Processing math: 100%

罐底油泥热解产物高附加值利用途径

杨慧芬, 李真, 付鹏, 宋振国, 杨航, 马文凯. 罐底油泥热解产物高附加值利用途径[J]. 环境工程学报, 2021, 15(2): 717-726. doi: 10.12030/j.cjee.202003141
引用本文: 杨慧芬, 李真, 付鹏, 宋振国, 杨航, 马文凯. 罐底油泥热解产物高附加值利用途径[J]. 环境工程学报, 2021, 15(2): 717-726. doi: 10.12030/j.cjee.202003141
YANG Huifen, LI Zhen, FU Peng, SONG Zhenguo, YANG Hang, MA Wenkai. High value-added utilization approach of pyrolysis products generated by tank bottom oily sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 717-726. doi: 10.12030/j.cjee.202003141
Citation: YANG Huifen, LI Zhen, FU Peng, SONG Zhenguo, YANG Hang, MA Wenkai. High value-added utilization approach of pyrolysis products generated by tank bottom oily sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 717-726. doi: 10.12030/j.cjee.202003141

罐底油泥热解产物高附加值利用途径

    作者简介: 杨慧芬(1964—),女,博士,教授。研究方向:固体废物资源化。E-mail:yanghf@ustb.edu.cn
    通讯作者: 杨慧芬, E-mail: yanghf@ustb.edu.cn
  • 基金项目:
    矿物加工科学与技术国家重点实验室开放基金资助项目(BGRIMM-KJSKL-2019-15)
  • 中图分类号: X705

High value-added utilization approach of pyrolysis products generated by tank bottom oily sludge

    Corresponding author: YANG Huifen, yanghf@ustb.edu.cn
  • 摘要: 为探讨罐底油泥热解产物的高附加值利用途径,利用GC-MS、XRF、XRD、SEM-EDS等方法对罐底油泥热解产物进行了详细的性能分析。在此基础上,选择3种典型阴离子Cr(VI)、PO34和F和3种典型阳离子Cd2+、Pb2+和Cu2+进行了吸附去除实验。结果表明:罐底油泥热解得到的油品,其烷烃化合物含量高达50.91%,碳数主要分布在(n-C12)~(n-C30),与矿物浮选药剂制备原料的性能类似;热解得到的残渣具有疏松多孔的结构,其结构骨架由元素C、S、Fe、Ca、Al、Si、O等共同构成,且以FeS、Fe1−xS、Fe7S8、CaS、CaAl2Si2O8晶体矿物及非晶态物相形式镶嵌在其中,在水中可起到还原剂、硫化物沉淀剂和钙盐沉淀剂的作用;热解渣对水中阴、阳离子均有很高的去除率,在热解渣用量分别为3、10、12、1、0.8和0.8 g·L−1时,Cr(Ⅵ)、PO34、F、Cd2+、Pb2+和Cu2+去除率分别达到99.6%、98.9%、96.8%、99.3%、98.9%和99.4%。XRD分析结果表明,上述污染离子的去除是通过在热解渣表面生成FeCr2O4、Ca3(PO4)2、CaF2、CdS、Cd(OH)2、CdAl2Si2O8、PbS、Pb(OH)2、PbAl2Si2O8、CuS、Cu(OH)2、CuAl2Si2O8沉淀而实现的。本实验结果可为罐底油泥热解产物尤其热解渣的高附加值利用途径提供参考。
  • 随着环保形势的日益严峻,污染物排放标准愈加严格,尤其是导致水体富营养化的氮元素,如北京市最新标准《北京地方水污染排放标准》(DB 11/307-2013)规定,污水厂出水TN不得高于15 mg·L−1。污水生物处理过程中氮元素的去除是在硝化和反硝化反应共同作用下实现的,但由于我国城镇污水厂进水碳源普遍不足导致反硝化效率低下,使得碳源不足成为制约出水TN达标的重要因素[1]。为解决这一问题,在水厂运行过程中,一般通过投加甲醇等补充碳源的方式提高脱氮效率[2]。然而投加补充碳源不仅增加了运行成本,也会增加剩余污泥的产量[3]。与此同时,在生物处理过程中,微生物将有机物同化为自身细胞物质,以剩余污泥的形式被排出系统。这不仅增加后续污泥处理的成本,还造成了其所含丰富碳源的浪费[4]。在此背景下,研究者们提出多种剩余污泥破解方法并将其作为碳源回用。QIANG等[5]采用臭氧污泥破解液回流至A2/O系统,除磷效果得到明显改善。LIU等[6]研究了污泥水力破解后作为碳源对反硝化速率的影响,发现反硝化速率增加,TN去除率增加。LIU等[7]将碱解发酵污泥破解液作为A2/O系统的反硝化补充碳源,脱氮除磷率均得到明显的提高,并且与传统工艺相比有巨大的经济优势;KONDO等[8]进一步研究了剩余污泥破解回流比对强化反硝化脱氮的影响,发现当污泥破解量为总污泥量9.40%时,剩余污泥排放量减少50%,反硝化效果提高。

    高铁酸盐作为一种氧化性强、绿色、多功能的新型氧化剂,在污泥处理领域已得到了广泛研究和应用,相关研究[9-11]证实了高铁酸盐具有良好的污泥溶胞性能,能有效地破坏污泥细胞,溶出胞内物质。在氧化破解污泥的过程中,Fe6+可被还原为Fe3+,Fe3+可以改善污泥的沉降性能和脱水性能[12-14]。为实现高铁酸盐的工艺利用,本研究采用复合高铁酸盐溶液(composite ferrate solution,CFS)破解污泥,将破解液回流至A/O系统强化反硝化脱氮,即高铁酸盐氧化-A/O工艺(ferrate oxidation-A/O,FO-A/O),详细考察了不同剩余污泥回流比(25%、50% 和100%)对污泥浓度、污泥活性(SOUR)、污泥沉降性能(SVI)及系统出水水质的影响,重点考察了污泥减量效果和脱氮效果,为实现污泥减量及强化脱氮提供参考。

    实验装置由A/O工艺模型和FO污泥破解装置2部分组成(见图1)。在A/O模型中,缺氧池、好氧池和二沉池有效容积分别为4.3、16.4和11.7 L,缺氧池设搅拌器,以确保泥水均匀混合,好氧池底部设置曝气砂头。FO污泥破解装置同时具备污泥破解和沉淀2个功能,沉淀完成后,调节上清液pH,上清液经蠕动泵进入进水箱,与污水混合后一同进入A/O工艺模型。

