    2)添加NaHCO3的混合培养可进一步促进藻类生长和对氮、磷的去除。在NaHCO3质量浓度为0.6 g·L–1时,雨生红球藻比生长速率达到最高,氮和磷几乎被完全去除,其平均去除速率分别达到55.5 mg·(L·d)–1和8.9 mg·(L·d)–1

    3)在CK、M和MC体系中,MC中雨生红球藻的脂类和虾青素含量最高,分别达到259.6 mg·L–1和27.9 mg·L–1

  • 图 1  Cl和pH对HR-AOPs的影响示意图

    Figure 1.  Schematic illustration of the influence mechanisms of Cl and pH on HR-AOPs

    图 2  Cl和pH对SR-AOPs的影响

    Figure 2.  Schematic illustration of the influence mechanisms of Cl and pH on SR-AOPs

    图 3  Cl和pH对PMS非自由基型AOPs的影响

    Figure 3.  Schematic illustration of the influence mechanisms of Cl and pH on the non-radical based AOPs with PMS

  • [1] 张统,李志颖,董春宏,等. 我国工业废水处理现状及污染防治对策[J]. 给水排水, 2020, 56(24): 1-3.
    [2] JANG D, HWANG Y, SHIN H, et al. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors[J]. Bioresource Technology, 2013, 141: 50-56. doi: 10.1016/j.biortech.2013.02.062
    [3] LEFEBVRE O, MOLETTA R. Treatment of organic pollution in industrial saline wastewater: A literature review[J]. Water Research, 2006, 40(20): 3671-3682. doi: 10.1016/j.watres.2006.08.027
    [4] PANSWAD T, ANAN C. Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds[J]. Water Research, 1999, 33(5): 1172.
    [5] LIN Y, ZHONG L, DOU S, et al. Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption[J]. Environment International, 2019, 128: 37-45. doi: 10.1016/j.envint.2019.04.019
    [6] TIAN S, JIANG P, PING N, et al. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite[J]. Chemical Engineering Journal, 2009, 151(1/2/3): 141-148. doi: 10.1016/j.cej.2009.02.006
    [7] 李肖琳, 谢陈鑫, 秦微, 等. 膜分离-光电催化深度处理高盐含聚污水[J]. 环境工程学报, 2016, 10(8): 4141-4146. doi: 10.12030/j.cjee.201503192
    [8] PIERRE B, JEAN-PAUL A. The biological degradation of cellulose[J]. FEMS Microbiology Reviews, 1994(1): 1.
    [9] HUANG J, DAI Y, SINGEWALD K, et al. Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions[J]. Chemical Engineering Journal, 2019, 370: 906-915. doi: 10.1016/j.cej.2019.03.238
    [10] ZHANG H C, LEMLEY A T. Reaction mechanism and kinetic modeling of DEET degradation by flow-through anodic Fenton treatment (FAFT)[J]. Environmental Science & Technology, 2006, 40(14): 4488-4494.
    [11] GHAUCH A, TUQAN A M, KIBBI N, et al. Methylene blue discoloration by heated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2012, 213: 259-271. doi: 10.1016/j.cej.2012.09.122
    [12] KABDASLI I, ECER Ç, OLMEZ-HANCI T, et al. A comparative study of ·OH and SO4 based AOPs for the degradation of non-ionic surfactant Brij30[J]. Water Science & Technology, 2015, 72(2): 194-202.
    [13] RUBIO-CLEMENTE A, TORRES-PALMA R A, PE UELA G A. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review[J]. Science of the Total Environment, 2014, 478: 201-225. doi: 10.1016/j.scitotenv.2013.12.126
    [14] GALBIČKOVÁ B, BLINOVÁ L, SOLDÁN M. Using of AOP Process for Phenol Removal from Wastewater[[J]. Environmental Engineering, 2013, 864-867: 1690-1693.
    [15] GHAUCH A, BAYDOUN H, DERMESROPIAN P. Degradation of aqueous carbamazepine in ultrasonic/Fe0/H2O2 systems[J]. Chemical Engineering Journal, 2011, 172(1): 18-27. doi: 10.1016/j.cej.2011.04.002
    [16] CHAN K H, CHU W. Atrazine removal by catalytic oxidation processes with or without UV irradiation: Part II: An analysis of the reaction mechanisms using LC/ESI-tandem mass spectrometry[J]. Applied Catalysis B: Environmental, 2005, 58(3/4): 157-163.
    [17] BABUPONNUSAMI A, MUTHUKUMAR K. Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes[J]. Chemical Engineering Journal, 2012, 183: 1-9. doi: 10.1016/j.cej.2011.12.010
    [18] KARCI A, ARSLAN-ALATON I, OLMEZ-HANCI T, et al. Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: Oxidation products and toxicity evolution[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2012, 230(1): 65-73.
    [19] MÉNDEZ-DÍAZ J, SÁNCHEZ-POLO M, RIVERA-UTRILLA J, et al. Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals[J]. Chemical Engineering Journal, 2010, 163(3): 300-306. doi: 10.1016/j.cej.2010.08.002
    [20] 杨伟, 袁珊珊, 宋震宇, 等. Fenton氧化与活性炭吸附深度处理高含盐难降解海上采油废水的研究[J]. 应用化工, 2014, 43(11): 2060-2064.
    [21] 时钰, 杨晓芳, 杨招艺, 等. 可用于去除高盐废水中有机污染物的混凝-Fenton氧化联合工艺[J]. 环境工程学报, 2017, 11(9): 4958-4964. doi: 10.12030/j.cjee.201701090
    [22] 李根. 催化臭氧氧化技术在煤化工废水深度处理中的应用研究[D]. 武汉: 武汉科技大学, 2018.
    [23] 任明, 孙淑英, 金艳, 等. 催化臭氧氧化法处理煤化工高盐废水[J]. 环境工程, 2018, 36(8): 54-59.
    [24] 耿翠玉, 杨映, 乔瑞平, 等. O3/H2O2协同氧化石油化工行业反渗透浓水[J]. 环境污染与防治, 2016, 38(11): 56-59.
    [25] 王少雄, 俞彬, 张彦海, 等. 臭氧及双氧水处理高盐有机废水的工程应用[J]. 工业用水与废水, 2018, 49(5): 74-76. doi: 10.3969/j.issn.1009-2455.2018.05.018
    [26] 李春立. 蒸发-过硫酸盐高级氧化法一体化技术处理高盐挥发性有机废水[D]. 新乡: 河南师范大学, 2017.
    [27] 陈希, 纪志永, 黄智辉, 等. 电化学协同过硫酸盐氧化法处理含盐有机废水[J]. 化工进展, 2019, 38(12): 5572-5577.
    [28] GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: Water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9): 2317-2348. doi: 10.1016/j.watres.2009.03.010
    [29] YANG Y, PIGNATELLO J J, MA J, et al. Effect of matrix components on UV/H2O2 and UV/S2O28 advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities[J]. Water Research, 2016, 89: 192-200. doi: 10.1016/j.watres.2015.11.049
    [30] OH W, DONG Z, LIM T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
    [31] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science & Technology, 2006, 36(1): 1-84.
    [32] GREBEI J E, PIGNATELLO J I, MITCH W A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J]. Environmental Science & Technology, 2010, 44(17): 6822-6828.
    [33] YU X, BAO Z, BARKER J R. Free radical reactions involving Cl·, Cl2, and SO4 in the 248 nm photolysis of aqueous solutions containing S2O28 and Cl[J]. The Journal of Physical Chemistry A, 2004, 108(2): 295-308. doi: 10.1021/jp036211i
    [34] BUXTON G V, BYDDER M, ARTHUR SALMON G. The reactivity of chlorine atoms in aqueous solution Part II. The equilibrium SO4+Cl-ClNsbd+ SO24[J]. Physical Chemistry Chemical Physics, 1999, 1(2): 269-273. doi: 10.1039/a807808d
    [35] YU X Y. Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions[J]. Journal of Physical & Chemical Reference Data, 2004, 33(3): 747-763.
