Processing math: 100%

餐厨垃圾干式厌氧消化工艺中甲烷转化率及其限制性因素

宋云鹏, 刘吉宝, 陈梅雪, 郑嘉熹, 桂双林, 魏源送. 餐厨垃圾干式厌氧消化工艺中甲烷转化率及其限制性因素[J]. 环境工程学报, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031
引用本文: 宋云鹏, 刘吉宝, 陈梅雪, 郑嘉熹, 桂双林, 魏源送. 餐厨垃圾干式厌氧消化工艺中甲烷转化率及其限制性因素[J]. 环境工程学报, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031
SONG Yunpeng, LIU Jibao, CHEN Meixue, ZHENG Jiaxi, GUI Shuanglin, WEI Yuansong. Analysis of restrictive factors of methane conversion based on organic composition in dry anaerobic digestion of food waste[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031
Citation: SONG Yunpeng, LIU Jibao, CHEN Meixue, ZHENG Jiaxi, GUI Shuanglin, WEI Yuansong. Analysis of restrictive factors of methane conversion based on organic composition in dry anaerobic digestion of food waste[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031

餐厨垃圾干式厌氧消化工艺中甲烷转化率及其限制性因素

    作者简介: 宋云鹏(1996—),男,硕士研究生。研究方向:有机固体废弃物减量化与资源化。E-mail:ypsong_st@rcees.ac.cn
    通讯作者: 刘吉宝(1988—),男,博士,助理研究员。研究方向:有机固体废弃物减量化与资源化。E-mail:jbliu@rcees.ac.cn
  • 基金项目:
    国家重点研发计划项目(2018YFD1100603)
  • 中图分类号: X523

Analysis of restrictive factors of methane conversion based on organic composition in dry anaerobic digestion of food waste

    Corresponding author: LIU Jibao, jbliu@rcees.ac.cn
  • 摘要: 餐厨垃圾的有机组成是影响其干式厌氧消化甲烷转化率的重要因素。通过批量实验并结合混料模型设计,以馒头、豆腐和食用油分别代表餐厨垃圾中多糖类、蛋白质类和脂质类为主的底物,研究餐厨垃圾有机组成对干式厌氧消化各有机组分降解率、甲烷产生量的影响;并探讨了餐厨垃圾有机组分降解对甲烷转化率的限制性因素。结果表明,多糖、蛋白质和脂质的平均降解率分别为62.87%、41.96%和29.62%;餐厨垃圾中多糖和蛋白质比例的增加会显著降低甲烷转化率,而脂质比例的增加显著提升了甲烷转化率。此外,高多糖比例的餐厨垃圾干式厌氧消化可导致pH降到7以下,产甲烷菌可利用的碳源以CO2的形式散失;高蛋白质比例下蛋白质结构发生转化,难以被微生物进一步利用;甲烷转化率与脂质降解率具有正相关性,高脂质比例下产甲烷速率在初期受限,因而导致较长的迟滞期。本研究结果有助于优化有机组成以提高餐厨垃圾干式厌氧消化甲烷转化率。
  • 电除尘器是工业烟气的主流除尘设备,在燃煤电厂的应用占比约为70% [1-3],烧结机机头的烟尘治理设备几乎全部为电除尘器[4-6]。随着燃煤电厂烟气超低排放的实施,湿式电除尘技术在燃煤电厂得到广泛应用。电除尘器主要分为电控和本体2个部分,近年来,针对燃煤电厂及非电行业的超低排放改造技术频有报道。在本体技术方面,超低排放技术包括低低温电除尘技术、湿式电除尘技术、颗粒团聚技术等[7-11]。在电源技术方面,朱法华等[12]分析了电除尘器高频电源节能减排的机理,介绍了国内外高频电源的研究与应用情况,并基于实际工程案例,介绍了高频电源的节能、减排幅度;李纪等[13]针对我国冶金转炉冶炼周期内工艺波动大、粉尘浓度及比电阻大等情况,提出了三相电源改造思路,提高了除尘器的除尘效率,并优化了电控性能;汤铭等[14]提出了一种低成本高压脉冲静电除尘电源,分析了该高压脉冲电源的稳态工作原理以及电场发生闪络时工作的情况;丁鑫龙等[15]通过实验方法,研究了脉冲电源技术对高比电阻粉尘的脱除特性;张滨渭等[16]研究发现,三相电源适合高粉尘负荷,高频电源在匹配良好条件下可实现较好的提效作用,而脉冲电源更多的研究是针对性地脱除细颗粒物和高比电阻粉尘。

    按输出特性分类,电源可分为电压源和电流源,上述研究多针对干式电除尘器配套的电压源,对于湿式电除尘器配套高压恒流源的供电特性及对电除尘提效及能耗的分析,国内鲜有文献报道。电除尘器供电电源的工作状态直接影响除尘器的运行稳定性及除尘性能,对于湿式电除尘器而言,因其工作在饱和湿烟气状态,且存在喷淋冲洗环节,电场的放电状态变化大、干扰因素多,电源工作的稳定性至关重要。尤其是导电玻璃钢管式湿式电除尘器,鉴于其阳极管内壁材料的特殊性,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。近年来,因火花控制不当等原因,山西、河南、山东等地频有导电玻璃钢管式湿式电除尘器着火事故报道。本研究通过实验室研究及现场实测相结合的手段,定量分析了导电玻璃钢管式湿式电除尘器的高压恒流源供电特性及其对电除尘提效、能耗的影响,为后续湿式电除尘器的性能提升及节能优化提供参考。

    湿式电除尘器实验系统如图1所示,通过燃油热风炉产生高温烟气,设计烟气量为1×104 m3·h−1,炉膛出口烟气温度控制在70 ℃左右。通过飞灰料仓、文丘里射流器向实验系统内喷射燃煤飞灰。通过浓硫酸电加热方式产生气态SO3,以恒定流量均匀注入系统,并通过混流装置将其与烟气充分混合。通过向烟道内喷水增湿,使烟气达到湿饱和,并控制湿式电除尘器入口烟气温度在50 ℃左右。湿式电除尘器为导电玻璃钢管式湿式电除尘器,阳极板为正六边形(内切圆直径为φ300 mm),阳极管长度为4.7 m,湿式电除尘器的总集尘面积约为180 m2,阴极线为合金锯齿线,喷淋系统每次冲洗时间为5 min,冲洗水量约为0.2 t。湿式电除尘器的供电电源分别有72 kV/100 mA工频高压恒流源、恒压源和72 kV/200 mA高频高压恒流源,不同电源间可灵活切换。湿式电除尘器出口布置CEMS,用于监测出口烟气中的烟尘浓度,在实验期间,采用手工测试方法对CEMS进行数据校准。

    图 1  湿式电除尘器实验系统
    Figure 1.  Experiment system of wet electrostatic precipitator