    图 1  FO-A/O实验装置
    Figure 1.  Experimental device of the FO-A/O process

    实验所用污泥取自天津市北辰区某污水厂,该厂采用A2/O工艺处理生活污水且运行效果良好。工艺进水为模拟生活污水,模拟生活污水由自来水添加葡萄糖、氯化铵、磷酸二氢钾及微量元素[5]配制而成,其水质指标为:COD=223.33 mg·L−1,BOD5=126.90 mg·L−1,TN=30.04 mg·L−1NH+4-N=29.17 mg·L−1NO3-N=0.18 mg·L−1NO2-N=0.09 mg·L−1,TP=3.31 mg·L−1,pH=6.0~7.5。

    CFS为实验室自制,其中FeO24浓度为30.91 g·L−1,ClO浓度为38.63 g·L−1,OH浓度为90.27 g·L−1,其他所用化学药品均为国产分析纯。

    将活性污泥接种至A/O工艺模型启动装置,待出水C、N达到一级A标准后调试完成,A/O模型运行参数为进水流量48 L·d−1、好氧区水力停留时间8.3 h、缺氧区水力停留时间2.1 h,污泥龄15 d、污泥回流比70%、消化液回流比200%、硝化液回流比200%、好氧池溶解氧3.5~7.0 mg·L−1、缺氧池溶解氧0.2~0.5 mg·L−1

    实验装置的运行分为A/O阶段(对照组)和FO-A/O阶段,FO-A/O阶段又分为3种工况,3种工况下剩余污泥破解回流比(r)分别为25%、50%、100%,其中剩余污泥破解回流比指每日被CFS破解的剩余污泥与系统排出剩余污泥干重之比。破解剩余污泥时CFS投加量按50 mg·g−1(以Fe6+计)投加,反应时间为24 h。

    本研究采用污泥产率系数(YOBS)表征系统运行过程中污泥产率的变化,采用比好氧速率(SOUR)表征污泥活性的变化,二者的计算如式(1)和式(2)所示。

    YOBS=QWXW+(QQW)XeQ(S0Se) (1)
    U0=ΔmDOXt (2)

    式中:YOBS为污泥产率系数,g·g−1QW为剩余污泥量,L·d−1Q为进水量,L·d−1XW为剩余污泥浓度,mg·L−1Xe为出水悬浮物浓度,mg·L−1S0为进水SCOD浓度,mg·L−1Se为出水SCOD浓度,mg·L−1U0为污泥比耗氧速率,mg·(g·h)−1;ΔmDO为DO减少量,mg·L−1X为混合液SS浓度,g·L−1t为测试时间,h。

    MLSS、MLVSS、SVI、SS均采用重量法测定,COD采用快速消解法、NH+4-N、TP、TN、NO3NO2均采用分光光度法[15]测定,水质指标测定前使用0.45 μm微孔滤膜过滤;SOUR采用膜电极法[16]测定。

    实验研究了在污泥破解回流比r分别为25%、50%和100%时的FO-A/O工艺的污泥产率系数,分析了污泥破解回流比对污泥减量效果的影响,结果如图2所示。可以看出,污泥产率系数YOBS随着r的增加而明显降低。r=100%时,YOBS=0.04 g·g−1,与A/O对照组(YOBS=0.09 g·g−1)相比减少了55.56%。这是由于在FO-A/O运行过程中产生的部分剩余污泥被CFS溶胞破解,CFS中所含FeO24、ClO以及OH通过氧化[17-18]、皂化[19]的方式破坏污泥细胞,释放出胞内物质,并将难溶的大分子有机物转为容易被微生物所摄取利用的小分子有机物,最终作为碳源被重新利用,从而导致YOBS的降低。当r=50%时,YOBS=0.048 g·g−1,污泥产量较A/O工艺减量46%,该工艺的污泥产率系数低于臭氧+A2/O工艺(YOBS=0.1 g·g−1)和K2FeO4+A2/O工艺(YOBS=0.21 g·g−1)。

    图 2  FO-A/O工艺中污泥破解回流比对污泥减量效果的影响
    Figure 2.  Effect of reflux ratio of disintegrated sludge on waste activated sludge reduction in the FO-A/O process

    污泥破解液回流至A/O系统引入Fe3+,可能会对污泥性能产生影响,因此,本研究探讨了不同剩余污泥破解回流比对A/O工艺中污泥浓度、污泥活性和污泥沉降性能的影响,结果见图3。由图3(a)可知:随着r的升高,污泥浓度逐渐升高,这是由于污泥破解液中含有易降解有机物;随着r的增加,易降解有机物增加,导致微生物数量增加,从而使得污泥浓度有所增加。另外,工艺运行过程中,VSS/SS变化幅度不大,维持在0.74左右,表明破解液回流不会造成系统内惰性物质的积累。

    图 3  FO-A/O工艺中污泥破解回流比对活性污泥性能的影响
    Figure 3.  Effect of reflux ratio of disintegrated sludge on sludge properties in the FO-A/O process

    实验进一步研究了污泥破解液对污泥活性的影响,结果见图3(b),SOUR的计算方法见式(2)。由图3(b)可知,当r为25%和50%时,SOUR分别为7.21 mg·(g·h)−1和7.77 mg·(g·h)−1,均较对照组(6.2 mg·(g·h)−1)有所提高;当r增加至100%,SOUR有所下降。分析其原因是:一方面,由于在r为25%和50%时,适量的Fe3+进入A/O系统,好氧条件下,Fe3+可以作为氧化细胞色素的电子受体,也可以用于多种酶的合成,但过高浓度的Fe3+会对某些酶的活性产生抑制作用[20];另一方面,破解液中含有腐殖酸等难被微生物降解利用的物质,微生物对此类物质降解速率慢,降解速率决定微生物对水中DO的摄取量,随着此类物质的增加,对DO的摄取量减少,SOUR降低。回流的Fe3+除对SOUR产生影响外,还有助于污泥沉降性能的提高,结果见图3(c)。从图3(c)可以看出,随着r的增加,SVI逐渐减小,这源于破解液中Fe3+的絮凝作用,其改变了污泥絮体的大小和结构,强化了污泥密度与水密度之间的差异,使MLSS增大,进而导致SVI减小,改善污泥沉降性能,从而有利于后续污泥脱水处理。但当r=100%时,污泥沉降性能较r=50%时变化不大,这可能是由于此时污泥活性降低所致。

