-
固体废物是指人类在日常生活、工业生产及从事社会活动中产生的固态、半固态的废弃物质,包括城市生活垃圾、工业固体废物、建筑拆迁垃圾、农林废物等。目前,我国各类固体废物累积量已经达到8×1010 t,且随着人民生活水平的提高和城镇化的快速发展,固体废物产生量呈逐年增长态势[1]。党中央、国务院高度重视固体废物污染防治工作。党的十八大以来,以习近平同志为核心的党中央围绕我国生态环境保护作出一系列重大决策部署,先后开展了大气、水、土壤污染防治行动计划。而固体废物的处置、消纳及资源化与水、大气、土壤污染防治密切相关[2-3]。因此,开发固体废物处理处置及资源化技术,实现固体废物“减量化、资源化、无害化”尤为迫切。
固体废物的处理方法一般可分为物理法和化学法,其中物理法包含对固体废物的粉碎、压缩、分选、干燥、蒸发等,化学法包含氧化、发酵、分解、吸收、热解、气化等[4]。考虑到固体废物类型多变、来源广泛、成分复杂等多元属性,需针对多源固体废物中的不同元素组群开发相应的处理技术,设计合理的工艺路线。固体废物中含有多类有价资源,其中最为重要、经济价值最高的是有价金属资源。这类金属资源的回收及循环利用一直都是业界研究的重点,也是固体废物处理处置及资源化的主要经济驱动力之一[5]。原则上,固体废物内的有价金属可以被无限循环利用,但实际上,由于自身属性、工艺设计、回收技术与分离热力学的限制,通常回收效率低下。这些限制因素造成了有价金属再生过程中的损耗及流失[6]。因此,研发清洁、高效、具备成本优势的有价金属资源循环利用技术,以促进固体废物的产业流动是很有必要的。
传统的多源固体废物中有价金属资源的提取技术主要为火法冶金、湿法冶金、生物冶金等[7]。考虑到多源固废的复杂组成,利用这些传统方法提取有价金属存在诸多限制。例如,火法冶金虽工艺相对简单,但能耗高,燃烧过程会产生有害气体及二噁英;湿法冶金回收金属效率相对较高,但消耗大量酸碱试剂,废液处理可能带来潜在污染;生物法虽成本低、污染小,但耗时长,目前仍处于研究阶段,尚难产业化推广[8]。基于此,研究新一代、清洁化的固体废物有价资源清洁提取技术,具有重大科学与工程意义。
本文系统梳理了机械力化学技术在固体废物处理处置及资源化领域的诸多应用,通过原理简述、文献检索、实例分析等形式呈现了该技术在多源固体废物有价资源清洁提取,特别是针对稀散的有价金属资源处理领域的研究进展。同时,亦总结了机械力化学技术目前产业化应用的优势和局限性。多维度的研究结果显示,随着研究的持续深入、技术的不断进步及配套产业的继续升级,作为一种清洁、高效、环境友好的有价资源清洁提取技术——机械力化学技术有望成为新一代的固体废物处置与资源化产业再生技术。
固体废物有价资源机械力化学清洁提取技术的研究进展
Research advances in mechanochemistry on clean extraction of valuable resources from solid wastes
-
摘要: 有价资源是固体废物循环利用的主要经济驱动力之一,而有价资源的清洁提取一直是固体废物资源化领域的研究重点。简述了机械力化学技术的反应原理,通过文献计量形式重点呈现了机械力化学技术在固体废物有价资源清洁提取方面的研究动态。针对机械力化学技术在多源固体废物,如电子废物、废汽车催化剂、飞灰、含金废渣等有价资源清洁提取方面的研究进展进行了总结和分析,并系统讨论了该技术应用于固体废物有价资源清洁提取的产业优势和技术限制。结果显示,机械力化学技术适用于固体废物中有价金属的清洁提取与绿色再生,而能量利用及转化问题限制了该技术目前的进一步工业化应用。随着研究的持续深入和配套产业的不断进步,机械力化学技术有望成为新一代的固体废物有价资源清洁提取及绿色再生技术。Abstract: Valuable resource products are one of the main economic driving forces for solid waste recycling, and clean extraction of valuable resources has always been the focus in the field of solid waste recycling. This article briefly describes the reaction principle of mechanochemical technology and presents the research trends of mechanochemical technology in the clean extraction of valuable resources from solid waste through literature measurement. The progress of mechanochemistry in the clean extraction of valuable resources from multi-source solid waste, such as electronic waste, spent automobile catalysts, fly ash, and gold-containing waste residues, is summarized and analyzed. Finally, this article systematically discusses the industrial advantages and technical limitations of mechanochemical technology applied to the clean extraction of valuable resources from multi-source solid waste. Results show that mechanochemical technology is extremely suitable for the clean extraction and green regeneration of valuable metals. Energy utilization and conversion issues currently limits its further industrial application. With the continuous deepening of research and the continuous progress of supporting industries, mechanochemical methods are expected to become a new generation of clean extraction and green regeneration technologies for valuable resources of solid waste.