    [36] YU X Y, BARKER J R. Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism[J]. Journal of Physical Chemistry A, 2003, 107(9): 1313-1324. doi: 10.1021/jp0266648
    [37] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J]. Environmental Science & Technology, 2014, 48(4): 2344-2351.
    [38] XIE W, DONG W, KONG D, et al. Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides[J]. Chemosphere, 2016, 154: 613-619. doi: 10.1016/j.chemosphere.2016.04.025
    [39] 袁瑞霞. 基于自由基反应的高盐染料废水降解有机卤代物AOX生成机制研究[D]. 上海: 东华大学, 2012.
    [40] TONY M A, ZHAO Y Q, EL-SHERBINY M F. Fenton and Fenton-like AOPs for alum sludge conditioning: Effectiveness comparison with different Fe2+ and Fe3+ salts[J]. Chemical Engineering Communications, 2010, 198(3): 442-452. doi: 10.1080/00986445.2010.520235
    [41] WANG N, ZHENG T, ZHANG G, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016
    [42] 魏健, 何锦垚, 宋永会, 等. 臭氧催化氧化-BAF深度处理抗生素废水效能及微生物群落结构分析[J]. 环境科学学报, 2020, 40(6): 2090-2100.
    [43] MIKLOS D B, HARTL R, MICHEL P, et al. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents[J]. Water Research, 2018, 136: 169-179. doi: 10.1016/j.watres.2018.02.044
    [44] LI Z, LIU F, DING Y, et al. Preparation and properties of Cu-Ni bimetallic oxide catalyst supported on activated carbon for microwave assisted catalytic wet hydrogen peroxide oxidation for biologically pretreated coal chemical industry wastewater treatment[J]. Chemosphere, 2019, 214: 17-24. doi: 10.1016/j.chemosphere.2018.09.098
    [45] RAHDAR S, IGWEGBE C A, GHASEMI M, et al. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2)[J]. MethodsX, 2019, 6: 492-499. doi: 10.1016/j.mex.2019.02.033
    [46] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·H/·OH) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
    [47] GOLDSTONE J V, PULLIN M J, BERTILSSON S, et al. Reactions of hydroxyl radical with humic substances: Bleaching, mineralization, and production of bioavailable carbon substrates[J]. Environmental Science & Technology, 2002, 36(3): 364-372.
    [48] ISSE A A, LIN C Y, COOTE M L, et al. Estimation of standard reduction potentials of halogen atoms and alkyl halides[J]. The Journal of Physical Chemistry B, 2011, 115(4): 678-684. doi: 10.1021/jp109613t
    [49] ERSHOV B G, KELM M, GORDEEV A V, et al. A pulse radiolysis study of the oxidation of Br by Cl2 in aqueous solution: Formation and properties of ClBr·[J]. Physical Chemistry Chemical Physics, 2002, 4(10): 1872-1875. doi: 10.1039/b110362h
    [50] ZHANG W B, XIAO X M, AN T C, et al. Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process[J]. Journal of Chemical Technology & Biotechnology, 2003, 78: 788-794.
    [51] 王广生, 付冬彬, 刘义青, 等. UV/ NO3光化学降解水中的磺胺甲恶唑[J]. 环境科学学报, 2020, 40(4): 1234-1241.
    [52] 许入义, 李孟, 唐建伟, 等. 光电催化氧化体系降解苯胺类污染物的同步耦合反应机制研究[J]. 环境科学学报, 2019, 39(8): 2525-2534.
    [53] 邬莎娜, 孙贤波, 刘勇弟, 等. Fenton法处理DMF废水及无机阴离子对反应的影响[J]. 华东理工大学学报(自然科学版), 2017, 43(1): 70-75.
    [54] 吴广宇, 袁向娟, 徐海明, 等. UV/Fenton-Fe0降解水中阿特拉津动力学及影响因素[J]. 水处理技术, 2017, 43(7): 32-38.
    [55] BOUTITI A, ZOUAGHI R, BENDJABEUR S E, et al. Photodegradation of 1-hexyl-3-methylimidazolium by UV/H2O2 and UV/TiO2: Influence of pH and chloride[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2016, 336: 164-169.
    [56] PIGNATELLO J J. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide[J]. Environmental Science & Technology, 1992, 26(5): 944-951.
    [57] KIWI J, LOPEZ A, NADTOCHENKO V. Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl)[J]. Environmental Science & Technology, 2000, 34(11): 2162-2168.
    [58] HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied catalysis B: Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
    [59] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [60] CHEN L, HU X, CAI T, et al. Degradation of Triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO)[J]. Chemical Engineering Journal, 2019, 369: 344-352. doi: 10.1016/j.cej.2019.03.084
    [61] ZHANG R C, SUN P Z, BOYER T H, et al. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS[J]. Environmental Science & Technology, 2015, 49(5): 3056-3066.
    [62] 杨晴, 孙昕, 李鹏飞, 等. 超声活化过硫酸盐降解甲基橙的影响因素研究[J]. 环境科学学报, 2020, 40(8): 2715-2721.
    [63] DING Y, ZHU L, WANG N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2013, 129: 153-162. doi: 10.1016/j.apcatb.2012.09.015
    [64] HUIE R E, CLIFTON C L. Temperature dependence of the rate constants for reactions of the sulfate radical, SO4 with anions[J]. Journal of Physical Chemistry, 1990, 94(23): 8561-8567. doi: 10.1021/j100386a015
    [65] FENG Y, SONG Q, LV W, et al. Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices[J]. Chemosphere, 2017, 189: 643-651. doi: 10.1016/j.chemosphere.2017.09.109
    [66] JI Y, DONG C, KONG D, et al. Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal, 2015, 263: 45-54. doi: 10.1016/j.cej.2014.10.097
    [67] LIU L, LIN S, ZHANG W, et al. Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process[J]. Chemical Engineering Journal, 2018, 346: 515-524. doi: 10.1016/j.cej.2018.04.068
    [68] XU M, DU H, GU X, et al. Generation and intensity of active oxygen species in thermally activated persulfate systems for the degradation of trichloroethylene[J]. RSC Advances, 2014, 76(4): 40511-40517. doi: 10.1039/C4RA04942J
    [69] XU M, GU X, LU S, et al. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid[J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 438-446.
    [70] CHAN K H, CHU W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process[J]. Water Research, 2009, 43(9): 2513-2521. doi: 10.1016/j.watres.2009.02.029
    [71] WANG Z, YUAN R, GUO Y, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: Kinetic analysis[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 1083-1087.
    [72] 周骏, 肖九花, 方长玲, 等. UV/PMS体系硝基氯酚降解动力学及机理研究[J]. 中国环境科学, 2016, 36(1): 66-73. doi: 10.3969/j.issn.1000-6923.2016.01.011
    [73] GAO H, CHEN J, ZHANG Y, et al. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system[J]. Chemical Engineering Journal, 2016, 306: 522-530. doi: 10.1016/j.cej.2016.07.080
