[1] |
林爱军. 重金属污染土壤可持续原位修复: 生物质基修复材料研究新进展[J]. 环境工程学报, 2019, 13(9): 2025-2026.
|
[2] |
XIA Y, LIU H, GUO Y, et al. Immobilization of heavy metals in contaminated soils by modified hydrochar: Efficiency, risk assessment and potential mechanisms[J]. Science of the Total Environment, 2019, 685: 1201-1208. doi: 10.1016/j.scitotenv.2019.06.288
|
[3] |
O'CONNOR D, PENG T, ZHANG J, et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials[J]. Science of the Total Environment, 2018, 619-620: 815-826. doi: 10.1016/j.scitotenv.2017.11.132
|
[4] |
CHA J S, PARK S H, JUNG S C, et al. Production and utilization of biochar: A review[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15. doi: 10.1016/j.jiec.2016.06.002
|
[5] |
XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013, 20(1): 358-368. doi: 10.1007/s11356-012-0873-5
|
[6] |
SHEN G Q, ASHWORTH D J, GAN J, et al. Biochar amendment to the soil surface reduces fumigant emissions and enhances soil microorganism recovery[J]. Environmental Science & Technology, 2016, 50(3): 1182-1189.
|
[7] |
李力, 刘娅, 陆宇超, 等. 生物炭的环境效应及其应用的研究进展[J]. 环境化学, 2011, 30(8): 1411-1421.
|
[8] |
SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration[J]. Soil Biology and Biochemistry, 2010, 42(12): 2345-2347. doi: 10.1016/j.soilbio.2010.09.013
|
[9] |
CHAKRABORTY I, SATHE S M, DUBEY B K, et al. Waste-derived biochar: Applications and future perspective in microbial fuel cells[J]. Bioresource Technology, 2020, 312: 123587. doi: 10.1016/j.biortech.2020.123587
|
[10] |
DING Y, LIU Y G, LIU S B, et al. Biochar to improve soil fertility. A review[J]. Agronomy for Sustainable Development, 2016, 36(2): 36. doi: 10.1007/s13593-016-0372-z
|
[11] |
REZA M T, UDDIN M H, LYNAM J G, et al. Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance[J]. Biomass Conversion and Biorefinery, 2014, 4(4): 311-321. doi: 10.1007/s13399-014-0115-9
|
[12] |
XUE Y W, GAO B, YAO Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests[J]. Chemical Engineering Journal, 2012, 200: 673-680.
|
[13] |
KAMBO H S, DUTTA A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renewable & Sustainable Energy Reviews, 2015, 45: 359-378.
|
[14] |
LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22): 12251-12285. doi: 10.1021/acs.chemrev.5b00195
|
[15] |
KLOSS S, ZEHETNER F, DELLANTONIO A, et al. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties[J]. Journal of Environmental Quality, 2012, 41(4): 990-1000. doi: 10.2134/jeq2011.0070
|
[16] |
SCHIMMELPFENNIG S, GLASER B. One step forward toward characterization: Some important material properties to distinguish biochars[J]. Journal of Environmental Quality, 2012, 41(4): 1001-1013. doi: 10.2134/jeq2011.0146
|
[17] |
BANDARA T, FRANKS A, XU J M, et al. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(9): 903-978. doi: 10.1080/10643389.2019.1642832
|
[18] |
BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?[J]. Journal of Hazardous materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018
|
[19] |
XIA Y, LUO H, LI D, et al. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms[J]. Environmental Pollution, 2020, 261: 114217. doi: 10.1016/j.envpol.2020.114217
|
[20] |
XIA Y, YANG T, ZHU N, et al. Enhanced adsorption of Pb(II) onto modified hydrochar: Modeling and mechanism analysis[J]. Bioresource Technology, 2019, 288: 121593. doi: 10.1016/j.biortech.2019.121593
|
[21] |
KARLSSON T, PERSSON P, SKYLLBERG U. Complexation of copper(II) in organic soils and in dissolved organic matter - EXAFS evidence for chelate ring structures[J]. Environmental Science & Technology, 2006, 40(8): 2623-2628.
|
[22] |
YE X X, KANG S H, WANG H M, et al. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils[J]. Journal of Hazardous materials, 2015, 289: 210-218. doi: 10.1016/j.jhazmat.2015.02.052
|
[23] |
LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3): 854-862. doi: 10.1016/j.watres.2011.11.058
|
[24] |
ZHONG D L, JIANG Y, ZHAO Z Z, et al. pH Dependence of arsenic oxidation by rice-husk-derived biochar: Roles of redox-active moieties[J]. Environmental Science & Technology, 2019, 53(15): 9034-9044.
|
[25] |
PEI G P, ZHU Y, WEN J G, et al. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2020, 256: 113407. doi: 10.1016/j.envpol.2019.113407
|
[26] |
BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6): 2282-2287. doi: 10.1016/j.envpol.2010.02.003
|
[27] |
KEILUWEIT M, KLEBER M. Molecular-level interactions in soils and sediments: The role of aromatic pi-systems[J]. Environmental Science & Technology, 2009, 43(10): 3421-3429.
|
[28] |
MA J C, DOUGHERTY D A. The cation-pi interaction[J]. Chemical Reviews, 1997, 97(5): 1303-1324. doi: 10.1021/cr9603744
|
[29] |
LIU Z G, ZHANG F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167: 933-939. doi: 10.1016/j.jhazmat.2009.01.085
|
[30] |
ZHAO Y L, ZHANG R Y, LIU H B, et al. Green preparation of magnetic biochar for the effective accumulation of Pb(Ⅱ): Performance and mechanism[J]. Chemical Engineering Journal, 2019, 375: 122011. doi: 10.1016/j.cej.2019.122011
|
[31] |
QIAN T T, WU P, QIN Q Y, et al. Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II)[J]. Journal of Hazardous Materials, 2019, 362: 311-317. doi: 10.1016/j.jhazmat.2018.09.034
|
[32] |
LIU Y L, HUANG J F, XU H J, et al. A magnetic macro-porous biochar sphere as vehicle for the activation and removal of heavy metals from contaminated agricultural soil[J]. Chemical Engineering Journal, 2020, 390: 124638. doi: 10.1016/j.cej.2020.124638
|
[33] |
LUO L, LV J T, CHEN Z, et al. Insights into the attenuated sorption of organic compounds on black carbon aged in soil[J]. Environmental Pollution, 2017, 231: 1469-1476. doi: 10.1016/j.envpol.2017.09.010
|