    1)对有机物的去除效果。COD与BOD5为常用的有机污染参数,实验通过测量进出水COD与BOD5的变化来研究有机物的去除效果,结果如图4所示。可以看出,尽管进水COD、BOD5随着r的提高有所增加,但出水COD与BOD5浓度与A/O对照组相比基本保持恒定,均能达到《城镇污水处理场污染物排放标准》一级A标准排放要求。这表明污泥破解液具有良好的可生化性,微生物能够较好地适应并降解破解液回流引入的有机物。此外,在A/O对照组和FO-A/O工艺运行过程中,污泥负荷(F/M)均低于0.15 kg·(kg·d)−1,处于低负荷状态运行,低负荷状态下微生物对COD和BOD5的去除率较高。

    图 4  FO-A/O工艺中污泥破解回流比对COD和BOD5的去除效果的影响
    Figure 4.  Effect of reflux ratio of disintegrated sludge on COD and BOD5 removal efficiency in the FO-A/O process

    2) FO-A/O工艺的脱氮效果。氮是导致水体富营养化的主要元素,也是污水厂深度处理的主要目标物,实验详细研究了污泥破解液作为碳源时FO-A/O工艺对不同形态氮的去除效果,结果见图5。由图5(a)~(d)可见,随着r的提高,破解液中大量氮元素进入A/O系统,导致系统氮负荷增加。但在r=25%和50%工况时,FO-A/O系统对TN、NH+4-N的脱除效果均优于A/O对照组,由图5(c)图5(d)可见,出水NO3-N、NO2-N相比A/O对照组也有所降低,这表明在r为25%和50%时,硝化反硝化效率均有所提高。一方面,这是由于破解液回流改善了系统的C/N比,A/O对照组、r=25%和r=50%时的C/N分别为7.44、7.56和7.79,碳氮比增加为反硝化反应提供了更多的碳源;另一方面,Fe3+作为一种酶促反应激活剂,提高了微生物体内酶的反应效率[21],对硝化和反硝化反应均有一定促进作用。继续增加r至100%时,氮负荷进一步增大,C/N降低,脱氮效果较A/O对照组下降。从FO-A/O工艺运行监测结果可以看出,r的取值对脱氮效果有明显影响,r=50%时,TN的去除率为68.36%~77.59%。该结果优于臭氧+A2/O工艺和K2FeO4+A2/O工艺,与碱解发酵+A2/O和机械法+SBR工艺效果基本相当。由此可见,确定合理的剩余污泥破解回流比是实现污泥减量同步强化脱氮的关键。

    图 5  FO-A/O工艺中污泥破解回流比对脱氮效果的影响
    Figure 5.  Effect of reflux ratio of disintegrated sludge on nitrogen removal efficiency in the FO-A/O process

    为了进一步证实不同剩余污泥破解回流比下破解液作为补充碳源对反硝化脱氮的强化作用,对进出系统的碳、氮进行物料衡算,其中剩余污泥中的COD、TN含量按0.80 g·g−1和0.07 g·g−1[22]计算,衡算的结果如表1所示。可以看出,随着r的增加,碳矿化率逐渐提高,r=100%时,矿化率为93.13%;对氮而言,在A/O对照组及r=25%、r=50%时,随着r的增加,矿化率增大,r=50%时,氮矿化率为71.07%,继续增大r至100%,矿化率虽有所降低,但仍高于对照组。另外,由于剩余污泥的破解回流,随剩余污泥排出系统的碳和氮减少。以上计算结果表明,氮矿化率的提高与碳的矿化率相关,证实了污泥破解液回流引入的有机物被反硝化菌利用,起到强化系统脱氮的作用。

    表 1  C和N物料衡算
    Table 1.  Overall mass balances of C and N elements
    运行工况 C的质量/g N的质量/g
    进水 矿化 出水 剩余污泥 进水 矿化 出水 剩余污泥
    A/O 214.39 181.73 25.96 6.70 28.84 15.98 12.39 0.47
    r=25% 246.31 222.96 18.05 5.30 32.59 20.62 11.60 0.37
    r=50% 275.79 253.71 18.18 3.90 35.50 25.23 10.00 0.27
    r=100% 308.08 284.43 21.15 2.50 44.16 24.96 19.03 0.17
     | Show Table
    DownLoad: CSV

    3)进出水TP浓度变化。由于CFS含有大量Fe6+,Fe6+在破解污泥过程中被还原为Fe3+,而Fe3+可以通过混凝、沉淀等方式去除水中的磷[23-24],为了明确这部分Fe3+对TP的影响,在实验中监测了进出水TP的变化规律,如图6所示。可以看出,r为25%和50%工况时,进水TP负荷稍有提高,但污泥破解液回流增加了进水碳源,使得污泥活性提高(图3(b)结果),同时引入Fe3+,2种作用同时作用使得TP去除率上升。而当r=100%时,系统对磷的去除效果急剧恶化,出水TP浓度高于A/O对照组。这是由于r=100%时,全部剩余污泥被溶胞破解回流,系统进水TP负荷升高,同时污泥活性大幅度降低(图3(b)),使得磷在系统中累积[25],从而使得出水TP浓度升高,出水水质恶化。在最佳回流比条件下,对TP的平均去除率为39.09%,高于K2FeO4+A2/O工艺的32%。

    图 6  FO-A/O工艺中污泥破解回流比对TP的去除效果的影响
    Figure 6.  Effect of reflux ratio of disintegrated sludge on TP removal efficiency in the FO-A/O process

    运行维修费用在工艺处理系统中占有重要地位,包括药剂费、人工费、电费、维修费及污泥处理费用。本研究在A/O工艺的基础上增加了CFS的费用,1 t污泥需要投加Fe6+ 0.40 kg,其药剂成本约为169元·t−1,相同药剂投加量下市售固体K2FeO4的药剂成本为9 900元·t−1(市售1 400元·kg−1,纯度约20%),同时由于污泥减量46%,因此,减少了后续46%的污泥处理费用(污泥填埋费用约为200元·t−1,污泥焚烧约为100~300元·t−1,污泥堆肥为90~150元·t−1),由此可见,此方法有一定的应用前景。