    [74] QIAN Y, XUE G, CHEN J, et al. Oxidation of cefalexin by thermally activated persulfate: Kinetics, products, and antibacterial activity change[J]. Journal of Hazardous Materials, 2018, 354: 153-160. doi: 10.1016/j.jhazmat.2018.05.004
    [75] LIANG C, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. doi: 10.1016/j.chemosphere.2006.05.026
    [76] LIANG C, WANG Z, MOHANTY N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 ℃[J]. Science of the Total Environment, 2006, 370(2/3): 271-277.
    [77] PEYTON G R. The free-radical chemistry of persulfate-based total organic carbon analyzers[J]. Marine Chemistry, 1993, 41(1/2/3): 91-103.
    [78] BUXTON G V, BARLOW S, MCGOWAN S, et al. The reaction of the SO3 radical with Fe in acidic aqueous solution: A pulse radiolysis study[J]. Physical Chemistry Chemical Physics, 1999, 1(13): 3111-3115. doi: 10.1039/a901735f
    [79] HUANG K C, ZHAO Z, HOAG G E, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61(4): 551-560. doi: 10.1016/j.chemosphere.2005.02.032
    [80] FANG G, DIONYSIOU D D, WANG Y, et al. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics[J]. Journal of Hazardous Materials, 2012, 227-228: 394-401. doi: 10.1016/j.jhazmat.2012.05.074
    [81] WU Y, YANG Y, LIU Y, et al. Modelling study on the effects of chloride on the degradation of bezafibrate and carbamazepine in sulfate radical-based advanced oxidation processes: Conversion of reactive radicals[J]. Chemical Engineering Journal, 2019, 358: 1332-1341. doi: 10.1016/j.cej.2018.10.125
    [82] YUAN R, WANG Z, HU Y, et al. Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification[J]. Chemosphere, 2014, 109: 106-112. doi: 10.1016/j.chemosphere.2014.03.007
    [83] GU X, LU S, QIU Z, et al. Photodegradation performance of 1, 1, 1-trichloroethane in aqueous solution: In the presence and absence of persulfate[J]. Chemical Engineering Journal, 2013, 215-216: 29-35. doi: 10.1016/j.cej.2012.09.132
    [84] MCKENNA J H, DOERING P H. Measurement of dissolved organic carbon by wet chemical oxidation with persulfate: Influence of chloride concentration and reagent volume[J]. Marine Chemistry, 1995, 42(2): 109-114.
    [85] WACLAWEK S, LUTZE H V, GRUBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review[J]. Chemical Engineering Journal, 2017, 330: 44-62.
    [86] FANG C, LOU X, HUANG Y, et al. Monochlorophenols degradation by UV/persulfate is immune to the presence of chloride: Illusion or reality?[J]. Chemical Engineering Journal, 2017, 323: 124-133. doi: 10.1016/j.cej.2017.04.094
    [87] 银仁莉. 过硫酸盐的非自由基氧化降解磺胺抗生素的效能及机制[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [88] SONG H, YAN L, WANG Y, et al. Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation[J]. Chemical Engineering Journal, 2020, 391: 123560. doi: 10.1016/j.cej.2019.123560
    [89] ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process[J]. Environmental Science & Technology, 2015, 49(21): 12941-12950.
    [90] MA W, WANG N, FAN Y, et al. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2017, 336: 721-731.
    [91] CHEN J B, FANG C, XIA W J, et al. Selective transformation of β-Lactam antibiotics by peroxymonosulfate: Reaction kinetics and nonradical mechanism[J]. Environmental Science & Technology, 2018, 52(3): 1461-1470.
    [92] YANG Y, BANERJEE G, BRUDVIG GARY W, et al. Oxidation of organic compounds in water by unactivated peroxymonosulfate[J]. Environmental Science & Technology, 2018, 52(10): 5911-5919.
    [93] LEI Y, CHEN C S, AI J, et al. Selective decolorization of cationic dyes by peroxymonosulfate: non-radical mechanism and effect of chloride[J]. RSC Advances, 2015, 6(2): 866-871.
    [94] LOU X Y, GUO Y G, XIAO D X, et al. Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation[J]. Environmental Science & Pollution Research, 2013, 20(9): 6317-6323.
    [95] 王海军. 氯水的漂白作用原理探究[J]. 化学教育(中英文), 2018, 39(19): 66-69.
    [96] 丁曦, 张学维, 周润生, 等. 非活化单过硫酸盐降解柳氮磺胺吡啶: 动力学及机制[J]. 环境科学, 2020, 41(5): 2310-2319.
    [97] 古振川, 高乃云, 安娜, 等. Cl/PMS体系降解甲氧苄啶的效能与机理[J]. 中国环境科学, 2018, 38(3): 977-984. doi: 10.3969/j.issn.1000-6923.2018.03.022
    [98] ZENG H, ZHAO X, ZHAO F, et al. Oxidation of 2,4-dichlorophenol in saline water by unactivated peroxymonosulfate: Mechanism, kinetics and implication for in situ chemical oxidation[J]. Science of the Total Environment, 2020, 728: 138826. doi: 10.1016/j.scitotenv.2020.138826
    [99] FANG C, LOU X, TANG Y, et al. Dual character of peroxymonosulfate oxidation process to treat salty wastewater containing 2,4, 6-tribromophenol[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103998. doi: 10.1016/j.jece.2020.103998
    [100] LI C, CHEN C, WANG Y, et al. Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation[J]. Chemical Engineering Journal, 2019, 362: 570-575. doi: 10.1016/j.cej.2019.01.057
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.8 %DOWNLOAD: 1.8 %HTML全文: 98.2 %HTML全文: 98.2 %DOWNLOADHTML全文Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.7 %其他: 99.7 %北京: 0.1 %北京: 0.1 %邢台: 0.1 %邢台: 0.1 %其他北京邢台Highcharts.com
图( 3)
计量
  • 文章访问数:  13927
  • HTML全文浏览数:  13927
  • PDF下载数:  288
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-07
  • 录用日期:  2021-01-26
  • 刊出日期:  2021-05-10
刘宇程, 杨冰, 李沁蔓, 马丽丽, 李玲丽, 陈明燕. Cl−和pH对高级氧化工艺去除含盐废水中有机物的影响及机理[J]. 环境工程学报, 2021, 15(5): 1487-1499. doi: 10.12030/j.cjee.202009046
引用本文: 刘宇程, 杨冰, 李沁蔓, 马丽丽, 李玲丽, 陈明燕. Cl和pH对高级氧化工艺去除含盐废水中有机物的影响及机理[J]. 环境工程学报, 2021, 15(5): 1487-1499. doi: 10.12030/j.cjee.202009046
LIU Yucheng, YANG Bing, LI Qinman, MA Lili, LI Lingli, CHEN Mingyan. Effects and mechanism of Cl− and pH on organic matter removal in salt-containing wastewater treatment by advanced oxidation processes[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1487-1499. doi: 10.12030/j.cjee.202009046
Citation: LIU Yucheng, YANG Bing, LI Qinman, MA Lili, LI Lingli, CHEN Mingyan. Effects and mechanism of Cl and pH on organic matter removal in salt-containing wastewater treatment by advanced oxidation processes[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1487-1499. doi: 10.12030/j.cjee.202009046

