-
化工、电厂、石油、冶金、机械、轻纺、食品等工业生产过程中易产生水雾、酸雾或油雾等气态污染物。雾气本身所含污染物质与空气中杂质混合后,密度增大,很难扩散,会对大气环境造成极大影响。上述污染物若与二氧化硫混合形成酸雾、与氯气水解形成盐酸烟雾,还会对人群健康造成更大危害[1]。因此,应在工业生产中,选择性能和运行皆可靠的除雾设备,以减少此类气态污染物的排放[2]。
旋流器因结构简单、操作方便、分离效率高等优点广泛地应用于各个工业部门,一般可以分离粒径为1~10 μm的颗粒。其中,对于5~10 μm以上的颗粒,其分离效率较高[3-4];当液滴粒径小于5 μm时,其分离效率较低。而静电除雾器则利用静电作用实现带电荷的颗粒分离,对于5 μm以下的颗粒也有很好的捕捉效果。因此,若将旋流除雾与静电除雾结合起来,可形成静电-旋流耦合分离器并应用到除雾中。与静电除雾器相比,耦合设备占地面积小、成本更低、效率更高;与旋流除雾器相比,耦合设备中有高压静电场,解决了旋流除雾器不利于捕集微细粉尘(粒径小于5 μm)的弊端,除雾效率更高。因此,静电-旋流耦合除雾器适用于中小型工业及民用锅炉、建材、冶金、化工等行业的污染治理和物料回收。
旋流除雾器的入口风速越大,产生离心力越大,分离效率则更高,一般为12~25 m·s−1;然而,为保证雾滴有足够时间停留以获得足量电荷,提高静电力的作用,故静电除雾器的风速选择较低,一般在2 m·s−1以下;另外,雾滴荷电量还与雾滴粒径、电压大小有关。因此,选择合适的入口风速及工作电压是保证静电-旋流耦合除雾器高效工作的关键。本研究通过选择不同粒径的雾滴及不同的工作电压,考察不同入口风速下的除雾效率,以期获得对不同粒径雾气的最优入口风速和工作电压,为静电-旋流耦合除雾器的优化设计提供参考。
全文HTML
-
静电-旋流耦合除雾器中的电场是在电极棒(阴极)和雾滴收集面(阳极)之间。当放电极接入高压电源,收集面接地,两极之间会形成强大电场。当雾气进入静电除雾器内后,大量空气分子被电离,产生负离子,这些负离子向收集面运动[5]。静电-旋流耦合除雾器的结构及主要尺寸如图1所示。其中,筒体直径D为100 mm;溢流口直径D0为50 mm;底流口直径Du为20 mm;旋流器高度L为488 mm;筒体长度Ls为200 mm;溢流口插入深度L0为122 mm;物料入口为50 mm×25 mm的长方形。
静电-旋流耦合除雾器的除雾原理是:首先,雾滴在运动过程中会带上电荷,并在电场力作用下向收集面运动[6],形成液膜,最后在重力作用下从底流口排出;同时,根据旋流器的工作原理,当雾滴从入口切向进入旋流器后,在里面形成旋转流场,在旋流离心力的作用下向壁面运动;由于该离心力的方向与前述电场力的方向一致,故雾状颗粒同时受到双重力的作用,从而加速向收集面的迁移。
-
本模拟采用的Fluent流体仿真软件,应用范围极广,但该软件没有静电场模块。为准确描述静电场和流场耦合对颗粒分离的影响,使模拟更加完整,用文献[7]给出部分代码编写UDF来模拟静电场[8]。流体流动遵守能量守恒方程、热力学第二定律、动量守恒定律和质量守恒定律等物理学规律。电除雾器内流体中含有大量电荷,流体本身也会受到电场力的作用,故电除雾器内的流场也被称为电流场,可用RNG k-ε湍流模型进行有效求解[9-10]。RNG k-ε模型由瞬态N-S方程推导而来,与标准k-ε模型相比,RNG k-ε模型更适用于存在强流线弯、漩涡和旋转的流场计算[11]。k方程和ε方程分别见式(1)和式(2)。通过修改湍流黏度来修正湍流受主流场旋转和漩涡的影响,如式(3)所示。
式中:
$ {C}_{1\varepsilon } $ 为默认常量,$ {C}_{1\varepsilon } $ =1.42;$ {C}_{2\varepsilon } $ 为默认常量,$ {C}_{2\varepsilon } $ =1.68;${C}_{3\varepsilon } $ 为默认常量,${C}_{3\varepsilon }={\rm{tanh}}\dfrac{v_{\rm{s}}}{u_{\rm{s}}} $ ,${v_{\rm{s}}} $ 为流体与重力方向平行的速度分量,${u_{\rm{s}}} $ 为流体与重力方向垂直的速度分量;$ {\alpha }_{k} $ 为k方程的湍流,Pr数$ {\alpha }_{k} $ ≈1.393;$ {\alpha }_{\varepsilon } $ 为ε方程的湍流Pr数$ {\mathrm{\alpha }}_{\mathrm{\varepsilon }} $ ≈1.393;$ {\mu }_{{\rm{eff}}} $ 为有效动力黏度,$ \; {\mu }_{{\rm{eff}}} $ =$\mu +\mathrm{\rho }{C}_{\mu }\dfrac{{k}^{2}}{\varepsilon },\;\; {C}_{\mu }$ =0.084 5 kg·(m·s)−1;$ {R}_{\varepsilon } $ 为ε方程中的附议项,kg·(m·s2)−1。