    1)在传统A/O工艺基础上,增加FO污泥减量装置可以取得良好的污泥减量效果,在r=50%时,YOBS=0.048 g·g−1,相比A/O工艺,污泥减量了46%,此时出水COD、TN、NH+4-N分别为18.83、10.43和4.05 mg·L−1,达到《城镇污水处理场污染物排放标准》一级A标准排放要求。该工艺中药剂制备成本低于固体K2FeO4,且减少了后续污泥处置量,具有一定的应用前景。

    2)破解液污泥回流增加了进水SCOD值,导致微生物量增加,污泥浓度提高,但不会造成系统内惰性物质积累。回流引入的Fe3+可改善污泥沉降性,且适量的Fe3+可作为电子受体,也可用于细胞内多种酶的合成,促进污泥活性,但过多Fe3+则会产生毒害作用,导致污泥活性降低。

    3)污泥破解液回流可提高系统C/N比,且C、N物料衡算结果表明,污泥碳源可被反硝化菌有效利用,起到强化脱氮的效果,且回流的Fe3+对硝化、反硝化反应和除磷均有一定的促进作用,但r=100%回流会导致C/N比降低,脱氮、除磷效果降低。

  • 图 1  罐底油泥热解装置示意图

    Figure 1.  Schematic diagram of pyrolysis device for tank bottom oily sludge

    图 2  油品的GC-MS谱图

    Figure 2.  GC-MS spectrum of oils received by pyrolysis

    图 3  热解渣中A颗粒、B颗粒、C颗粒的SEM和D点、E点、F点的能谱图

    Figure 3.  SEM images of particle A, particle B and particle C in pyrolysis residue and EDS of points D, E and F

    图 4  热解渣的XRD分析

    Figure 4.  XRD analysis of pyrolysis residue

    图 5  热解渣用量对硫酸溶液pH的影响(200 r·min−1反应60 min)

    Figure 5.  Effects of pyrolysis residue dosage on sulfuric acid solution pH (200 r·min−1 for 60 min)

    图 6  热解渣用量对典型阴离子去除率的影响

    Figure 6.  Effects of pyrolysis residue dosage on the removal efficiencies of typical anions

    图 7  吸附Cr()、PO34和F后热解渣的XRD分析

    Figure 7.  XRD patterns of pyrolysis residue after adsorption of Cr(Ⅵ), PO34 and F

    图 8  热解渣用量对典型阳离子去除率的影响

    Figure 8.  Effects of pyrolysis residue dosage on the removal efficiencies of typical cations

    图 9  吸附Cd2+、Pb2+和Cu2+后热解渣的XRD分析

    Figure 9.  XRD patterns of pyrolysis residue after adsorption of Cd2+, Pb2+and Cu2+

    表 1  GC-MS法鉴定的油品中主要化合物及其相对含量

    Table 1.  Main compounds identified by GC-MS and their relative contents

    序号时间/min化合物面积比/%序号时间/min化合物面积比/%
    16.231-C9烯烃0.043020.911-C17烯烃1.09
    29.66n-C90.063120.99n-C173.55
    311.231-C10烯烃0.223221.05Pr1.86
    411.37n-C100.223321.991-C18烯烃1.00
    512.881-C11烯烃0.503422.07n-C182.80
    613.02n-C110.693522.18Ph1.18
    714.431-C12烯烃0.763622.500.32
    814.55n-C121.723722.600.12
    914.690.143822.73甲基菲0.16
    1014.75i-C130.583923.031-C19烯烃1.08
    1115.28C6-环己烷0.554023.09n-C192.80
    1215.49i-C130.354124.011-C20烯烃0.65
    1315.61i-C130.704224.07n-C202.43
    1415.901-C13烯烃1.034324.951-C21烯烃0.55
    1516.00n-C132.574425.01n-C212.41
    1616.322-甲基萘0.334525.851-C22烯烃0.63
    1716.591-甲基萘0.354625.91n-C222.01
    1817.06i-C140.804726.76n-C232.52
    1917.261-C14烯烃1.154827.60n-C242.33
    2017.36n-C143.584928.46n-C252.28
    2117.83C2-萘0.375029.39n-C262.08
    2218.04C2-萘0.555130.41n-C271.86
    2318.10C2-萘0.745231.58n-C281.57
    2418.18i-C151.435332.92n-C291.40
    2518.28C2-萘0.265434.49n-C301.15
    2618.551-C15烯烃1.155536.37n-C310.95
    2718.65n-C154.105638.61n-C320.72
    2819.771-C16烯烃1.115744.61n-C330.34
    2919.85n-C163.89
      注:面积比总计为67.75%。
    序号时间/min化合物面积比/%序号时间/min化合物面积比/%
    16.231-C9烯烃0.043020.911-C17烯烃1.09
    29.66n-C90.063120.99n-C173.55
    311.231-C10烯烃0.223221.05Pr1.86
    411.37n-C100.223321.991-C18烯烃1.00
    512.881-C11烯烃0.503422.07n-C182.80
    613.02n-C110.693522.18Ph1.18
    714.431-C12烯烃0.763622.500.32
    814.55n-C121.723722.600.12
    914.690.143822.73甲基菲0.16
    1014.75i-C130.583923.031-C19烯烃1.08
    1115.28C6-环己烷0.554023.09n-C192.80
    1215.49i-C130.354124.011-C20烯烃0.65
    1315.61i-C130.704224.07n-C202.43
    1415.901-C13烯烃1.034324.951-C21烯烃0.55
    1516.00n-C132.574425.01n-C212.41
    1616.322-甲基萘0.334525.851-C22烯烃0.63
    1716.591-甲基萘0.354625.91n-C222.01
    1817.06i-C140.804726.76n-C232.52
    1917.261-C14烯烃1.154827.60n-C242.33
    2017.36n-C143.584928.46n-C252.28
    2117.83C2-萘0.375029.39n-C262.08
    2218.04C2-萘0.555130.41n-C271.86
    2318.10C2-萘0.745231.58n-C281.57
    2418.18i-C151.435332.92n-C291.40
    2518.28C2-萘0.265434.49n-C301.15
    2618.551-C15烯烃1.155536.37n-C310.95
    2718.65n-C154.105638.61n-C320.72
    2819.771-C16烯烃1.115744.61n-C330.34
    2919.85n-C163.89
      注:面积比总计为67.75%。
    下载: 导出CSV