Cl和pH对高级氧化工艺去除含盐废水中有机物的影响及机理

    通讯作者: 杨冰(1985—),男,博士,副教授。研究方向:环境污染化学、高级氧化技术。E-mail:yangb2016@swpu.edu.cn
    作者简介: 刘宇程(1977—),男,博士,教授。研究方向:油气田环境化学、油气田开发污染治理。E-mail:liuyc@swpu.edu.cn
  • 1. 西南石油大学化学化工学院,成都 610500
  • 2. 西南石油大学工业危废处置与资源化利用研究院,成都 610500
基金项目:
国家自然科学基金资助项目(21707111);四川省科技计划项目(2020JDTD0018,2019YJ0320);西南石油大学科研“启航计划”项目(2017QHZ018)2017QHZ018)

摘要: 高级氧化技术(AOPs)在削减(或去除)工业废水中的有机物方面具有广泛应用。氯离子(Cl)是含盐工业废水中最主要的阴离子,会影响AOPs处理有机污染物过程中的氧化去除效率、卤代有机副产物的生成。然而,实践中Cl的影响常被忽视。针对基于羟基自由基(·OH)、硫酸根自由基(SO4)和非自由基途径3种不同类型的AOPs,从Cl与不同自由基(·OH、SO4)的反应及正逆反应速率常数、Cl浓度与pH的复合影响两方面,探讨了Cl对3类AOPs去除废水中有机物的影响和机理。比较了3类AOPs工艺处理含盐废水适用的Cl理论浓度的高低差异,提出通过调控pH改变主要活性氧化物质、选择不同的氧化方式等途径减弱Cl对有机物去除效率的抑制、减少卤代有机副产物的生成,以期为AOPs工艺处理含盐废水的应用和相关研究提供参考。