-
Key words:
- mechanochemistry /
- solid waste /
- valuable metals /
- clean extraction /
- application trends
-
-
[1] 杜祥琬, 钱易, 陈勇, 等. 我国固体废物分类资源化利用战略研究[J]. 中国工程科学, 2017, 19(4): 27-32. [2] 陈瑛, 滕婧杰, 赵娜娜, 等. “无废城市”试点建设的内涵、目标和建设路径[J]. 环境保护, 2019, 47(9): 21-25. [3] 李干杰. 开展“无废城市”建设试点 提高固体废物资源化利用水平[J]. 环境保护, 2019, 47(2): 8-9. [4] 席北斗, 刘东明, 李鸣晓, 等. 我国固废资源化的技术及创新发展[J]. 环境保护, 2017, 45(20): 16-19. [5] 陈瑛, 胡楠, 滕婧杰, 等. 我国工业固体废物资源化战略研究[J]. 中国工程科学, 2017, 19(4): 109-114. [6] RECK B K, GRAEDEL T E. Challenges in metal recycling[J]. Science, 2012, 337(6095): 690-695. doi: 10.1126/science.1217501 [7] ZHANG L, XU Z. A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes[J]. Journal of Cleaner Production, 2018, 202: 1001-1025. doi: 10.1016/j.jclepro.2018.08.073 [8] ZHANG L, XU Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment[J]. Journal of Cleaner Production, 2016, 127: 19-36. doi: 10.1016/j.jclepro.2016.04.004 [9] TAKACS L. The historical development of mechanochemistry[J]. Chemical Socienty Reviews, 2013, 42(18): 7649-7659. doi: 10.1039/c2cs35442j [10] HALL A K, HARROWFIELD J M, HART R J, et al. Mechanochemical reaction of DDT with Calcium oxide[J]. Environmental Science & Technology, 1996, 30(12): 3401-3407. [11] GUO X, XIANG D, DUAN G, et al. A review of mechanochemistry applications in waste management[J]. Waste Management, 2010, 30(1): 4-10. doi: 10.1016/j.wasman.2009.08.017 [12] NASSER A, MINGELGRIN U. Mechanochemistry: A review of surface reactions and environmental applications[J]. ChemInform, 2012, 44(34): 141-150. [13] BUTYAGIN P Y. Problems in mechanochemistry and prospects for its development[J]. Russian Chemical Reviews, 1994, 63(12): 965-976. doi: 10.1070/RC1994v063n12ABEH000129 [14] CAGNETTA G, ROBERTSON J, HUANG J, et al. Mechanochemical destruction of halogenated organic pollutants: A critical review[J]. Journal of Hazardous Materials, 2016, 313: 85-102. doi: 10.1016/j.jhazmat.2016.03.076 [15] TAN Q, LI J. Recycling metals from wastes: A Novel application of mechanochemistry[J]. Environmental Science & Technology, 2015, 49(10): 5849-5861. [16] YUAN W, LI J, ZHANG Q, et al. Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass[J]. Environmental Science & Technology, 2012, 46(7): 4109-4114. [17] WANG M M, TAN Q, CHIANG J F, et al. Recovery of rare and precious metals from urban mines: A review[J]. Frontiers of Environmental Science & Engineering, 2017, 11(5): 1. [18] LIU K, YANG J, HOU H, et al. Facile and cost-effective approach for copper recovery from waste printed circuit boards via a sequential mechanochemical/leaching/recrystallization process[J]. Environmental Science & Technology, 2019, 53(5): 2748-2757. [19] WANG M M, ZHANG C C, ZHANG F S. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach[J]. Waste Management, 2016, 51: 239-244. doi: 10.1016/j.wasman.2016.03.006 [20] FAN E, LI L, ZHANG X, et al. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11029-11035. [21] LIU K, TAN Q, LIU L, et al. Acid-free and selective extraction of Lithium from spent Lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution[J]. Environmental Science & Technology, 2019, 53(16): 9781-9788. [22] LI Z, CHEN M, ZHANG Q, et al. Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes[J]. Waste Management, 2017, 60: 734-738. doi: 10.1016/j.wasman.2016.06.035 [23] NOMURA Y, FUJIWARA K, TERADA A, et al. Prevention of lead leaching from fly ashes by mechanochemical treatment[J]. Waste Management, 2010, 30(7): 1290-1295. doi: 10.1016/j.wasman.2009.11.025 [24] FICERIOVÁ J, BALÁŽ P. Electrolysis of gold from filtration waste by means of mechanical activation[J]. Acta Montanistica Solvaca, 2012, 17(2): 132-136.