    工频电源是目前电除尘器应用最为成熟和应用最多的电源[17-18]。工频恒压源输出电压恒定且可控,电流随负载变化;恒流源输出电流恒定且可控,电压随负载变化[19-21]。首先,参照行业标准《电除尘器设计、调试、运行、维护安全技术规范》(JB/T 6407-2017)的相关规定,分别在72 kV/100 mA工频高压恒流源和72 kV/100 mA工频高压恒压源供电情况下对湿式电除尘器进行空载升压实验,对应的一次电压/电流、二次电压/电流分别如图2(a)图2(b)所示。在空载条件下,工频高压恒流源和工频高压恒压源的一次、二次电压/电流信号基本一致。

    图 2  空载升压实验结果
    Figure 2.  Test results of no-load boost

    控制湿式电除尘器入口烟气温度为50 ℃,烟尘浓度为51.5 mg·m−3,SO3浓度为9 mg·m−3(大约为当前超低排放机组中湿法脱硫出口的SO3平均浓度[21])。烟尘浓度的测定采用ZR-D09A型一体化采样枪和ZR-3260型自动烟尘测试仪,测试方法符合行业标准《固定污染源废气低浓度颗粒物的测定重量法》(HJ 836-2017)的相关规定。SO3测定采用国家标准《燃煤烟气脱硫设备性能测试方法》(GB/T 21508-2008)所规定的控制冷凝法,采样系统如图3所示,水浴温度为65 ℃,多级冷凝装置为两级蛇形盘管,采样枪加热温度>280 ℃,抽气流量为20 L·min−1。采样后,用去离子水清洗蛇形盘管,之后用DR 6000型分光光度计测定溶液中的硫酸根,换算得到SO3浓度值。在上述带负载工况下,再次分别在72 kV/100 mA工频高压恒流源和72 kV/100 mA工频高压恒压源供电情况下对湿式电除尘器进行升压实验,对应的一次电压/电流、二次电压/电流分别如图4(a)图4(b)所示。在负载条件下,工频高压恒流源和工频高压恒压源的一次、二次电压/电流信号一致性仍较好,且与空载升压时所示的运行电源参数相比差异不大。经测定,72 kV/100 mA工频高压恒流源和72 kV/100 mA工频高压恒压源供电情况下湿式电除尘器出口烟尘、SO3浓度及其脱除效率如图5所示,两者的污染物脱除性能也大致相当。

    图 3  SO3采样系统
    Figure 3.  SO3 sampling system
    图 4  负载升压实验结果
    Figure 4.  Test results of load boost
    图 5  湿式电除尘器(WESP)对烟尘、SO3的脱除性能
    Figure 5.  Dust and SO3 removal performance of wet electrostatic precipitator (WESP)

    开启湿式电除尘器的喷淋系统,开启后约5 s后电场出现闪络,此时电源的二次电压、二次电流分别如图6(a)图6(b)所示。对于工频恒流源来说,电源检测到火花放电后,自动下调电源运行参数,使得电流/电压稳定运行在相对较低的参数范围。虽然仍会有零星放电发生,但电源运行参数相对平稳,且喷淋系统关闭后,电源可自动回复到原设定参数运行。对于工频恒压源来说,在喷淋开启初期阶段,电场内频繁产生火花放电,电源运行参数不稳定,有一段明显的振荡区,且喷淋系统关闭后,其电源参数的回复过程也较恒流源慢一些。这是因为,恒流源输出特性受负载干扰产生的电流变量的约束,负载特性总能回到原来的平衡点,工作状态都是稳定的;恒压源输出存在不稳定的工作点,抗干扰能力差,喷淋系统开启后会使电除尘器进入负阻区,电流瞬间增大、电压下降,产生火花击穿,然后电源保护,停止供电,电压源既不能约束负载电压的减少又不能约束负载电流的增加,因而失去对负载的控制能力,造成电源运行参数振荡。

    图 6  喷淋系统开启时二次电压/二次电流
    Figure 6.  Secondary voltage/secondary current curve when the spray system was turned on

    为研究不同电源供电特性对湿式电除尘器性能的影响,分别调取2种电源供电时湿式电除尘器出口CEMS测得烟尘浓度数据,显示喷淋系统开启前后湿式电除尘器出口烟尘浓度变化,结果如图7(a)图7(b)所示。喷淋系统开启后,随着电源运行参数的降低,烟尘排放浓度均有不同程度的增加,其中,工频恒流源供电时,湿式电除尘器出口烟尘浓度最大值为10.3 mg·m−3,较喷淋前平均值(9.2 mg·m−3)增加了约12%;但恒压源存在一个电源参数振荡区,此时,出口烟尘浓度最大值达25.9 mg·m−3,较喷淋前平均值(10.5 mg·m−3)增加了约147%。因此,对于湿式电除尘器而言,应优先考虑采用抗干扰能力强的恒流源,尤其是导电玻璃钢管式湿式电除尘器,由于其阳极管内壁材料的特殊性,因此,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。

    图 7  喷淋系统开启时湿式电除尘器出口烟尘浓度的变化
    Figure 7.  Change of dust concentration at the outlet of wet electrostatic precipitator when the spray system was turned on

    参照JB/T 6407-2017的相关规定,分别对72 kV/200 mA高频高压恒流源进行空载、负载升压实验,对应的一次电压/电流、二次电压/电流曲线及与工频恒流源对比分别如图8图9所示。在负载条件下,高频电源的一次、二次电压/电流信号与空载升压时所示的运行电源参数相比差异不大。值得注意的是,空载实验前实际上也已通过湿烟气,只是空载时临时停掉了风机跟加灰装置,所以湿电场内的烟气仍基本处在湿饱和状态。推测是因湿电场内湿饱和烟气中水分子导电性能好,因此,运行电流较大,是否有烟气流动及飞灰加入,对升压实验的结果影响不大,这与某实际工程项目的通水升压实验/锅炉投运升压实验规律[18-19]一致。与工频恒流源相比,高频电源的功率因数更高,一般情况下,功率周数≥0.92,有效电能的转化率高,同样具有电除尘负载跟踪特性和火花抑制特性的自适应特点。因此,在相同的供电电压条件下,高频电源的运行电流更大,且在额定容量放开运行时,二次电压、二次电流可分别高达60 kV、300 mA,这更有利于湿式电除尘器的污染物脱除性能的提升。

    图 8  空载升压实验结果
    Figure 8.  Test results of no-load boost
    图 9  负载升压实验结果
    Figure 9.  Test results of load boost

    为进一步分析高频与工频恒流源,对湿式电除尘器的提效特性,分别在相同供电电耗及高频恒流源最大电耗条件下,测定湿式电除尘器对烟尘及SO3的脱除性能。根据国家标准《电除尘器性能测试方法》(GB/T 13931-2017)的规定,采用三相有功电能表测定不同电源配置实验期间湿式电除尘器的电耗,分别记录电能表读数和测量时间,并参照式(1)计算湿式电除尘器电耗。

    W=W2W1t (1)