    表 2  热解渣的XRF分析

    Table 2.  XRF analysis of pyrolysis residue

    元素质量分数/%标准差元素质量分数/%标准差
    Fe25.350.330Sr0.0780.003
    S18.870.210Ni0.0620.01
    Ca5.9200.200Ti0.0620.022
    Al4.2100.440Cu0.0390.007
    Si2.1600.130Cr0.0230.009
    Cl0.3980.030Pb0.0070.002
    Mn0.3940.028Sb0.0060.002
    Zn0.3000.013Zr0.0050.001
    Ba0.2780.013As0.0040.002
    K0.1830.034Mo0.0030.001
    V0.1000.015Nb0.0030.001
    元素质量分数/%标准差元素质量分数/%标准差
    Fe25.350.330Sr0.0780.003
    S18.870.210Ni0.0620.01
    Ca5.9200.200Ti0.0620.022
    Al4.2100.440Cu0.0390.007
    Si2.1600.130Cr0.0230.009
    Cl0.3980.030Pb0.0070.002
    Mn0.3940.028Sb0.0060.002
    Zn0.3000.013Zr0.0050.001
    Ba0.2780.013As0.0040.002
    K0.1830.034Mo0.0030.001
    V0.1000.015Nb0.0030.001
    下载: 导出CSV

    表 3  热解渣中重金属质量分数及其浸出浓度和排放标准

    Table 3.  Mass fraction and leaching concentration of heavy metals in pyrolysisresidue and discharge standards

    重金属种类重金属质量分数/%重金属浸出浓度/(mg·L−1)排放标准/(mg·L−1)
    A1)B2)C3)
    Cu0.032NDND500
    Cr0.0213.1625.19500
    Pb0.007ND0.4681 000
    Zn0.2022.624322 000
    As0.0040.0389.369500
    Ni0.0713.0252.611 000
      注:ND为未检出;1)为HJ 557-2010;2)为HJ/T 299-2007;3)为GB 8978-1996。
    重金属种类重金属质量分数/%重金属浸出浓度/(mg·L−1)排放标准/(mg·L−1)
    A1)B2)C3)
    Cu0.032NDND500
    Cr0.0213.1625.19500
    Pb0.007ND0.4681 000
    Zn0.2022.624322 000
    As0.0040.0389.369500
    Ni0.0713.0252.611 000
      注:ND为未检出;1)为HJ 557-2010;2)为HJ/T 299-2007;3)为GB 8978-1996。
    下载: 导出CSV
  • [1] 黄永港, 徐如良, 侯天明, 等. 油罐底含油污泥处理技术[J]. 石油炼制与化工, 2003, 34(5): 60-62. doi: 10.3969/j.issn.1005-2399.2003.05.015
    [2] LIU J G, JIANG X M, HAN X X. Devolatilization of oil sludge in a lab-scale bubbling fluidized bed[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1205-1213.
    [3] WANG Y H, ZHANG X M, PAN Y Y, et al. Analysis of oil content in drying petroleum sludge of tank bottom[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18681-18684. doi: 10.1016/j.ijhydene.2017.04.153
    [4] 王晨. 2016年8月1日起施行新版《国家危险废物名录》[J]. 精细与专用化学品, 2016, 24(7): 29.
    [5] 葛丹, 赵晓非, 张晓阳, 等. 全油田含油污泥的综合利用[J]. 化工科技, 2016, 24(3): 91-94. doi: 10.3969/j.issn.1008-0511.2016.03.020
    [6] 李美蓉, 张建, 桂召龙. 原油罐底泥的溶剂提取法处理技术[J]. 石油大学学报(自然科学版), 2005, 29(1): 120-122.
    [7] 巫树锋, 吴迪, 刘发强, 等. 石油储运罐底油泥溶剂萃取工艺优化[J]. 石化技术与应用, 2014, 32(2): 170-173. doi: 10.3969/j.issn.1009-0045.2014.02.016
    [8] 巫树锋, 刘发强, 杨岳, 等. 罐底含油污泥萃取溶剂的选择与优化[J]. 环境工程学报, 2013, 7(8): 3191-3195.
    [9] 姜亦坚. 油田罐底油泥热化学处理工艺技术[J]. 化学工程师, 2014(7): 36-37.
    [10] 杨飞飞, 回军, 李宝忠, 等. 热化学清洗法处理罐底油泥的研究[J]. 当代化工, 2014, 43(6): 890-892. doi: 10.3969/j.issn.1671-0460.2014.06.002
    [11] 徐轶. 罐底油泥处理技术研究[J]. 辽宁化工, 2015, 44(1): 105-108.
    [12] 阎松, 许维相, 郭铁, 等. 罐底油泥的药剂法处理研究[J]. 石油化工高等校学报, 2015, 28(3): 22-26.
    [13] GONG H Q, WANG Z T, WANG Z B, et al. Study on pyrolysis characteristics of tank oil sludge and pyrolysis char combustion[J]. Chemical Engineering Research and Design, 2018, 135: 30-36. doi: 10.1016/j.cherd.2018.05.027
    [14] CHENG S, WANG Y H, FUMITAKE T, et al. Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis[J]. Applied Energy, 2017, 185: 146-157. doi: 10.1016/j.apenergy.2016.10.055
    [15] 陈红硕, 刘佳驹, 林俊岭, 等. “球磨+浮选”联合工艺处理罐底油泥的效果[J]. 环境工程学报, 2019, 13(5): 1186-1193. doi: 10.12030/j.cjee.201811020
    [16] RAMASWAMY B, KAR D D, DE S. A study on recovery of oil from sludge containing oil using froth flotation[J]. Journal of Environmental Management, 2007, 85(1): 150-154.
    [17] 张小庆, 王枫, 匡民明, 等. 超声波辅助破乳法回收石化罐底油泥中的原油[J]. 化工环保, 2015, 35(4): 399-402. doi: 10.3969/j.issn.1006-1878.2015.04.014
    [18] WU X F, QIN H B, ZHENG Y X, et al. A novel method for recovering oil from oily sludge via water-enhanced CO2 extraction[J]. Journal of CO2 Utilization, 2019, 33: 513-520. doi: 10.1016/j.jcou.2019.08.008
    [19] TAIWO E A, OTOLORIN J A. Oil recovery from petroleum sludge by solvent extraction[J]. Journal of Petroleum Science and Engineering, 2009, 27: 836-844. doi: 10.1016/j.petrol.2018.06.031
    [20] EVANS M N, CHIDINYANE T M, OLUWADEMILADE M F, et al. Biosurfactant assisted recovery of the C5-C11 hydrocarbon fraction from oily sludge using biosurfactant producing consortium culture of bacteria[J]. Journal of Environmental Management, 2017, 196: 261-269.
    [21] ZHANG Y N, CUI Y L, LIU S Y, et al. Fast microwave-assisted pyrolysis of wastes for biofuels production: A review[J]. Bioresource Technology, 2019, 297: 122480.
    [22] ZUOJIAO K C, ZHANG Z, LI P J, et al. Enhanced oil recovery and residues utilization of oil sludge through nitric acid pretreatment process[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103089. doi: 10.1016/j.jece.2019.103089
    [23] LIN B C, HUANG Q X, ALI M, et al. Continuous catalytic pyrolysis of oily sludge using U-shape reactor for producing saturates-enriched light oil[J]. Proceedings of the Combustion Institute, 2018, 37(2): 3101-3108. doi: 10.1016/j.proci.2018.05.143
    [24] DOMINGUEZ A, MENENDEZ J A, INGUANZO M, et al. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges[J]. Journal of Chromatography A, 2003, 1012(2): 193-206. doi: 10.1016/S0021-9673(03)01176-2
    [25] 中华人民共和国环境保护部. 固体废物浸出毒性浸出方法水平振荡法: HJ 557-2010[S]. 北京: 中国环境科学出版社, 2010.
    [26] 中华人民共和国环境保护部. 固体废物浸出毒性浸出方法硫酸硝酸法: HJ/T 299-2007[S]. 北京: 中国环境科学出版社, 2007.
    [27] 国家环境保护局. 污水综合排放标准: GB 8978-1996[S]. 北京: 中国环境科学出版社, 1996.
    [28] 于世林. 图解气相色谱技术与应用[M]. 北京: 科学出版社, 2010.
    [29] LIU C H , ZHANG Y , SUN S S. Oil recovery from tank bottom sludge using rhamnolipids[J]. Journal of Petroleum Science and Engineering, 2018, 170: 14-20.
    [30] 胡岳华. 矿物浮选[M]. 长沙: 中南大学出版社, 2014.
  • 期刊类型引用(4)