English Abstract

  • 工业废水种类繁多,成分复杂,常含有毒有害物质,须经处理达到相关标准,才能够排放。加强工业废水的有效处理和达标排放是实施生态环境保护的重要内容[1]。其中,电力、炼油、油气开采、焦炭、皮革、冶金、造纸、农药等行业产生的难处理高含盐废水,除了常规的水质指标(如悬浮物质、COD、BOD、pH、重金属离子等)之外,还应将可溶性盐(含量常大于1%)和有毒有害有机物质作为重点去除对象[2-4]

    高含盐废水中有机物的去除方法主要有物理吸附[5-6]、膜分离[7]、生物降解[8]、高级氧化技术(advanced oxidation processes,AOPs)等[9-10]。AOPs技术通过产生具有强氧化能力的活性氧化物(reactive oxidant species,ROS),可快速氧化降解大多数有机物(如有机染料[11]、表面活性剂[12]、烃类[13]、酚类[14]、药物活性成分[15]、农药[16]等),是深度处理含盐废水的主要手段[17-19]。其中,应用较多的AOPs有Fenton氧化技术[20-21]、臭氧催化氧化技术[22-23]、“臭氧+双氧水”氧化技术[24-25]、活化过硫酸盐技术[26-27]等,起主要作用的ROS为羟基自由基(·OH)或硫酸根自由基(SO4)。后文将基于·OH的AOPs称为HR-AOPs(hydroxyl radical based AOPs),将基于SO4的AOPs称为SR-AOPs(sulfate radical based AOPs),基于非自由基的AOPs称为NR-AOPs(non-radical based AOPs)。

    氯离子(Cl)是大多数高含盐工业废水中的主要阴离子[28]。有研究结果表明,高浓度的Cl对HR-AOPs和SR-AOPs有不同程度的抑制作用[29-32]。由于Cl与·OH和SO4反应均有较高的反应速率,反应如式(1)~(5)所示[32-36],基本机理为Cl与·OH和SO4经过一系列反应生成Cl·,而Cl·与Cl具有高反应速率(反应(5)),因此在高浓度Cl环境中,极易生成氧化活性相对较弱的Cl2,从而可能降低整个氧化反应对有机物的去除效率[29, 32, 37],增大氧化剂用量成本。同时,反应过程中产生的一系列活性氯(Cl·、Cl2等)等次生自由基也具有一定的氧化能力,与有机物反应后,可能导致多种有毒甚至致癌的氯代有机副产物的生成[29, 37-39]

    已有研究[20, 22-27]大多未考虑Cl对COD去除率和氧化剂效率的影响,氯代有机副产物的生成亦被忽略。同时,结合反应式(1)~(5)的正、逆反应速率常数可发现,主要反应物(如ClSO24、H+、OH)的浓度可能会影响各反应中的物质平衡浓度,进而可调节Cl对AOPs效率的影响。

    本文梳理了HR-AOPs、SR-AOPs及NR-AOPs在氧化去除有机物时受Cl影响的机理,从Cl与不同自由基(·OH、SO4)的系列反应及正逆反应速率常数、Cl浓度与pH的复合影响2方面出发,探讨了Cl对3类AOPs工艺去除废水中有机物的不同影响及作用机理,提出了调控Cl对有机物去除效率的抑制和控制氯代有机副产物生成的可能途径,以期为提高AOPs工艺去除高氯盐废水中有机物的效率提供参考。

  • 以·OH为主要ROS的HR-AOPs包括Fenton氧化[40]、类Fenton氧化[41]、O3催化氧化[42]、能量方式(紫外光、微波、超声等)[43-45]活化H2O2氧化等技术。·OH的氧化还原电位(E0)与pH紧密相关:中性条件下E0为1.8 V,氧化能力较弱;酸性条件下E0为2.7 V[46],对大多数有机污染物具有非选择性氧化能力;且·OH能够引入含氧官能团,这使得污染物更易被生物降解[47]。在高氯废水中,Cl能与·OH迅速发生反应(见式(2)~(5)),生成多种含氯自由基(Cl·、Cl2、ClOH·)。其中,Cl·和Cl2的氧化还原电位分别为2.59 V[48]和2.30 V[49],具有较强的氧化能力,能够一定程度减小Cl清除·OH导致体系有机物去除速率降低的影响。Cl·亲电性强,容易加成到有机物分子的不饱和键上,Cl2则会通过单电子转移和抽氢反应与不饱和有机物及中间产物发生氯化作用,其选择性比·OH对有机物的去除更强[32],但会导致氯代有机物副产物的生成。由于物质的各种状态会影响反应平衡过程,因此,Cl在体系中的浓度是影响上述反应的重要因素。

    Cl与·OH发生的主要反应(式(2))是可逆反应。基于该反应,可认为Cl浓度对正逆反应中·OH和ClOH·的相对比例有重要影响,故Cl清除·OH和产生一系列氯代自由基与Cl浓度密切相关。当Cl清除·OH和ClOH·自分解的反应速率相等(见反应式(6))时,将式(2)正逆反应速率常数代入式(6),计算得到的Cl浓度约为1.42 mol·L−1(约50 000 mg·L−1)。理论上,当[Cl]≥1.42 mol·L−1时,正反应更具优势,ClOH·有净累积,·OH减少故污染物降解反应受到抑制。而Cl浓度较低时,式(2)的逆反应占主导,ClOH·会更快地自分解重新生成·OH,此时体系中ClOH·累计较少,理论上,污染物降解速率受Cl的影响较小。因此,HR-AOPs处理含氯废水时,对低浓度Cl的抑制作用具有一定耐受能力。