    式中:W为湿式电除尘器电耗,kW;W2为测量后电能表读数,kWh;W1为测量前电能表读数,kWh;t为测量时间,h。

    分别在工频恒流源电耗3.49 kW,高频恒流源电耗3.54、5.89、9.84和16.26 kW条件下,测定湿式电除尘器出口烟尘及SO3质量浓度,结果如图10所示。在供电电耗相当(工频3.49 kW、高频3.54 kW)的情况下,湿式电除尘器出口的烟尘、SO3浓度变化不大,可以认为两者具有相同的污染物脱除性能。分别将高频电源的电耗提高至5.89、9.84和16.26 kW,湿式电除尘器出口的烟尘、SO3浓度不断降低,与工频相比,烟尘的减排幅度分别为46.30%、70.98%、78.69%,SO3的减排幅度分别为42.86%、57.14%和66.67%。与烟尘的减排幅度相比,SO3减排幅度略小,这主要是因为此时SO3是以硫酸气溶胶颗粒的形式存在,粒径小(纳米级),驱进速度低,且荷电后的气溶胶颗粒还会在放电极周围产生空间电荷效应[20-23],影响电场放电。

    图 10  不同电源供电时湿式电除尘器(WESP)对烟尘和SO3的脱除性能
    Figure 10.  Dust and SO3 removal performance of wet electrostatic precipitator (WESP) at different power supply

    另外,值得注意的是,随着供电电耗的增加,湿式电除尘器出口的烟尘、SO3浓度虽然不断降低,但减排幅度与电耗的增加并非呈线性关系,高频电源的供电电耗从3.54 kW增加至5.89 kW,仅增加了2.35 kW电耗,烟尘、SO3的减排幅度分别为46.30%、42.86%;但从9.84 kW增加至16.26 kW,电耗增加了6.42 kW,烟尘的减排幅度仅从70.98%增加至78.69%,增加了不足8个百分点,SO3的减排幅度仅从57.14%增加至66.67,增加了约9个百分点。因此,从节能角度来说,在满足5 mg·m−3超低排放要求的前提下,可适当减少湿式电除尘器的电能消耗,尤其是针对湿式电除尘器运行在2.5 mg·m−3甚至1 mg·m−3以下的工况,节能空间较大。该发现可为实际工程项目的节能优化运行提供有效的数据支撑。

    某660 MW机组锅炉为亚临界压力中间再热式直流炉,原配套双室四电场电除尘器出口烟尘浓度为35.7 mg·m−3,经石灰石-石膏湿法脱硫的协同除尘后仍无法满足超低排放要求,因此,在脱硫吸收塔出口烟气烟道上增设导电玻璃钢管式湿式电除尘器,分体(独立)布置,共布置4个电室,阳极采用正六边形导电玻璃钢,阴极线采用锯齿线型,喷淋系统采用间断冲洗方式,冲洗后的水进入吸收塔集水坑,作为脱硫部分用水。配套80 kV/1 600 mA高频高压恒流源。烟气量为2 127 660 m3·h−1,入口烟气温度为49~53 ℃,煤的水分、灰分、硫分含量分别为7.79%、16.59%、1.2%,低位发热量为21.4 kJ·g−1

    采用ZR-D09A型一体化采样枪、ZR-3260型自动烟尘测试仪、DEKATI PM2.5测定装置、DR 6000型分光光度计、ZR-D03A型高温采样枪等测试仪器分别测定湿式电除尘器进、出口的烟尘浓度、PM2.5浓度和SO3浓度等,并将三相有功电能表安装在湿式电除尘器除尘变出口母线处,用于读取并计算湿式电除尘器的电耗。

    PM2.5测试采用DEKATI公司的PM2.5测试装置,测试方法参照行业标准《火电厂烟气中细颗粒物(PM2.5)测试技术规范重量法》(DL/T 1520-2016)中的规定,采样枪温度宜控制在(160 ±5)℃,PM2.5测定装置如图11所示。装置由三级撞击器组成,每级撞击器上布置滤膜,并涂上耐高温松脂,分别用于收集大于10、2.5、1 μm的颗粒,在最末级布置石英滤膜,石英滤膜对0.3 μm颗粒的拦截效率达99.9%,最末级撞击器和滤膜收集的颗粒累计为PM2.5,后二级撞击器和滤膜收集的颗粒累计为PM10。为防止液滴对颗粒分级及铝箔集尘的影响,对撞击器进行加热保温,温度为120 ℃。PM2.5的采样系统如图12所示。根据烟道流速、温度、压力等参数,选择合适的采样嘴及抽气流量,以保证各级撞击器收集的颗粒粒径在规定范围内。

    图 11  PM2.5测定装置
    Figure 11.  PM2.5 measurement device
    图 12  PM2.5采样系统
    Figure 12.  PM2.5 sampling system

    分别在满负荷、90%负荷、75%负荷、50%负荷条件下,测定湿式电除尘器对各污染物的脱除性能。烟尘测试结果如图13所示,随着机组负荷的降低,湿式电除尘器入口烟尘浓度有所降低,从19.6 mg·m-3降至16.8 mg·m−3,推测是因为负荷降低,烟气流速下降,前端电除尘器的除尘性能提升[24-25]所致。机组负荷降低,烟气流速下降,湿式电除尘器的除尘性能也得到提升,满负荷、90%负荷、75%负荷、50%负荷条件下湿式电除尘器的除尘效率分别为81.12%、82.72%、86.49%、89.88%。SO3测试结果如图14所示,随着负荷降低,湿式电除尘器入口的SO3浓度也有所下降,这主要是因为负荷降低后SCR脱硝的烟气温度降低,此处的SO2/SO3转化率减小[26-28]。同烟尘类似,烟气流速下降,湿式电除尘器对SO3气溶胶颗粒的脱除性能也得到提升,满负荷、90%负荷、75%负荷、50%负荷条件下湿式电除尘器对SO3的脱除效率分别为68.79%、70.59%、74.47%、76.64%,较烟尘的脱除效率要低一些。PM10/PM2.5测试结果如图15所示,随着负荷的降低,前端电除尘器对PM10/PM2.5的脱除性能提升,湿式电除尘器入口浓度均有所下降,同时,烟气流速下降,湿式电除尘器除尘也得到提升,满负荷、90%负荷、75%负荷、50%负荷条件下湿式电除尘器对PM10的脱除效率分别为77.04%、77.86%、79.44%、83.15%,对PM2.5的脱除效率分别为72.28%、72.63%、75.31%、80.14%。

    图 13  烟尘浓度测试结果
    Figure 13.  Test results of smoke concentration
    图 14  SO3浓度测试结果
    Figure 14.  Test results of SO3 concentration
    图 15  PM10/PM2.5浓度测试结果
    Figure 15.  Test results of PM10/PM2.5 concentration

    为科学评价电除尘器的电耗水平,《高效能大气污染物控制装备评价技术要求第2部分:电除尘器》(GB/T 33017.2-2016)中给出了比电耗的概念,即处理单位工况烟气量所消耗的电量,计算方法如式(2)所示。

    C=WQ (2)