    1. 唐建,张宿义,敖宗华,唐恒军. 高铁酸盐耦合过硫酸盐对污泥减量化研究进展. 资源节约与环保. 2023(03): 5-7+11 . 百度学术
    2. 张绪婷. 污泥处理处置技术的应用研究. 科学技术创新. 2020(02): 166-167 . 百度学术
    3. 赵凯亮,刘安迪,南彦斌,梁利民,王云霞,陈永志. HRT对改良式A~2/O-BAF反硝化除磷脱氮的影响. 环境科学. 2020(06): 2771-2778 . 百度学术
    4. 张天歌,刘永红,王宁. 废水处理过程中污泥减量技术及机理研究进展. 水处理技术. 2020(08): 6-12 . 百度学术

    其他类型引用(2)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.6 %DOWNLOAD: 3.6 %HTML全文: 92.2 %HTML全文: 92.2 %摘要: 4.2 %摘要: 4.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 81.3 %其他: 81.3 %Ashburn: 0.2 %Ashburn: 0.2 %Beijing: 5.7 %Beijing: 5.7 %Brooklyn: 0.1 %Brooklyn: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Changsha: 0.4 %Changsha: 0.4 %Chaoyang Shi: 0.1 %Chaoyang Shi: 0.1 %Chengdu: 0.1 %Chengdu: 0.1 %Chongqing: 0.1 %Chongqing: 0.1 %Dongtundu: 0.1 %Dongtundu: 0.1 %Guangzhou: 0.4 %Guangzhou: 0.4 %Haidian: 0.1 %Haidian: 0.1 %Hangzhou: 0.7 %Hangzhou: 0.7 %Huangpu: 0.1 %Huangpu: 0.1 %Hyderabad: 0.2 %Hyderabad: 0.2 %Jinrongjie: 2.2 %Jinrongjie: 2.2 %Langfang: 0.2 %Langfang: 0.2 %Mountain View: 0.1 %Mountain View: 0.1 %Newark: 0.1 %Newark: 0.1 %Ningbo: 0.2 %Ningbo: 0.2 %Petergof: 0.1 %Petergof: 0.1 %Qingdao: 0.1 %Qingdao: 0.1 %Shanghai: 0.6 %Shanghai: 0.6 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Suzhou: 0.2 %Suzhou: 0.2 %Taiyuan: 0.4 %Taiyuan: 0.4 %Tehran: 0.2 %Tehran: 0.2 %The Bronx: 0.1 %The Bronx: 0.1 %Tianjin: 0.4 %Tianjin: 0.4 %Wuhan: 0.2 %Wuhan: 0.2 %Xi'an: 0.1 %Xi'an: 0.1 %Xingfulu: 0.1 %Xingfulu: 0.1 %XX: 3.1 %XX: 3.1 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %Zhongba: 0.1 %Zhongba: 0.1 %上海: 0.1 %上海: 0.1 %乌兰察布: 0.1 %乌兰察布: 0.1 %北京: 0.5 %北京: 0.5 %太原: 0.1 %太原: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.3 %深圳: 0.3 %苏州: 0.1 %苏州: 0.1 %赤峰: 0.1 %赤峰: 0.1 %银川: 0.1 %银川: 0.1 %长沙: 0.1 %长沙: 0.1 %其他AshburnBeijingBrooklynChang'anChangshaChaoyang ShiChengduChongqingDongtunduGuangzhouHaidianHangzhouHuangpuHyderabadJinrongjieLangfangMountain ViewNewarkNingboPetergofQingdaoShanghaiShenyangShenzhenSuzhouTaiyuanTehranThe BronxTianjinWuhanXi'anXingfuluXXYunchengZhengzhouZhongba上海乌兰察布北京太原武汉深圳苏州赤峰银川长沙Highcharts.com
图( 9) 表( 3)
计量
  • 文章访问数:  4927
  • HTML全文浏览数:  4927
  • PDF下载数:  77
  • 施引文献:  6
出版历程
  • 收稿日期:  2020-03-21
  • 录用日期:  2020-10-22
  • 刊出日期:  2021-02-10
杨慧芬, 李真, 付鹏, 宋振国, 杨航, 马文凯. 罐底油泥热解产物高附加值利用途径[J]. 环境工程学报, 2021, 15(2): 717-726. doi: 10.12030/j.cjee.202003141
引用本文: 杨慧芬, 李真, 付鹏, 宋振国, 杨航, 马文凯. 罐底油泥热解产物高附加值利用途径[J]. 环境工程学报, 2021, 15(2): 717-726. doi: 10.12030/j.cjee.202003141
YANG Huifen, LI Zhen, FU Peng, SONG Zhenguo, YANG Hang, MA Wenkai. High value-added utilization approach of pyrolysis products generated by tank bottom oily sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 717-726. doi: 10.12030/j.cjee.202003141
Citation: YANG Huifen, LI Zhen, FU Peng, SONG Zhenguo, YANG Hang, MA Wenkai. High value-added utilization approach of pyrolysis products generated by tank bottom oily sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 717-726. doi: 10.12030/j.cjee.202003141