    以上基于反应式(2)的计算表明,HR-AOPs处理含氯盐有机废水时受Cl浓度差异的影响较大,许多研究结果也证实了这一点。ZHANG等[50]采用UV/H2O2法降解4-硝基酚,当水溶液中Cl浓度从0增加到15 mmol·L−1时对4-硝基酚降解速率有所抑制,但效果并不显著,且明显弱于NO3等其他阴离子。王广生等[51]考察了Cl对UV/NO3光化学降解磺胺甲噁唑(sulfamethoxazole,SMX)的影响时也发现,0~7 mmol·L−1的Cl对SMX的降解并不产生明显抑制。许入义等[52]研究光电催化氧化体系降解苯胺类污染物的同步耦合反应机制时,通过加入1 000~8 000 mg·L−1的NaCl探究Cl的影响,当NaCl质量浓度为1 000~6 000 mg·L−1时,单光与光电体系的污染物去除速率同幅度持续上升,而当NaCl浓度进一步增加至8 000 mg·L−1时反应速率下降,这是由于产生了活性Cl·,其氧化活性不如·OH所导致。

    文献[50-52]表明,HR-AOPs对低浓度Cl的抑制作用具有一定的耐受性,而不同研究体系中耐受Cl影响的范围并不相同,且均低于理论计算值(1.42 mol·L−1,约50 000 mg·L−1)。这是由于Cl与·OH在实际反应过程中,除式(2)中的逆反应消耗ClOH·外,式(3)~(4)的反应也会消耗ClOH·;当式(2)的反应产生ClOH·后,无论ClOH·有无净累计,式(3)~(5)的反应都会消耗ClOH·,产生Cl·和Cl2。YANG等[37]采用动力学模拟软件Kintecus拟合计算UV/H2O2体系产生的自由基种类及稳态浓度时发现,纯水和540 mmol·L−1 NaCl体系中·OH的稳态浓度在pH为7时分别为9.83×10−13和9.82×10−13 mol·L−1,在pH为3时分别为1.08×10−12和4.42×10−13 mol·L−1。该结果说明,在中性条件下,即使Cl在较高浓度时,其对HR-AOPs中·OH稳态浓度的影响也较小,但酸性环境会明显降低·OH的稳态浓度,进而抑制对有机物的去除速率。在NaCl浓度为540 mmol·L−1的UV/H2O2体系中,产生Cl2的稳态浓度在pH 7和pH 3时分别为3.88×10−14和4.89×10−11 mol·L−1,是同体系中·OH稳态浓度的1/30和110倍,这表明酸性条件有利于Cl2生成,且中性条件时也有较明显的Cl2产生,而Cl2与有机物反应会生成氯代有机物副产物。因此,HR-AOPs处理含氯废水时,尽管理论上反应速率受低浓度Cl的抑制作用影响较小,但仍会有较高浓度Cl2的生成,具有生成氯代有机物副产物的风险;且由于pH的影响(见反应式(3)),在低pH下,即使Cl在较低浓度时也会对有机物去除速率产生明显抑制,且生成氯代有机物副产物的风险增大。

  • Cl浓度对HR-AOPs体系的影响与pH密切相关。根据氧化还原电位(E0)的大小,在中性条件下,Cl·(E0=2.59 V)[48]Cl2(E0=2.30 V)[49]的氧化能力均强于·OH(E0=1.8 V),而酸性条件下·OH(E0=2.7 V)氧化有机物的能力更强。因此,单从ROS的氧化还原能力来看,酸性条件下Cl的反应效率会下降,中性(甚至碱性)条件反而会促进反应。不同类型HR-AOPs中,Fenton氧化反应最佳pH为3~4,而臭氧催化氧化、类Fenton氧化、能量方式活化H2O2、光催化氧化等AOPs的最佳pH范围则为中性或偏碱性。Cl对Fenton氧化技术的抑制作用较后几种更明显。许多研究结果也证实了这一点:邬莎娜等[53]采用Fenton法处理N,N-二甲基甲酰胺模拟废水时发现,Cl对体系中COD的去除有很强的抑制效果,出水COD从90 mg·L−1上升至250 mg·L−1;吴广宇等[54]采用Fe0非均相UV/Fenton技术处理水中阿特拉津(Atrazine,ATZ)时,却发现Cl对ATZ的去除具有明显促进作用,在pH为3时,200 mg·L−1的Cl能将ATZ的去除率从3 min达到的90.8%提高至为1 min后达到的91.2%。

    Cl与·OH发生式(2)的反应会首先产生ClOH·。因为ClOH·在酸性条件下能够与H+快速反应生成Cl·(式(3)),所以抑制了污染物的降解;而在中性或碱性条件下,通过式(2)的逆反应可重新生成·OH。当pH为1时,将式(3)的速率常数代入式(7)后可发现,反应速率常数kf3(2.6×10−9 s−1)与式(2)的逆反应速率常数kr2(6.1×10−9 s−1)为同一数量级,部分ClOH·能够通过式(3)转化为Cl·。然而,随着pH升高,ClOH·通过式(3)的反应转化为Cl·的比例会明显减少,Cl对HR-AOPs去除有机物的抑制作用减弱。BOUTITI等[55]利用UV/H2O2降解1-己基-3-甲基咪唑时发现,在天然环境的pH条件下,当Cl浓度大于0.1 mol·L−1时,污染物的降解速率不受影响,但在酸性环境下会抑制污染物的降解。PIGNATELLO等[56]也发现了类似情况,当pH为2.8且Cl浓度超过0.01 mol·L−1时,利用Fenton反应降解2,4-二氯苯氧乙酸的反应会受到明显抑制,此亦是由于清除了·OH,活性物质减少而致。KIWI等[57]发现,在酸性条件下通过Fenton反应产生·OH来降解偶氮染料,而当Cl存在时,其降解率也明显下降。由此说明,pH对HR-AOPs处理高盐废水有较大影响,且在酸性条件下受Cl的抑制作用更加明显。YANG等[37]的模拟实验也证明了这一现象,即当pH为3时,UV/H2O2处理无卤素的纯水体系中仅存在·OH一种自由基,其稳态浓度为1.08×10−12 mol·L−1,而在投加540 mmol·L−1的NaCl后,体系中·OH、Cl·和Cl2的稳态浓度分别为4.42×10−13、1.40×10−15、4.89×10−11 mol·L−1;中性条件下,纯水与含氯体系中·OH稳态浓度几乎相同,含氯体系中产生的Cl2也仅为同体系·OH的1/30,而在酸性条件下纯水体系中的·OH是含氯体系中·OH的2.44倍,含氯体系中产生的Cl2则是同体系·OH的110倍,故酸性条件下Cl对UV/H2O2去除有机物的抑制作用将更加明显。