    式中:C为湿式电除尘器比电耗,kWh·m−3W为湿式电除尘器的电耗,kW;Q为进入湿式电除尘器入口的工况烟气量,m3·h−1

    为对比不同负荷条件下湿式电除尘器的高压电耗,式(2)忽略了低压电耗、引风机阻力电耗等对比电耗的影响,湿式电除尘器的高压供电电耗采用三相有功电能表测定,经计算,不同负荷条件下,湿式电除尘器的高压供电比电耗如图16所示。随着负荷的降低,湿式电除尘器的高压供电比电耗大幅增加,从满负荷到50%负荷,比电耗从2.41×10−4 kWh·m−3升至4.57×10−4 kWh·m−3,有较大的节能空间。通过调整电源参数,控制湿式电除尘器出口烟尘浓度在4~5 mg·m−3,在满足5 mg·m-3超低排放要求的前提下,最大幅度地降低比电耗,实现节能最优化。节能优化后的比电耗结果如图17所示,湿式电除尘器的高压供电比电耗降幅显著,以50%负荷为例,节能优化后,比电耗从4.57×10−4 kWh·m−3降至0.7×10−4 kWh·m−3,节能优化后的比电耗下降达84.68%,即便是对于满负荷工况,烟尘浓度从3.7 mg·m−3增到4.5 mg·m−3,比电耗也下降了12.86%。该节能优化思路同样适用于其他工程项目及满负荷时烟尘排放远低于超低排放限值要求的工况。

    图 16  湿式电除尘器比电耗
    Figure 16.  Specific power consumption of WESP
    图 17  节能优化后湿式电除尘器比电耗
    Figure 17.  Specific power consumption of WESP after energy saving optimization

    对其他3个导电玻璃钢湿式电除尘项目实施上述节能优化实验,相关数据如表1所示。在满负荷条件下,3个项目原烟尘排放浓度分别为1.9、2.7、1.2 mg·m−3,经节能优化,控制烟尘排放浓度在4.5 mg·m−3以内,此时比电耗下降幅度分别为32.65%、27.15%、41.64%。对应节能优化前后的SO3、PM10/PM2.5浓度测试结果分别如图18图19所示。节能优化后,污染物排放浓度略有升高,但均在可承受范围内,如SO3浓度未超过5 mg·m−3,不会出现烟囱蓝烟拖尾的风险。值得注意的是,目前实际上有许多电厂的烟尘排放在2.5 mg·m−3甚至1 mg·m−3以下[29-37],此时的高压供电比电耗值较高,具有较大的节能优化空间,建议这类电厂在满足烟尘超低排放要求的前提下,适当降低电源运行参数,以达到节能的目的。

    表 1  工程数据汇总
    Table 1.  Project data summary
    序号机组/MW电源配置设计出口烟尘浓度/(mg·m−3)原排放浓度及电耗节能优化后指标比电耗下降幅度/%
    烟尘浓度/(mg·m−3)比电耗/(kWh·m−3)烟尘浓度/(mg·m−3)比电耗/(kWh·m−3)
    130072 kV/1 200 mA高频高压恒流源<51.95.884.23.9632.65
    266072 kV/1 200 mA高频高压恒流源<52.74.314.13.1427.15
    31 00080 kV/1 600 mA高频高压恒流源<51.23.294.01.9241.64
     | Show Table
    DownLoad: CSV
    图 18  SO3浓度测试结果
    Figure 18.  Test results of SO3 concentration
    图 19  PM10/PM2.5浓度测试结果
    Figure 19.  Test results of PM10/PM2.5 concentration

    1)在正常工况下,工频高压恒流源和恒压源的空载/负载伏安特性曲线差别不大,两者的污染物脱除性能也大致相当。一旦喷淋系统开启,恒流源检测到火花放电后,自动下调电源运行参数,使电流/电压稳定运行在相对较低的参数范围,且运行相对平稳。恒压源则有一段明显的振荡区,抗干扰能力差。湿式电除尘器出口CEMS数据显示,喷淋系统开启后,工频恒流源供电的湿式电除尘器出口烟尘浓度最大值较喷淋前平均值增加了约12%;但恒压源因存在一个电源参数振荡区,出口烟尘浓度增加了约147%。因此,对于湿式电除尘器而言,应优先考虑抗干扰能力强的恒流源。

    2)在供电电耗相当(工频3.49 kW、高频3.54 kW)的情况下,工频恒流源和高频恒流源供电的湿式电除尘器污染物脱除性能差异不大。但额定容量放开运行时,高频电源的运行电压/电流参数变大,其供电电耗分别提高至5.89、9.84、16.26 kW时,与工频相比,烟尘的减排幅度分别为46.30%、70.98%、78.69%,SO3的减排幅度分别为42.86%、57.14%、66.67%。

    3)某660 MW机组典型工程的深度测试表明,随负荷的降低,湿式电除尘器的污染物脱除性能有所提升,在满负荷、90%负荷、75%负荷、50%负荷条件下,湿式电除尘器的除尘效率分别为81.12%、82.72%、86.49%、89.88%,SO3脱除效率分别为68.79%、70.59%、74.47%、76.64%,PM10脱除效率分别为77.04%、77.86%、79.44%、83.15%,PM2.5脱除效率分别为72.28%、72.63%、75.31%、80.14%。但随负荷的降低,湿式电除尘器高压供电比电耗大幅增加,从满负荷到50%负荷,比电耗从2.41×10-4 kWh·m-3升至4.57×10-4 kWh·m-3,有较大的节能空间。通过调整电源参数,控制湿式电除尘器出口烟尘浓度在4~5 mg·m-3,比电耗显著降低,满负荷的比电耗也下降了12.86%,50%负荷的比电耗下降达84.68%,实现了湿式电除尘器的节能优化运行。

    4)根据本研究得到的节能优化思路,对其他3个工程项目实施运行优化,优化前烟尘排放浓度分别为1.9、2.7、1.2 mg·m−3,经节能优化,控制烟尘排放浓度在4.5 mg·m−3以内,比电耗下降幅度分别为32.65%、27.15%、41.64%。该思路同样适用于其他除尘项目及满负荷时烟尘排放远低于超低排放限值(5 mg·m−3)要求的工况,尤其是部分烟尘排放长期在2.5 mg·m−3甚至1 mg·m−3以下项目,建议这类电厂在满足烟尘超低排放要求的前提下,适当降低电源运行参数,以达到节能的目的。

  • 图 1  不同有机组成底物的厌氧消化产甲烷情况

    Figure 1.  Cumulative methane production during anaerobic digestion of substrates with different organic compositions

    图 2  厌氧消化过程中溶解性多糖、溶解性蛋白、总挥发性有机酸、pH、总氨氮和TIC的变化

    Figure 2.  Variation of soluble polysaccharide, soluble protein, TVFAs, pH, TAN, and TIC during anaerobic digestion

    图 3  不同有机组成底物厌氧消化过程中VFAs组成的变化

    Figure 3.  Variation of VFAs composition during anaerobic digestion of substrates with different organic compositions

    图 4  甲烷转化率与有机组分降解的关系

    Figure 4.  Relationship between methane conversion rate and organic composition degradation