Gk为由平均速度梯度产生的湍流动能,kg·(m·s2)−1;YM为可压缩湍流脉动膨胀对总耗散率贡献;Gb为由浮力产生的湍流动能,kg·(m·s2)−1,Sk、Sε为自定义量。式中:
$ \varOmega $ 为特征旋转量;$ {\mu }_{t0} $ 为未修正湍流黏度,kg·(m·s)−1;$ {\alpha }_{s} $ 为常数,$ {\alpha }_{s} $ =0.07。采用DPM模型双向耦合计算静电-旋流除雾器内的两相流动:用近壁面函数考虑雾滴和壁面作用;用随机游走模型考虑液滴在湍流中的扩散现象;用动态曳力模型考虑雾滴在流场中的变形而引起的曳力变化。
-
空间电荷影响下的电场分布可由泊松方程(式(4))和电流连续性方程[12](式(5))来描述。
式中:E为电场强度,V·m−1;
$ {\rho }_{i} $ 为空间电荷密度,C·m−3;$ {\varepsilon }_{0} $ 为气体介电常数,ε0=8.85×10−12 C2·(N·m2)−1。式中:j为总电流密度,A·m−2;
$ {j}_{{\rm{p}}} $ 为带电尘粒电流密度,A·m−2;$ {j}_{i} $ 为离子电流密度,A·m−2。假设电晕放电稳定,电流连续性方程见式(6)。联立式(4)和式(6)求解电场强度分布。而Fluent中没有电场物理模型,故必须通过用户自定义函数加载电场的作用。
-
在静电旋流除雾过程中,由于电晕放电系统中分布了大量荷电离子,雾滴进入后在电场作用及扩散作用下会荷电,因此,除了电场力,雾滴还会受到流体曳力及重力的作用[13]。由牛顿第二定律求得颗粒的运动方程见式(7)。
式中:
${C}_{{\rm{D}}}$ 为曳力系数;$ \mu $ 为气体黏度,Pa·s;$ \;{\rho }_{\rm{p}} $ 为雾滴密度,kg·m−3;dp为雾滴直径,m;$ {Re}_{\rm{p}} $ 为相对雷诺数;$ {u}_{\rm{p}} $ 为雾滴速度,m·s−1;u为流体运动速度,m·s−1;ρ为流体密度,kg·m−3;q为带电离子单位荷电量,C;E为电场强度,V·m−1。 -
雾滴荷电分为电场荷电和扩散荷电2种方式。其中,电场荷电指离子在电场力作用下和雾滴碰撞,使得雾滴荷电;扩散荷电指离子的扩散使得雾滴荷电。直径小于0.15 μm的雾滴荷电以扩散荷电为主;大于0.5 μm的雾滴主要为电场荷电。本研究中涉及的雾滴粒径大都大于1 μm,故仅考虑电场荷电[14]。雾滴荷电方程见式(8)。模型中的电场力通过电场强度与颗粒带电量的乘积计算得到,算式将通过自定义UDF来实现。
式中:dp为雾滴直径,m;
${\varepsilon }_{{\rm{r}}}$ 为相对介电常数,εr=1.000 590;$ {\varepsilon }_{0} $ 为真空介电常数,ε0=8.85×10−12 C2·(N·m2)−1;$ {E}_{0} $ 为荷电电场强度,V·m−1。
2.1. 流场模型
2.2. 电晕电场模型
2.3. 颗粒运动模型
2.4. 颗粒荷电模型
-
压力降又称压力损失,是衡量旋流器消耗能量大小的技术经济指标。旋流器本身没有动力设备,流体通过入口速度在旋流器中获得离心力,然后通过消耗流体压力获得能量以实现分离。在其他条件一定的情况下,压力降越低,旋流器能量损失就越低。实验中溢流口的压力等于大气压,故压力降即为入口压力表压。通过对比实验与模拟计算分别得到的压力降,可间接验证模拟的可靠性。由图2可知,压力降会随着处理量的增大而增大,且模拟曲线与实验曲线变化趋势一致,说明模拟具有一定可靠性。
-