    Cl和pH对HR-AOPs的影响机理如图1所示。在实际采用HR-AOPs进行水处理时,Cl的影响机制与体系pH具有复合作用,而HR-AOPs对低浓度Cl的抑制作用有一定耐受能力,在酸性条件下受Cl抑制作用大于中碱性条件。

  • SO4具有氧化还原电位高(2.5~3.1 V)、pH适用范围广[58]、存留时间(30~40 μs)比·OH更长[59]等优点,故SR-AOPs倍受关注。SO4与有机物的反应主要通过夺取电子来实现,对有机物的氧化更具选择性,对某些有机物的氧化效率比·OH更高。SR-AOPs主要是通过活化过一硫酸氢钾(KHSO5,Potassium peroxymonosulfate,PMS)或过硫酸钠(Na2S2O8,Sodium peroxydisulfate,PDS)产生SO4进而氧化降解有机物。由于Na2S2O8比KHSO5更稳定,且在水中溶解度更高,因此,在实际污染修复中用得更多。活化方式可分为2大类:能量活化(如热、紫外光、超声等)[60-62]和催化剂活化(过渡金属等)[63]

  • 在采用SR-AOPs处理含氯有机废水时,Cl会与有机污染物竞争消耗SO4,直接反应生成Cl·(式(1)),Cl·再进一步与其他Cl反应生成Cl2(式(5))[64]。不同于Cl在HR-AOPs中与·OH经过一系列反应才生成Cl·,ClSO4反应直接生成Cl·。从主要反应来看,SR-AOPs比HR-AOPs更易受Cl的影响,同样也受Cl浓度和pH的影响,但具体表现有较大差别。

    Cl通过发生式(1)的反应清除SO4而生成Cl·,由于式(1)的正反应速率kf1大于其逆反应速率kr1,因此,从理论上来说,利用SR-AOPs处理含氯盐废水时,在低Cl浓度下有机物的去除会受到较大抑制,即Cl产生抑制作用的浓度阈值更低。以热活化PDS的相关研究为例,Cl的存在对酮洛芬[65]、阿特拉津[66]、磺胺-氯吡嗪[67]、三氯乙烯[68]和四氯化碳[69]等的降解均产生了明显抑制。CHAN等[70]采用活化过氧单硫酸盐(PMS)法降解阿特拉津并探讨了Cl的影响,发现Cl在反应中具有明显抑制作用,其原因可能是由于Cl清除了SO4,并且产生了氧化活性较弱的Cl·。当Cl浓度持续增大时,积累的Cl·将与Cl进一步发生反应(式(5))生成Cl2

    当溶液中的自由基种类增加,对污染物降解的影响则更加复杂。而当Cl浓度增加到一定程度时,则对污染物降解的影响呈先抑制后促进的双重作用。WANG等[71]在钴活化过氧单硫酸盐体系(Co/PMS)中发现,当Cl(浓度为0~10 mmol·L−1)存在时,SO4对偶氮染料的降解作用被明显抑制;而当Cl浓度较高(>100 mmol·L−1)时,偶氮染料的降解作用被增强;这可能是由于Cl浓度较低时会优先清除SO4,而产生活性更小的Cl·阻碍染料的脱色;当Cl浓度进一步增大,Cl通过双电子转移直接与PMS氧化反应产生活性卤素Cl2或HClO,活性卤素能进一步与染料反应可能产生卤代有机化合物。周骏等[72]在UV/PMS体系降解硝基氯芬的动力学及机理研究中也提出了Cl的双重作用,Cl为0.05~10 mmol·L−1时对污染物的降解起抑制作用,而当Cl从30 mmol·L−1增加到100 mmol·L−1,体系反应速率迅速上升,甚至能达到无氯体系的8.5倍。在热/PDS降解二氯苯氧氯酚[73]和头孢氨苄[74]等的研究中,也都发现Cl存在类似先抑制后促进的双重作用。

  • SR-AOPs受pH的影响主要表现在体系中的自由基成分及含量在不同pH条件下差异较大。有研究表明,pH<9时SO4为主要自由基成分;当9<pH<11时,体系中通常出现SO4与·OH共存的情况;当pH>11时,则主要是·OH[75]。这主要是由于,在偏碱性条件下,SO4能够与OH发生反应(8)产生·OH[76-77]。在pH与Cl的复合影响下,较低pH条件时SR-AOPs体系中主要的自由基为SO4,其能迅速与Cl发生反应(见式(1)和式(5)),生成Cl2;当pH较高时,SO4生成·OH而导致Cl2浓度降低,同时Cl2与OH发生式(9)的反应,使得Cl2浓度进一步降低,ClOH·浓度增加[78],并且ClOH·会继续发生自分解产生更多·OH(式(2)的逆反应)[79]。FANG等[80]研究SO4降解多氯联苯时发现,Cl的存在会影响SO4氧化过程中不同条件下自由基的种类分布,并抑制多氯联苯的降解。WU等[81]研究氯化物对SR-AOPs降解贝扎菲酯和卡马西平影响时也发现类似规律。YUAN等[82]在探究UV/PDS降解染料废水时同样发现,染料在碱性介质中更容易被破坏,这可能是由于·OH为该pH条件下的优势自由基,对污染物的去除选择性不强。

    因此,Cl对SR-AOPs的影响主要为SO4与Cl反应后形成多种卤素自由基,从而降低体系氧化能力[83-84];同时,在中性或碱性pH条件下,SO4会生成·OH,形成SO4与·OH共存并与Cl作用的复杂体系[85]。Cl和pH对SR-AOPs的影响机理如图2所示。