    图 5  不同有机组成底物厌氧消化结束后DOM三维荧光光谱

    Figure 5.  EEM spectra of DOM of substrates with different organic compositions after anaerobic digestion

    图 6  甲烷转化提升潜力

    Figure 6.  Promotion potential of methane conversion

    表 1  接种污泥及底物基本特征

    Table 1.  Basic characteristics of inoculum sludge and substrates

    供试样品质量分数/%C/N质量浓度/(mg·L−1)质量分数/%
    TSVSSCOD氨氮溶解性蛋白溶解性多糖总蛋白总多糖总脂质
    接种污泥18.68±1.746.03±0.326.70±0.026430.00±818.051 696.25±219.061 463.98±75.181 287.86±65.280.08±0.010.04±0.000.05±0.00
    馒头26.65±0.1926.56±0.1920.12±0.010.06±0.020.79±0.060.03±0.00
    豆腐17.33±0.0416.70±0.064.19±0.000.56±0.070.15±0.000.10±0.01
    食用油99.93±0.0199.90±0.01902.42±1.040.11±0.080.09±0.020.79±0.05
    供试样品质量分数/%C/N质量浓度/(mg·L−1)质量分数/%
    TSVSSCOD氨氮溶解性蛋白溶解性多糖总蛋白总多糖总脂质
    接种污泥18.68±1.746.03±0.326.70±0.026430.00±818.051 696.25±219.061 463.98±75.181 287.86±65.280.08±0.010.04±0.000.05±0.00
    馒头26.65±0.1926.56±0.1920.12±0.010.06±0.020.79±0.060.03±0.00
    豆腐17.33±0.0416.70±0.064.19±0.000.56±0.070.15±0.000.10±0.01
    食用油99.93±0.0199.90±0.01902.42±1.040.11±0.080.09±0.020.79±0.05
    下载: 导出CSV

    表 2  实验设计

    Table 2.  Design of experiments %

    实验组馒头豆腐食用油
    A10000
    B01000
    C00100
    D661717
    E176617
    F171766
    G333333
      注:表中数据为挥发性固体质量分数。
    实验组馒头豆腐食用油
    A10000
    B01000
    C00100
    D661717
    E176617
    F171766
    G333333
      注:表中数据为挥发性固体质量分数。
    下载: 导出CSV

    表 3  不同有机组成底物的甲烷转化率

    Table 3.  Methane conversion rate of substrates with different organic compositions

    实验组最终累积产甲烷量/(mL·g−1)理论产甲烷量/(mL·g−1)甲烷转化率/%
    A88.22479.3618.40
    B162.73541.9430.03
    C861.07898.2295.86
    D276.67568.9348.63
    E430.37601.9071.50
    F711.25780.1791.17
    G500.48653.7576.56
    实验组最终累积产甲烷量/(mL·g−1)理论产甲烷量/(mL·g−1)甲烷转化率/%
    A88.22479.3618.40
    B162.73541.9430.03
    C861.07898.2295.86
    D276.67568.9348.63
    E430.37601.9071.50
    F711.25780.1791.17
    G500.48653.7576.56
    下载: 导出CSV
  • [1] 王凯军, 王婧瑶, 左剑恶, 等. 我国餐厨垃圾厌氧处理技术现状分析及建议[J]. 环境工程学报, 2020, 14(7): 1735-1742. doi: 10.12030/j.cjee.201911085
    [2] MOUSTAKAS K, REHAN M, LOIZIDOU M, et al. Energy and resource recovery through integrated sustainable waste management[J]. Applied Energy, 2019, 261: 1-4.
    [3] PENG W, LV F, HAO L P, et al. Digestate management for high-solid anaerobic digestion of organic wastes: A review[J]. Bioresource Technology, 2020, 297: 1-9.
    [4] ROCAMORA I, WAGLAND S T, VILLA R, et al. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance[J]. Bioresource Technology, 2020, 299: 1-11.
    [5] MOLINUEVO-SALCES B, GONZALEZ-FERNÁNDEZ C, GOMEZ X, et al. Vegetable processing wastes addition to improve swine manure anaerobic digestion: Evaluation in terms of methane yield and SEM characterization[J]. Applied Energy, 2012, 91(1): 36-42. doi: 10.1016/j.apenergy.2011.09.010
    [6] BUSWELL A M and SOLLO F W. The mechanism of the methane fermentation[J]. Journal of the American Chemical Society, 1948, 70(5): 1778-1780. doi: 10.1021/ja01185a034
    [7] 王丽. 厨余-污泥混合干式厌氧发酵及其微生物学机制研究[D]. 西安: 西安工程大学, 2019.
    [8] 李彤, 王攀, 陈锡腾, 等. 厨余和餐厨垃圾混合干式厌氧发酵及活性炭缓解酸抑制研究[J]. 环境工程, 2020, 38(9): 213-218.
    [9] 中华人民共和国建设部. 城市污水处理厂污泥检验方法: CJ/T 221-2005[S]. 2005.
    [10] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017
    [11] FROLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761. doi: 10.1007/BF00164784
    [12] OHEMENG-NTIAMOAH J, DATTA T. Evaluating analytical methods for the characterization of lipids, proteins and carbohydrates in organic substrates for anaerobic co-digestion[J]. Bioresource Technology, 2018, 247: 1-8. doi: 10.1016/j.biortech.2017.09.054
    [13] BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917. doi: 10.1139/o59-099
    [14] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
    [15] ANGELIDAKI I, SANDERS W. Assessment of the anaerobic biodegradability of macropollutants[J]. Reviews in Environmental Science & Biotechnology, 2004, 3(2): 117-129.
    [16] 刘丹, 李文哲, 刘爽, 等. 有机成分比例对餐厨废弃物厌氧发酵特性的影响[J]. 农业机械学报, 2014, 45(5): 166-172. doi: 10.6041/j.issn.1000-1298.2014.05.026
    [17] ASTALS S, BATSTONE D J, MATA-ALVAREZ J, et al. Identification of synergistic impacts during anaerobic co-digestion of organic wastes[J]. Bioresource Technology, 2014, 169: 421-427. doi: 10.1016/j.biortech.2014.07.024
    [18] YANG G, ZHANG P Y, ZHANG G M, et al. Degradation properties of protein and carbohydrate during sludge anaerobic digestion[J]. Bioresource Technology, 2015, 192: 126-130. doi: 10.1016/j.biortech.2015.05.076
    [19] 许之扬, 周慧敏, 赵明星, 等. 挥发性有机酸对餐厨垃圾产沼气过程中胞外多聚物影响研究[J]. 食品与生物技术学报, 2014, 33(10): 1044-1049.
    [20] 詹瑜, 施万胜, 赵明星, 等. 高含固污泥厌氧消化中蛋白质转化规律[J]. 环境科学, 2017, 39(6): 2778-2785.
    [21] YUAN H P, ZHU N W. Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 429-438. doi: 10.1016/j.rser.2015.12.261
    [22] WANG Q H, KUNINOBU M, OGAWA H I, et al. Degradation of volatile fatty acids in highly efficient anaerobic digestion[J]. Biomass and Bioenergy, 1999, 16(6): 407-416. doi: 10.1016/S0961-9534(99)00016-1
    [23] PUCHAJDA B, OLESZKIEWICZ J. Extended acid digestion for inactivation of fecal coliforms[J]. Water Environment Research, 2006, 78(12): 2389-2396. doi: 10.2175/106143005X86655
    [24] 郁达伟, 孟晓山, 魏源送. 高负荷厌氧生物反应器的三元酸碱缓冲体系特征与调控[J]. 环境科学学报, 2019, 39(2): 279-289.
    [25] HOELZLE R D, VIRDIS B, BATSTONE D J. Regulation mechanisms in mixed and pure culture microbial fermentation[J]. Biotechnology & Bioengineering, 2015, 111(11): 2139-2154.
    [26] DEAVER J A, DIVIESTI K I, SONI M N, et al. Palmitic acid accumulation limits methane production in anaerobic co-digestion of fats, oils and grease with municipal wastewater sludge[J]. Chemical Engineering Journal, 2020, 396: 1-9.
    [27] GROSSER A, NECZAJ E. Enhancement of biogas production from sewage sludge by addition of grease trap sludge[J]. Energy Conversion and Management, 2016, 125: 301-308. doi: 10.1016/j.enconman.2016.05.089
    [28] ZHU K Y, ZHANG L, MU L, et al. Comprehensive investigation of soybean oil-derived LCFA on anaerobic digestion of organic waste: inhibitory effect and transformation[J]. Biochemical Engineering Journal, 2019, 151: 1-9.
  • 加载中
图( 6) 表( 3)
计量
  • 文章访问数:  7266
  • HTML全文浏览数:  7266
  • PDF下载数:  109
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-01-06
  • 录用日期:  2021-03-19
  • 刊出日期:  2021-05-10
宋云鹏, 刘吉宝, 陈梅雪, 郑嘉熹, 桂双林, 魏源送. 餐厨垃圾干式厌氧消化工艺中甲烷转化率及其限制性因素[J]. 环境工程学报, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031
引用本文: 宋云鹏, 刘吉宝, 陈梅雪, 郑嘉熹, 桂双林, 魏源送. 餐厨垃圾干式厌氧消化工艺中甲烷转化率及其限制性因素[J]. 环境工程学报, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031
SONG Yunpeng, LIU Jibao, CHEN Meixue, ZHENG Jiaxi, GUI Shuanglin, WEI Yuansong. Analysis of restrictive factors of methane conversion based on organic composition in dry anaerobic digestion of food waste[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031
Citation: SONG Yunpeng, LIU Jibao, CHEN Meixue, ZHENG Jiaxi, GUI Shuanglin, WEI Yuansong. Analysis of restrictive factors of methane conversion based on organic composition in dry anaerobic digestion of food waste[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031