罐底油泥热解产物高附加值利用途径

    通讯作者: 杨慧芬, E-mail: yanghf@ustb.edu.cn
    作者简介: 杨慧芬(1964—),女,博士,教授。研究方向:固体废物资源化。E-mail:yanghf@ustb.edu.cn
  • 1. 北京科技大学土木与资源工程学院,北京 100083
  • 2. 矿物加工科学与技术国家重点实验室,北京 102628
基金项目:
矿物加工科学与技术国家重点实验室开放基金资助项目(BGRIMM-KJSKL-2019-15)

摘要: 为探讨罐底油泥热解产物的高附加值利用途径,利用GC-MS、XRF、XRD、SEM-EDS等方法对罐底油泥热解产物进行了详细的性能分析。在此基础上,选择3种典型阴离子Cr(VI)、PO34和F和3种典型阳离子Cd2+、Pb2+和Cu2+进行了吸附去除实验。结果表明:罐底油泥热解得到的油品,其烷烃化合物含量高达50.91%,碳数主要分布在(n-C12)~(n-C30),与矿物浮选药剂制备原料的性能类似;热解得到的残渣具有疏松多孔的结构,其结构骨架由元素C、S、Fe、Ca、Al、Si、O等共同构成,且以FeS、Fe1−xS、Fe7S8、CaS、CaAl2Si2O8晶体矿物及非晶态物相形式镶嵌在其中,在水中可起到还原剂、硫化物沉淀剂和钙盐沉淀剂的作用;热解渣对水中阴、阳离子均有很高的去除率,在热解渣用量分别为3、10、12、1、0.8和0.8 g·L−1时,Cr(Ⅵ)、PO34、F、Cd2+、Pb2+和Cu2+去除率分别达到99.6%、98.9%、96.8%、99.3%、98.9%和99.4%。XRD分析结果表明,上述污染离子的去除是通过在热解渣表面生成FeCr2O4、Ca3(PO4)2、CaF2、CdS、Cd(OH)2、CdAl2Si2O8、PbS、Pb(OH)2、PbAl2Si2O8、CuS、Cu(OH)2、CuAl2Si2O8沉淀而实现的。本实验结果可为罐底油泥热解产物尤其热解渣的高附加值利用途径提供参考。

English Abstract

  • 在石油勘探、开采、炼制、清罐和储运过程中,由于事故、跑冒滴漏、自然沉降等原因会产生大量的含油污泥。这些油泥主要分为落地油泥、罐底油泥和炼厂油泥3类。罐底油泥是原油中的石蜡、沥青质、胶质等重质组分和所夹带的少量机械杂质、沙粒、泥土、重金属盐类等无机杂质在原油长期储存过程中,自然沉降在储油罐底部形成的黑稠淤泥。据统计[1-2],罐底油泥的体积通常约占储油罐的1%,我国每年平均产生100×104 t以上的罐底油泥。

    罐底油泥中含有苯系物、酚类及锌、铅、铜、镍、铬等少量重金属[3],我国已将其列入危险废物名录[4]。罐底油泥与其他油泥相比,碳氢化合物(油)含量较高。目前采用的集中堆放干化和集中填埋的处理方式[5],这不仅会造成严重的环境污染,也会造成其中石油资源的极大浪费。因此,通过罐底油泥中油品的回收实现罐底油泥的资源化、减量化和无害化是石化行业极为关注且亟待解决的重要课题。

    目前已开发的自罐底油泥中回收油品的方法包括溶剂萃取[6-8]、热化学[9-12]、热解[13-14]、泡沫浮选[15-16]、超声波[17]、水强化CO2萃取[18]、生物法[19-20]等。其中,通过热解法回收油品是在无氧或缺氧条件下,将油泥加热到一定温度,使其中的大分子烃类物质裂解成轻质组分,再通过冷凝方式分离获取油品的方法。热解法处理规模大并可获得高附加值油品,从而受到了广泛的关注[21]。为了获得更高的油品回收率并降低热解温度,研究人员在热解工艺、设备方面进行了深入研究。ZUOJIAO等[22]在罐底油泥热解前,对罐底油泥进行HNO3氧化/酸化预处理,使热解温度由700 ℃降到550 ℃,同时油品回收率从4.41%提高到27.53%,热解渣的亚甲基蓝吸附值达到89.25 mg·g−1。LIN等[23]利用白云石作为催化剂,在特殊的U型反应器中对罐底油泥进行催化热解,发现油品中饱和烃含量增加了45.0%,沥青质含量减少了88.5%。CHENG等[14]探讨了在罐底油泥热解过程中注入蒸汽和添加灰分对油品成分分布和质量的影响,发现注入蒸汽和添加灰分对提高油品的质量和回收率均有积极的影响。DOMINGUEZ等[24]对微波、电炉热解罐底油泥所得油品进行了比较,发现微波热解所得油品的主要成分是正构烷烃、1-烯烃和芳香族化合物,而电炉热解产生的油品与微波炉完全不同。GONG等[13]在研究罐底油泥热解回收其中油品的同时,也研究了热解碳的产量及其燃烧性能,发现当热解温度大于600 ℃时会降低油品的产量,而热解碳的产量始终维持在55%左右。截至目前,针对罐底油泥资源化的研究较多集中在回收其中的油品上,但针对热解过程产生的热解渣的利用方面则鲜见报道。ZUOJIAO等[22]和GONG等[13]对热解渣性能进行了分析,但未涉及热解渣的高附加值利用研究。本研究拟通过对罐底油泥热解产物尤其是热解渣的性能分析,寻找热解产物高附加值利用的途径,以期为罐底油泥的无害化、资源化利用提供参考。