    综上所述,在含氯盐有机废水处理中SR-AOPs比HR-AOPs更易受Cl的影响,即使较低浓度即会对有机物去除速率产生明显抑制,且易产生有毒氯代有机物副产物,从而使可吸附有机卤素(absorbable organic halogen,AOX),大量积累,毒性增强[86]。因此,在采用SR-AOPs处理含氯盐废水的研究和应用中还应重视氯代副产物的产生和控制。

  • 近年来,非自由基氧化途径(NR-AOPs)逐渐成为AOPs的新兴研究方向。非自由基氧化对污染物的选择性更好,且对氧化剂的利用率也更高[87]。目前,对NR-AOPs的研究大多采用过氧一硫酸盐(PMS)为氧化剂。这是由于PMS分子中(—O3S—O—O—H)过氧键呈非对称结构,且只带一个负电荷,比呈对称结构的过氧二硫酸盐(PDS)更易被活化[88]。PMS非自由基氧化的主要途径包括PMS自分解或与有机物作用产生1O2 [89-90]、PMS直接氧化[91-93]降解有机物。由于这2种途径均未大量产生·OH或SO4,不存在Cl竞争消耗自由基而导致污染物降解过程受抑制,因此,PMS的非自由基氧化途径比HR-AOPs和SR-AOPs受Cl影响更小。

  • 以PMS为氧化剂的NR-AOPs工艺在处理含盐废水时,PMS与Cl会发生式(10)~(11)的反应而生成HClO和Cl2[94]。HClO和Cl2都是常用漂白剂,具有较强的氧化性(E0(HClO/Cl)=1.50 V,E0(HClO/Cl2)=1.63 V)[95]。因此,理论上Cl对PMS非自由基氧化途径降解有机污染物是有一定促进作用的;且随着Cl浓度增加,HClO、Cl2也更多积累,有机物降解效率也随之增加。LEI等[93]在研究未活化PMS脱色阳离子染料时发现,通过增加Cl剂量,可进一步缩短RhB的脱色时间,同时还能有效促进TOC降低,这也间接证明无氯代副产物生成。丁曦等[96]采用非活化PMS降解柳氮磺胺吡啶(Sulfasalazine,SSZ)时,发现Cl的存在同样能明显提高SSZ的降解效率。古振川等[97]在采用Cl/PMS降解甲氧苄啶(Trimethoprim,TMP)时发现,当Cl投加量从1.0 mmol·L−1增至7.0 mmol·L−1时,TMP的降解率也随之呈指数型增大。

  • 在酸性条件下,PMS的NR-AOPs体系中会发生式(11)~(13)的反应,存在的活性氯物质以HClO为主。ZENG等[98]在探究Cl/PMS对2,4-二氯苯酚的协同降解作用时,发现降解产物为2,4,6-三氯苯酚,据此提出的机理为Cl/PMS体系在酸性条件下通过ClHSO5而非SO25反应生成HClO,进而与2,4-二氯苯酚反应生成2,4,6-三氯苯酚;同时,其对照实验表明,Cl不能活化H2O2和PDS去除2,4-二氯苯酚。FANG等[99]在采用PMS处理2,4,6-三溴酚(2,4,6-tribromophenol,TBP)含盐废水时发现,在pH小于7时会产生有毒卤化衍生物,因此,该技术并不是净化TBP废水的最佳选择。LI等[100]在研究PMS氧化降解苯酚时发现,在酸性条件(pH为2.7)下,Cl能够促进苯酚降解,并检测到多种活性氯成分,说明在酸性条件下Cl与PMS反应产生了活性氯物质(HClO和Cl2)(式(10)~(11))进而促进苯酚降解。该降解过程中还检测到4-CP、2,4-DCP等氯代中间产物生成;在中性条件下还检测出活性氯成分,而在碱性条件(pH为9.0)下未检测到活性氯成分;而在中性和碱性条件下,无论有无Cl均比酸性条件下苯酚降解明显更快,且有无Cl对苯酚的降解速率影响非常小。通过淬灭实验和电子顺磁共振证实,中性及碱性条件下活性物质为1O2,且在中性及碱性条件时均未发现中间氯代产物生成,苯酚降解更为彻底。因此,PMS非自由基氧化处理含盐废水时,在酸性条件下通过产生多种活性氯物质(HClO和Cl2)以促进污染物降解,而在碱性条件下则主要通过PMS自分解或与有机物作用产生1O2,从而促进污染物降解(见式(14))[89]

    综上所述,基于PMS的NR-AOPs是一种新型有效处理含氯盐废水的方法,Cl和pH对该过程的影响机理如图3所示。与HR-AOPs和SR-AOPs不同,Cl在偏酸性条件下与PMS反应生成活性氯(主要为HClO和Cl2),能明显促进氧化降解有机污染物,但会生成卤代副产物;在偏碱性条件下,PMS通过自分解或与某些有机物作用产生1O2,从而能有效氧化降解有机物,受Cl影响小,且无卤代副产物产生。因此,采用PMS非自由基氧化技术处理含氯盐有机废水时,需严格控制pH,可通过调节pH至碱性以减少氯代副产物的生成。PMS非自由基对高氯盐有机废水处理去除有机物有一定应用前景。

  • Cl对自由基(SO4、·OH)型AOPs去除有机物有较大影响,故需进一步研究Cl竞争反应及氯代副产物产生的机理,增加对AOX、生物毒性、TOC等指标的考量,在更深层面探究Cl对AOPs去除有机物的影响。此外,还需要探索更多的非自由基(1O2O2)途径氧化降解污染物,研究活性物质种类、来源、机理、反应条件优化、受干扰离子影响机理等因素对反应体系的影响。研究非均相催化材料在AOPs中的应用,可通过在催化材料界面产生SO4、·OH与目标污染物反应,减弱自由基与Cl的反应,以提高AOPs处理含盐有机废水对Cl影响的抗性。

参考文献 (100)

返回顶部

目录

/

返回文章
返回