餐厨垃圾干式厌氧消化工艺中甲烷转化率及其限制性因素

    通讯作者: 刘吉宝(1988—),男,博士,助理研究员。研究方向:有机固体废弃物减量化与资源化。E-mail:jbliu@rcees.ac.cn
    作者简介: 宋云鹏(1996—),男,硕士研究生。研究方向:有机固体废弃物减量化与资源化。E-mail:ypsong_st@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京 100085
  • 2. 中国科学院大学,北京 100085
  • 3. 中国科学院生态环境研究中心,水污染控制实验室,北京 100085
  • 4. 江西省科学院,能源研究所,南昌 330096
基金项目:
国家重点研发计划项目(2018YFD1100603)

摘要: 餐厨垃圾的有机组成是影响其干式厌氧消化甲烷转化率的重要因素。通过批量实验并结合混料模型设计,以馒头、豆腐和食用油分别代表餐厨垃圾中多糖类、蛋白质类和脂质类为主的底物,研究餐厨垃圾有机组成对干式厌氧消化各有机组分降解率、甲烷产生量的影响;并探讨了餐厨垃圾有机组分降解对甲烷转化率的限制性因素。结果表明,多糖、蛋白质和脂质的平均降解率分别为62.87%、41.96%和29.62%;餐厨垃圾中多糖和蛋白质比例的增加会显著降低甲烷转化率,而脂质比例的增加显著提升了甲烷转化率。此外,高多糖比例的餐厨垃圾干式厌氧消化可导致pH降到7以下,产甲烷菌可利用的碳源以CO2的形式散失;高蛋白质比例下蛋白质结构发生转化,难以被微生物进一步利用;甲烷转化率与脂质降解率具有正相关性,高脂质比例下产甲烷速率在初期受限,因而导致较长的迟滞期。本研究结果有助于优化有机组成以提高餐厨垃圾干式厌氧消化甲烷转化率。

English Abstract

  • 餐厨垃圾具有有机质含量高、易生物降解的特性[1]。厌氧消化是实现餐厨垃圾减量化、稳定化和资源化的关键技术之一[2]。区别于传统厌氧消化,干式厌氧消化(TS>15%)具有沼液产量少、容积产气率高等优点[3]。因此,干式厌氧消化已在国外得到大量应用,但国内该技术的推广应用仍属起步阶段[4]。随着我国生活垃圾分类的实施,一方面,大量的餐厨垃圾得以分离并亟需资源化处置;另一方面,分类后得到的餐厨垃圾不同于以往未分类的生活垃圾,其杂质含量减少、有机质含量进一步提高;这对于干式厌氧消化工艺意味着更高的有机负荷和潜在的底物有机组成失衡,最终造成抑制影响。

    传统湿式厌氧消化常用碳氮比来衡量底物的有机组成,合适的碳氮比为20~30[5],过高或过低都会对产甲烷微生物的代谢造成抑制。而对于干式厌氧消化,由于其含固率高,有机质含量以及挥发性脂肪酸、氨氮等中间产物浓度远高于湿式厌氧消化工艺,其底物有机组成失衡往往会导致更严重的酸化或氨氮抑制影响。因此,较为平衡的底物有机组成更为重要。餐厨垃圾中易被厌氧微生物用以产甲烷的有机物以多糖、蛋白质和脂质为主。不同有机物由于在组成结构、微生物代谢途径等方面的差异,导致他们具有不同的产甲烷速率和甲烷产量。例如,多糖和蛋白质水解产生的小分子单糖以及氨基酸将通过糖酵解途径产生有机酸,蛋白质水解同时释放一定量的氨氮;脂质水解的主要产物为中长链脂肪酸,中长链脂肪酸将通过β氧化每次脱除2个碳生成1分子乙酸和1分子H2实现逐步降解。多糖具有较快的降解速率;脂质主要产物(中长链脂肪酸)的降解却被认为是厌氧消化的限速步骤。此外,多糖、蛋白质和脂质的理论产甲烷量也有较大的差异[6],根据各有机物的元素组成通式估算,多糖、蛋白质和脂质的理论产甲烷量分别为416、496和1 014 mL·g−1。但是,由于厌氧消化微生物代谢的能量消耗以及抑制性影响,各类有机物往往难以被完全降解,实际甲烷产量往往低于理论甲烷产量。综合以上信息可知,导致餐厨垃圾干式厌氧消化过程中产甲烷速率和产甲烷量变化的成因是较为复杂的。即使在相近的碳氮比下,有机物组成也会存在差异;因此,碳氮比并不能充分地指示餐厨垃圾干式厌氧消化工艺是否稳定运行。