由图3可知,在不同电压下,入口速度对除雾效率的影响不同,主要分为2个阶段。当电场电压小于20 kV时,静电旋流器除雾效率会随着入口速度的增加而增加。这是由于当施加电场电压小于20 kV时,电晕极未达到电晕电压、或是由于电压较小导致电场力较小,故静电力的影响很小,此时主要的分离作用为离心分离,与普通旋流器的入口速度对除雾效率的影响规律一致。金向红等[15]对气液旋流分离器的研究中发现,当入口风速达到一定值后,分离效率会下降。其主要原因包括以下3个方面:1)随着进口流速的增加,进口与气体出口间的短路流不断增强,部分未被分离的液滴随短路流进入溢流管,使得分离效率下降;2)随着流速的增加,旋流强度也会增强,原旋流器内壁面的液体表面会出现一定的湍流扩散,产生气雾夹带现象,部分雾滴进入旋流器内旋流,会随着溢流口排出,使得分离效率降低;3)随着流速的增大,旋流器内的湍流强度增加,在强旋湍流作用下液滴发生破碎现象,使分离难度增加。
当电场电压大于20 kV时(见图3),除雾效率随入口速度的增大呈先增大后减小的趋势,在入口速度为10 m·s−1时呈现“拐点”。与普通旋流器不同的是,这个“拐点”是由静电力的影响所造成。当入口风速较低时,离心力的除雾作用较小,静电力的除雾作用较大,但两种力综合作用下的总除雾效率仍然较低;当入口风速达到10 m·s−1时,2种作用的综合效果达到最佳,能保持较高的除雾效率;而当入口风速继续增大时,离心力增强,但雾滴在旋流器内停留时间减少,荷电效果不佳,此时主要作用为离心分离,静电除雾作用减小,两者综合作用下的除雾效率有所下降。因此,入口速度的大小决定了雾滴所受离心力的大小,也决定了雾滴在旋流器中的停留时间,从而决定了雾滴所受电场力的大小。
综上所述,为了获得较高的除雾效率,应保证离心力与电场力对除雾效果的综合作用,选择合适的入口速度。从模拟结果看,本静电-旋流耦合除雾器的最佳入口速度为8~12 m·s−1。
-
在静电-旋流耦合除雾器中,影响电场力最主要的因素是电压。由图4可知,电场电压越高,电场强度越大,荷电粒子受到的电场力越大,分离效率也就越好[16]。因此,提高电场电压,有利于提高静电-旋流耦合除雾器的效率。当施加的电场电压较低时(如小于20 kV),电晕极起晕放电的程度太弱,电场强度也较低(见图4(a)),雾滴的荷电量和电场力都较小,故受到静电力作用较小,对除雾起主要作用的仍是离心力;当电压大于等于20 kV时,电晕极附近电场强度增大(见图4(b)~(d)),场强梯度很大,电晕极起晕放电程度增强,雾滴的荷电量和电场力较大,此时起主要作用的是离心力和静电力的共同作用,所以,静电-旋流耦合除雾器的除雾效率比不加电压时有明显的提升。
-
加上电场后的静电-旋流耦合除雾器的分离效率提升明显,其除雾性能优于普通的旋流除雾器;且施加的电压越高,除雾效率也越高。然而,电场电压不能无限度地提高,受电晕极与集尘极间距等条件的限制,两极间电压过高时,会发生电场击穿,使静电-旋流耦合除雾器不能正常工作。因此,本设备最高工作电压设置为60 kV。图5为入口速度10 m·s−1、电压为0~60 kV时各粒度雾滴的去除效率。由图5可知,随电压的增加,对1 μm雾滴的去除效率从5.3%增加到45.6%;对3 μm雾滴的去除率从43.7%增加到67.6%;对8 μm雾滴的去除率从68.2%增加到89.3%;对10 μm雾滴的去除率从78.1%增加到96.1%。上述结果说明,电场作用对于粒径大于5 μm的(尤其是8 μm以上)雾滴去除率影响较小,而对于5 μm以下(尤其是3 μm以下)雾滴的去除率影响更明显。这是由于小粒径的雾滴受离心力较小,仅靠离心力捕集分离效率很低;施加电压后,小粒径雾滴比大粒径雾滴更容易荷电,雾滴同时受到旋流离心力和电场力的作用,故除雾效率大幅提高。因此,静电-旋流耦合除雾器能更好地分离小粒径雾滴。
3.1. 处理量对压力降的影响及流场模拟的验证
3.2. 入口速度对雾滴去除率的影响
3.3. 电压大小对雾滴去除效率的影响
3.4. 不同粒径雾滴在电场作用下的去除率
-
1)在旋流器内添加稳定工作电压,形成静电-旋流耦合除雾器。在模拟的入口风速和雾滴粒径范围内,静电-旋流耦合除雾器的除雾效率与不加电压相比,有明显提升。
2)当入口风速为8~12 m·s−1时,静电-旋流除雾器除雾效率达到最高,表明此时装置的离心分离和静电分离的综合作用最强,且随着电压的升高除雾效率亦升高。
3)利用该耦合装置分离3 μm以下雾滴的提升效果明显高于分离5 μm以上的雾滴。雾滴粒径越大,除雾效率提升却越小。这说明,静电-旋流耦合除雾器能更好地分离小粒径雾滴,对于粒径3 μm以下雾滴的分离效率提升明显。