-
土壤是人类赖以生存和发展的重要基础资源和环境。重金属为土壤中的主要污染物,其超标点位占土壤总污染超标点位的82.8%[1]。其中,八大主要污染重金属及其点位超标率分别为镉(7.0%)、汞(1.6%)、砷(2.7%)、铜(2.1%)、铅(1.5%)、铬(1.1%)、锌(0.9%)和镍(4.8%)。重金属具有隐蔽性、长期性、不可降解性和生物累积性,并可随食物链进行传播[1],一旦进入土壤将导致土地退化、食品安全等问题[2]。因此,解决土壤重金属污染问题刻不容缓。
原位钝化是重要的重金属污染土壤原位修复技术。通过将钝化剂加入土壤,改变重金属的赋存形态,降低其在土壤中的移动性和生物利用性,从而降低土壤中重金属的生物毒性。该技术具有操作简单、运行成本低和绿色环保等优点,是一种经济高效且非破坏性的土壤修复处理方式[1]。由于废弃生物质材料具有来源广泛、储量丰富及成本低廉等优点,近年来生物质炭土壤重金属钝化剂的研究受到广大学者的极大关注[3]。
生物质炭化技术作为一种快速、高效的热处理方式,制得的生物质炭具有含碳量高、稳定性好、比表面积大及吸附性能好等优点,被广泛应用于生态环境保护、能源开发利用和农业生产等领域[4]。在生态环境保护方面,生物质炭作为吸附剂可以有效吸附有毒有害气体、重金属及有机污染物[5-7];此外,生物质炭还可以作为碳汇,有效封存土壤碳,缓解全球变暖[8];在能源开发利用方面,生物质炭可以作为煤的替代能源用于发电、发热[9];在农业生产方面,生物质炭以生物有机肥形式施加进入土壤,可以有效提升土壤肥力,提高农作物产量[10]。目前,在生物质炭修复重金属污染土壤领域,呈现出以热解型生物质炭为主,其他生物质炭材料并存的发展态势。
鉴于当前缺少对生物质炭修复重金属污染土壤的系统总结及对修复机理的深入研究,本文以近年来生物质炭在土壤重金属修复领域所取得的研究成果为基础,从生物质炭的基本概况、重金属污染土壤的修复机理、修复影响因素及当前研究热点等方面进行梳理,并就未来重点研究方向进行了展望,以期为生物质炭及土壤重金属修复领域研究人员提供参考。
生物质炭材料修复重金属污染土壤的研究进展:修复机理及研究热点分析
Research advances in biomass-based carbon materials for remediation of heavy metal contaminated soil: Immobilization mechanism and analysis of related studies
-
摘要: 土壤重金属污染是公众高度关注的全球性环境问题。原位钝化是重金属污染土壤修复的重要方式,其中生物质炭钝化材料因其具有来源广泛、价格低廉、绿色环保和修复效率高等特点,在土壤重金属修复领域获得广泛关注。目前,生物质炭应用于土壤重金属修复领域的研究集中在热解炭上,而水热炭化制备而成的水热炭研究较少,并且缺乏不同生物质炭对于土壤重金属修复机理的系统阐述。重点梳理了生物质炭修复重金属污染土壤的机理和影响因素,并且运用VOSviewer软件对生物质炭在土壤重金属修复领域的研究进行了可视化分析,以期为相关研究领域研究者提供参考。
-
关键词:
- 土壤修复 /
- 生物质炭 /
- 原位钝化 /
- 水热炭化 /
- VOSviewer软件
Abstract: Heavy metal pollution of soil is a global environmental issue that is of great concern to the public. Immobilization is a common method for the remediation of soil contaminated by heavy metalsBiomass-based carbon materials are gaining widespread attention in the field of remediation of heavy metal contaminated soil due to its wide sources, low price, environmental friendliness and high remediation efficiency. However, current studies on biomass-derived carbon materials mainly focus on pyrochar obtained by pyrolysis. There are few studies on carbon materials obtained by hydrothermal method, and the remediation mechanism for heavy metal contaminated soil is limited. This article focuses on the remediation mechanism and influencing factors of biomass-based carbon materials in remediation of heavy metal contaminated soil. VOSviewer software is used to provide visual analysis of the studies on biomass-derived carbon materials in remediation of heavy metal contaminated soil, providing reference for scientific and technological researchers. -
-
[1] 林爱军. 重金属污染土壤可持续原位修复: 生物质基修复材料研究新进展[J]. 环境工程学报, 2019, 13(9): 2025-2026. [2] XIA Y, LIU H, GUO Y, et al. Immobilization of heavy metals in contaminated soils by modified hydrochar: Efficiency, risk assessment and potential mechanisms[J]. Science of the Total Environment, 2019, 685: 1201-1208. doi: 10.1016/j.scitotenv.2019.06.288 [3] O'CONNOR D, PENG T, ZHANG J, et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials[J]. Science of the Total Environment, 2018, 619-620: 815-826. doi: 10.1016/j.scitotenv.2017.11.132 [4] CHA J S, PARK S H, JUNG S C, et al. Production and utilization of biochar: A review[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15. doi: 10.1016/j.jiec.2016.06.002 [5] XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013, 20(1): 358-368. doi: 10.1007/s11356-012-0873-5 [6] SHEN G Q, ASHWORTH D J, GAN J, et al. Biochar amendment to the soil surface reduces fumigant emissions and enhances soil microorganism recovery[J]. Environmental Science & Technology, 2016, 50(3): 1182-1189. [7] 李力, 刘娅, 陆宇超, 等. 生物炭的环境效应及其应用的研究进展[J]. 环境化学, 2011, 30(8): 1411-1421. [8] SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration[J]. Soil Biology and Biochemistry, 2010, 42(12): 2345-2347. doi: 10.1016/j.soilbio.2010.09.013 [9] CHAKRABORTY I, SATHE S M, DUBEY B K, et al. Waste-derived biochar: Applications and future perspective in microbial fuel cells[J]. Bioresource Technology, 2020, 312: 123587. doi: 10.1016/j.biortech.2020.123587 [10] DING Y, LIU Y G, LIU S B, et al. Biochar to improve soil fertility. A review[J]. Agronomy for Sustainable Development, 2016, 36(2): 36. doi: 10.1007/s13593-016-0372-z [11] REZA M T, UDDIN M H, LYNAM J G, et al. Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance[J]. Biomass Conversion and Biorefinery, 2014, 4(4): 311-321. doi: 10.1007/s13399-014-0115-9 [12] XUE Y W, GAO B, YAO Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests[J]. Chemical Engineering Journal, 2012, 200: 673-680. [13] KAMBO H S, DUTTA A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renewable & Sustainable Energy Reviews, 2015, 45: 359-378. [14] LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22): 12251-12285. doi: 10.1021/acs.chemrev.5b00195 [15] KLOSS S, ZEHETNER F, DELLANTONIO A, et al. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties[J]. Journal of Environmental Quality, 2012, 41(4): 990-1000. doi: 10.2134/jeq2011.0070 [16] SCHIMMELPFENNIG S, GLASER B. One step forward toward characterization: Some important material properties to distinguish biochars[J]. Journal of Environmental Quality, 2012, 41(4): 1001-1013. doi: 10.2134/jeq2011.0146 [17] BANDARA T, FRANKS A, XU J M, et al. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(9): 903-978. doi: 10.1080/10643389.2019.1642832 [18] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?[J]. Journal of Hazardous materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018 [19] XIA Y, LUO H, LI D, et al. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms[J]. Environmental Pollution, 2020, 261: 114217. doi: 10.1016/j.envpol.2020.114217 [20] XIA Y, YANG T, ZHU N, et al. Enhanced adsorption of Pb(II) onto modified hydrochar: Modeling and mechanism analysis[J]. Bioresource Technology, 2019, 288: 121593. doi: 10.1016/j.biortech.2019.121593 [21] KARLSSON T, PERSSON P, SKYLLBERG U. Complexation of copper(II) in organic soils and in dissolved organic matter - EXAFS evidence for chelate ring structures[J]. Environmental Science & Technology, 2006, 40(8): 2623-2628. [22] YE X X, KANG S H, WANG H M, et al. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils[J]. Journal of Hazardous materials, 2015, 289: 210-218. doi: 10.1016/j.jhazmat.2015.02.052 [23] LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3): 854-862. doi: 10.1016/j.watres.2011.11.058 [24] ZHONG D L, JIANG Y, ZHAO Z Z, et al. pH Dependence of arsenic oxidation by rice-husk-derived biochar: Roles of redox-active moieties[J]. Environmental Science & Technology, 2019, 53(15): 9034-9044. [25] PEI G P, ZHU Y, WEN J G, et al. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2020, 256: 113407. doi: 10.1016/j.envpol.2019.113407 [26] BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6): 2282-2287. doi: 10.1016/j.envpol.2010.02.003 [27] KEILUWEIT M, KLEBER M. Molecular-level interactions in soils and sediments: The role of aromatic pi-systems[J]. Environmental Science & Technology, 2009, 43(10): 3421-3429. [28] MA J C, DOUGHERTY D A. The cation-pi interaction[J]. Chemical Reviews, 1997, 97(5): 1303-1324. doi: 10.1021/cr9603744 [29] LIU Z G, ZHANG F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167: 933-939. doi: 10.1016/j.jhazmat.2009.01.085 [30] ZHAO Y L, ZHANG R Y, LIU H B, et al. Green preparation of magnetic biochar for the effective accumulation of Pb(Ⅱ): Performance and mechanism[J]. Chemical Engineering Journal, 2019, 375: 122011. doi: 10.1016/j.cej.2019.122011 [31] QIAN T T, WU P, QIN Q Y, et al. Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II)[J]. Journal of Hazardous Materials, 2019, 362: 311-317. doi: 10.1016/j.jhazmat.2018.09.034 [32] LIU Y L, HUANG J F, XU H J, et al. A magnetic macro-porous biochar sphere as vehicle for the activation and removal of heavy metals from contaminated agricultural soil[J]. Chemical Engineering Journal, 2020, 390: 124638. doi: 10.1016/j.cej.2020.124638 [33] LUO L, LV J T, CHEN Z, et al. Insights into the attenuated sorption of organic compounds on black carbon aged in soil[J]. Environmental Pollution, 2017, 231: 1469-1476. doi: 10.1016/j.envpol.2017.09.010