    对于餐厨垃圾干式厌氧消化,有研究[7-8]报道了产甲烷量、产甲烷速率和厌氧消化稳定性受碳氮比和有机物组成比例的影响;然而,对于各有机组分比例(多糖、蛋白质、脂质)的变化对有机组分的降解以及底物甲烷转化率的影响仍不明确。为此,本研究针对餐厨垃圾干式厌氧消化工艺甲烷转化率的限制性因素进行了分析。以馒头、豆腐和食用油分别代表餐厨垃圾中多糖、蛋白质和脂质3类主要厌氧消化代谢底物,通过批量厌氧消化实验,分析基于有机组成差异的餐厨垃圾干式厌氧消化中甲烷转化率及其限制性因素,以期为餐厨垃圾干式厌氧消化过程中高效稳定产甲烷提供参考。

  • 接种污泥取自北京某污水处理厂高温热水解+中温厌氧消化工艺(37~42 ℃,停留时间18 d)的厌氧消化罐出泥,经过4 000 r∙min−1离心10 min后,弃去上清液,剩余固体常温密封保存作为接种污泥。其基本特征如表1所示。馒头(多糖类)、豆腐(蛋白质类)、食用油(脂质类)购于北京某超市。

  • 厌氧消化实验采用瑞典Bioprocess Control公司的AMPTSII系统(Automatic Methane Potential Test System II)进行。消化装置为600 mL厚壁玻璃瓶(有效容积300 mL,顶空预留300 mL以防止反应过于剧烈液体溢出)。系统产生的沼气通过3 mol·L−1氢氧化钠溶液脱除CO2,剩余气体经过检测器自动计量并计为甲烷体积。甲烷产量为标准状况下(273.15 K、101 kPa)的气体体积。接种污泥和底物按照挥发性固体质量之比为2进行配置,保持所有实验组的接种比(Inoculum to substrate ratio,ISR)为2,最后加入去离子水直至总重量达到300 g,并控制厌氧消化混合物料初始TS为15%。空白组只添加接种物和去离子水,测得接种泥的产甲烷量,并在其他实验组中扣除接种泥的产甲烷量。系统安装完成后,通入氮气1 min,并密封;然后,将反应瓶放入恒温水浴锅,保持温度为37 ℃。每个反应瓶配有搅拌装置,搅拌桨转速为112 r·min−1

  • 为研究不同有机组成下干式厌氧消化甲烷转化率的差异,本研究设置7组实验(表2);每组中,馒头、豆腐、食用油3种组分的配比基于挥发性固体含量(volatile solid,VS)。每种组分配比均设置2个平行实验。

  • 污泥的TS、VS采用重量法[9]测定。用pH计(Mettler Toledo FE20,瑞士)测定pH。污泥样品在转速8 000 r·min−1下离心10 min;上清液通过膜过滤(孔径0.45 μm;Savillex)后,用于测定溶解性指标。氨氮采用纳氏试剂分光光度法测定。溶解性多糖和溶解性蛋白的测定分别采用Dubious分光光度法[10]和修正的Lowry法[11]。总无机碳浓度(TIC)由TOC-VCPH分析仪(Shimadzu,日本)测定的总碳和总有机碳相减得到。挥发性脂肪酸(VFAs)通过气相色谱仪(Shimazu,2014)测定;配备FID检测器、DB-FFAP毛细色谱柱(30 m×0.32 μm×0.25 μm),采用程序升温模式,柱温由220 ℃升至250 ℃。1 g样品水解后,取上清液用Dubious分光光度法测定总多糖含量[12]。1 g样品加入1 mol ·L−1 NaOH溶液,100 ℃加热10 min,冷却30 min,保证蛋白质充分碱解,取上清液用修正的Lowry法测定总蛋白含量。脂质含量采用Bligh-Dyer法[13]提取测定。DOM组分由三维荧光光谱仪(F-7100,Hitachi,日本)测定,并根据CHEN等[14]的方法识别荧光组分。样品冷冻干燥后,取粉末用Vario MACRO Cube元素分析仪(Elementar,德国)用于测定碳氮元素含量。

    甲烷转化率为最终累计产甲烷量与理论产甲烷量的百分比。理论产甲烷量(BT)根据所添加底物中测定所得的有机组分含量计算[15],具体按式(1)计算。某一有机组分降解率(ω)的计算如式(2)所示。

    式中:αch为添加底物中多糖的含量(以干重计算),g·g−1αpr为添加底物中蛋白质的含量(以干重计算),g·g−1αli为添加底物中脂质的含量(以干重计算),g·g−1

    式中:fm为厌氧消化结束时测定的样品中该有机组分的含量(以干重计算),g·g−1fsub为添加底物中该有机组分的含量(以干重计算),g·g−1fin为接种污泥中该有机组分的含量(以干重计算),g·g−1

  • 图1所示,在相同接种比(ISR=2,以计)下,不同有机组成的餐厨垃圾干式厌氧消化表现出不同的累计甲烷产量和产甲烷速率(以底物的VS计算)。单独的多糖类(A组)和蛋白质类(B组)的有机物厌氧消化产甲烷受到严重抑制,在厌氧消化的第8天和第12天产甲烷停止,累积甲烷产量只有88.22和162.73 mL·g−1。单独的脂质类有机物(C组)在干式厌氧消化过程中,在前30 d的产甲烷速率缓慢,主要产甲烷阶段出现在28~38 d,期间的甲烷产量占总累积甲烷产量的78.82%,最终累积产甲烷量达到861.07 mL·g−1。结合厌氧消化过程中pH、氨氮、溶解性有机物、TIC以及VFAs(图2图3)的变化情况可知,各有机组分厌氧消化的中间产物累积情况有明显差异。多糖类有机物干式厌氧消化主要表现为,底物快速水解酸化产生有机酸累积和pH急速下降带来的酸化抑制;而蛋白质类有机物干式厌氧消化主要表现为,氨氮对产甲烷菌的毒性抑制;脂质类有机物由于在厌氧消化前期本身水解酸化进程缓慢,故未产生过快的产酸现象。

    在多糖类为主的有机底物中,适当加入蛋白质和脂质(D组),便可避免产酸快速累积导致pH的迅速下降,累积的乙酸在第29天被顺利代谢消耗,最终累积产甲烷量提升到了276.67 mL·g−1。向以蛋白质类为主的有机底物中,适当加入多糖和脂质(E组),可使其氨氮抑制减弱,导致累积的乙酸、丙酸和异戊酸在第43天被顺利代谢,累积产甲烷量从而提升到了430.37 mL·g−1。在以脂质为主的有机底物中,适当多糖和蛋白质的加入(F组),导致了最低pH、氨氮浓度、TIC和VFAs的累积水平均有所提升,同时也出现了丙酸积累;该组累积产甲烷量下降到了711.25 mL·g−1,主要产甲烷阶段提前至23~31 d。在3种有机组分比例均衡的情况下(G组),酸化抑制和氨氮抑制作用较轻。本研究结果与部分已有研究[16-17]的结果一致:不同类型有机物混合的厌氧消化,有助于改善累积产甲烷量和提升产甲烷速率。

  • 在不同有机组成下,厌氧消化甲烷转化率如表3所示。多糖和蛋白质比例的增加会降低餐厨垃圾干式厌氧消化的甲烷转化率,而脂质比例的增加会提升厌氧消化的甲烷转化率。

    图4(a)所示,3种有机组分在厌氧消化过程的降解性有明显差异。多糖降解性最好,平均降解率为62.87%;而蛋白质的降解性最差,平均降解率仅为29.62%。这与YANG等[18]的研究结果一致。随着底物中蛋白质比例的提高,厌氧消化结束时残余的溶解性蛋白含量也随之升高(图2(b))。许之扬等[19]的研究表明,随着厌氧消化的进行,胞外聚合物中蛋白质含量不断增加,这些蛋白质难以被进一步降解。

    根据CHEN等[14]的方法将荧光组分按照区域划分,图5中三维荧光光谱显示,这些残留的溶解性蛋白质属于芳香类蛋白质和溶解性微生物代谢产物。这不同于詹瑜等[20]的研究结果:在厌氧消化过程中,芳香类蛋白质向腐殖酸、溶解性微生物代谢产物转化。这可能是由于,在本研究中产生的芳香类蛋白具有更加稳定的结构,难以被微生物利用。此外,蛋白质组分的增加也抑制了乙酸、丙酸和异戊酸的代谢。在厌氧消化过程中,甲烷的生成主要以乙酸为直接底物,所有脂肪酸必须降解成乙酸才能被产甲烷菌利用[21]。蛋白质分解释放的氨氮抑制了产甲烷菌对乙酸的利用,从而导致丙酸和异戊酸的累积。而异戊酸作为支链脂肪酸,比直链脂肪酸更加难以降解[22]

    多糖由于其水解速率较快,产生的有机酸不能及时被产甲烷菌消耗,造成了体系pH的快速下降。低pH条件导致甲烷转化率降低的原因可以从2方面解释。第一,在低pH条件下,VFAs主要以游离态存在,可以自由穿过细胞膜,在细胞内解离,使细胞质酸化,从而降低质子的跨膜运输,影响细胞的电生理和新陈代谢[23]。第二,pH的降低会影响溶液中碳酸(氢)盐的电离平衡,使其以CO2的形态释放[24]。TIC的主要组成是碳酸盐和溶解CO2。CO2是嗜氢产甲烷菌利用H2还原生成甲烷的重要底物。A组和C组的TIC在第3 d基本降到了0,特别是A组中TIC一直未能回升,这将导致氢利用产甲烷途径停止。氢气同时也难以被消耗,较高的氢分压将进一步抑制厌氧消化过程有机物的发酵产酸。

    通过进一步的分析可发现,厌氧消化甲烷转化率(y)与脂质降解率(x)之间存在线性正相关(y=1.08x+0.13,R2=0.993 8)(图4(d)),而与多糖和蛋白质的降解率无线性相关性(图4(b)图4(c))。甲烷转化率与脂质降解率之间的线性正相关可以从2方面解释。第一,长链脂肪酸的降解产物能够顺利转化成甲烷。长链脂肪酸(long-chain fatty acid,LCFA)是脂质分解的主要产物,其降解被认为是脂质产甲烷的主要限制步骤[25]。LCFA降解是热力学非自发反应,为了克服热力学不利因素,需要产甲烷菌不断去除LCFA降解的产物,主要是把乙酸和H2转化成甲烷[26]。相反,蛋白质与多糖的降解主要取决于相关的发酵细菌的参与,即使发酵产物累积,这2种组分也依旧能够降解。第二,脂质的理论产甲烷量要远高于其他2种组分,这意味3种组分在相同的降解率下,脂质产生的甲烷要比多糖或者蛋白更多,对甲烷转化率的影响也更大。因此,对于脂质类,尽管其他2种组分的加入并未带来酸化抑制或氨氮抑制,但是在初期提高了VFAs的累积水平。而高水平的乙酸和H2阻碍了LCFA降解,所以多糖和蛋白质比例的增加仍然降低了有机底物的整体甲烷转化率。此外,在本研究中,高脂质水平的底物有较长的产甲烷迟滞期,这可能是脂质分解产生LCFA所造成的。在C组和F组中,VFAs在初期的累积水平很低,同时产甲烷速率也很低,直到厌氧消化进行20 d以后,产甲烷速率才达到高峰。LCFA在厌氧消化初期吸附在细胞表面,可限制其与底物的传质[27]。但这种影响一般被认为是可逆的“物理屏障”作用,随着LCFA降解菌的富集,这种影响迅速被解除[28]

  • VFAs是甲烷转化的前体物,厌氧消化结束时的VFAs根据式(3)~式(7)可以换算成标准状况下(273.15 K、101 kPa)甲烷的体积。

    图6所示,用降解的有机组分的量计算理论总产甲烷量(计为100%),多糖类(A组)和蛋白质类(B组)损失的甲烷产量仅有少部分留于残余的VFAs,大部分以其他形式损失。多糖类有机物损失的甲烷产量可能由于:低pH下产甲烷菌可利用的碳源以CO2的形式散失。而蛋白类有机组分可能是由于:微生物的代谢作用,使其结构发生了转化,因此难以被微生物进一步利用产生甲烷。脂质的加入能够缓解中间产物的累积,提高甲烷转化率,但其主要产物LCFA在初期影响产甲烷速率,导致较长的迟滞期。因此,这三者需要控制在合适的混合比例才能实现高效稳定的甲烷转化。

    总之,餐厨垃圾中多糖类和蛋白类占比的提升会增加干式厌氧消化酸化以及氨氮抑制的风险,从而降低其甲烷转化率。虽然提升脂质占比可以提高甲烷转化率,但同时也推迟了主要产甲烷阶段。因此,需要三者合适的配比,以实现餐厨垃圾干式厌氧消化高效稳定地产生甲烷。

  • 1)在干式厌氧消化过程中,多糖降解性最好,平均降解率为62.87%;而蛋白质的降解性最差,平均降解率仅为29.62%。

    2)餐厨垃圾中多糖和蛋白质比例的增加会显著降低甲烷转化率,而脂质比例的增加则可显著提升甲烷转化率。

    3)高多糖比例的餐厨垃圾干式厌氧消化会导致低pH下产甲烷菌可利用的碳源以CO2的形式散失;在高蛋白质比例下,蛋白质结构发生转化,难以被微生物进一步利用;在高脂质比例下,产甲烷速率在初期受限,导致较长的迟滞期。

参考文献 (28)

返回顶部

目录

/

返回文章
返回