  • 罐底油泥取自北京燕山石化公司储油罐。取回的油泥为黑色黏稠膏状物,流动性差,有油亮光泽,乳化严重,散发出恶臭气味,其水分、总有机物、无机物含量分别为24.29%、70.82%、4.89%。总有机物中,饱和烃、芳香烃、胶质、沥青质分别占54.92%、19.68%、13.96%、10.07%。

  • 罐底油泥的热解在管式炉中进行,图1为热解装置示意图。罐底油泥充分混匀后,置于弧形刚玉坩埚舟,放入管式炉恒温区,在热解温度750 ℃、氮气流量100 mL·min−1、升温速度5 ℃·min−1条件下热解反应75 min。挥发出的热解气通过冷凝管,冷凝后作为热解油品;不凝气通入碱液,处理后排空;坩埚中剩余残渣为热解渣,在炉中冷却至室温后取出,磨细至1 mm以下,备用。

  • 利用Agilent 7890-5975气相色谱质谱(GC-MS)联用仪测试和分析油品成分及含量,利用德国MRU VARIO PLUS烟气分析仪测定不凝气成分和含量。利用X-射线荧光光谱仪(XRF)普查热解渣成分,再利用化学分析法准确测定其主要成分含量。利用《固体废物浸出毒性浸出方法水平振荡法》(HJ 557-2010)[25]与《固体废物浸出毒性浸出方法硫酸硝酸法》(HJ/T 299-2007)[26]分别进行热解渣的浸出实验,并根据《污水综合排放标准》(GB 8978-1996)[27]判断其毒性。利用扫描电镜-能谱仪(SEM-EDS)分析热解渣的形貌及微观成分,利用X-射线粉晶衍射(XRD)方法分析其物相组成,利用HQ30d便携式pH计测量热解渣溶液的碱性。

    选择3种典型污染阴离子Cr(VI)、PO34和F和3种典型污染阳离子Cd2+、Pb2+和Cu2+进行污染离子的吸附去除实验。分别用分析纯K2Cr2O7、H3PO4和HF药剂配制污染阴离子浓度为100 mg·L−1的水溶液,用硫酸调整溶液pH至2。分别用分析纯CdSO4、Pb(NO3)2和CuSO4·5H2O药剂配制污染阳离子浓度为20 mg·L−1的水溶液,不调整溶液pH。量取配置的污染离子水溶液100 mL,放进250 mL锥形瓶中,再称取设计重量的热解渣加入其中。锥形瓶置于30 ºC恒温摇床,以转速200 r·min−1振荡60 min后取出,在5000 r·min−1离心机中离心10 min,获得上清液,用电感耦合等离子体质谱仪(ICP-MS)测定上清液中剩余污染离子浓度,并根据式(1)计算污染离子的去除率,污染离子的去除率越高,说明热解渣对这种污染离子的吸附去除能力越强。

    式中:η为污染离子去除率;C0Ce分别为溶液中污染离子的初始浓度和反应后的剩余浓度,mg·L−1

  • 罐底油泥热解产物包括油品、不凝气和热解渣3种,以油品为主。图2为热解油品的GC-MS谱图。谱图中明显可见饱和烃的典型峰[28],其碳数为C10~C33,但主要分布于C12~C30,而且主要是烷烃混合物。烯烃等其他有机化合物占比较少。油品中鉴定出57种有机化合物,包括烷烃、烯烃、萘、蒽、菲等。

    表1为GC-MS法鉴定的油品中主要化合物及其相对含量。由表1可见,油品中烷烃化合物的含量高达50.91%,占总油品的75.14%。其中,(n-C12)~(n-C30)正构烷烃化合物、(i-C13)~(n-C15)异构烷烃化合物含量分别为47.05%、3.86%,分别占总烷烃化合物92.42%、7.58%。油品中也含有(1-C13)~(1-C19)烯烃化合物占7.61%。其他类型的有机化合物占9.23%。(n-C12)~(n-C30)的油品除了可作为燃料油和石化工业原料[29]使用外,也是制备矿物浮选药剂的极好原料[30]。例如,氧化石蜡皂就是以石油炼制过程的副产物(含15~40个碳原子的饱和烃类混合物)为原料,在温度为150~170 ℃时,以空气为氧化剂,高锰酸钾为催化剂进行氧化加工、皂化而制得的一种浮选药剂。

    热解渣产率一般为13%~15%,是一种黑色粉末,无特殊气味,其密度为0.835 kg·m−3。利用XRF法检出了22种无机元素,结果见表2。热解渣中的主要元素包括Fe、S、Ca、Al、Si,还含有少量的Zn、Ni、Cu、Cr、Pb、As等重金属元素。

    热解渣中主要成分Fe、CaO、Al2O3、SiO2、S、C的准确含量分别为25.69%、11.40%、8.52%、8.06%、18.43%、22.70%,其中Fe、S、C三者含量合计66.82%,由于C的相对分子质量仅为12,所以,C的摩尔分数较Fe、S高,表明热解渣是一种炭质复合材料。

    表3反映了热解渣中重金属含量、浸出浓度与排放浓度对比结果。可见,2种浸出方法浸出的重金属浓度不同。HJ/T 299-2007法浸出浓度明显高于HJ 557-2010浸出浓度,但2者浸出浓度均远低于GB 8978-1996重金属排放标准。可以判断,热解渣即使在强酸性体系中使用,其重金属也是稳定的,不会造成二次环境污染。

    图3反映了热解渣的SEM-EDS分析结果。可以看出,热解渣中主要存在A、B、C 3种代表性颗粒,3种颗粒的内部结构分别见图3(b)图3(c)图3(d)。显然,颗粒A内部为多孔空间网状结构,颗粒B、C内部均为空间层状结构。在3种颗粒中选择代表性的D、E、F 3点进行EDS分析,结果见图3(e)图3(f)图3(g)。可以看出,不同点均由C、S、Fe、Ca、Al、Si等元素组成,但不同点的元素含量不同,表明热解渣多孔结构的骨架由含量不同的元素C、S、Fe、Ca、Al、Si等共同构成。

    图4反映了热解渣的物相组成。可以看出,热解渣中的S、Fe、Ca、O、Al、Si元素主要以FeS、Fe1-xS、Fe7S8、CaS和CaAl2Si2O8晶体化合物的形式存在。在XRD中未见元素C的衍射峰,表明元素C是以非晶态的形式存在于热解渣中。热解渣中CaO、Al2O3、SiO2含量较高,而XRD中仅见到CaAl2Si2O8晶体衍射峰,说明热解渣中多数的CaO、Al2O3、SiO2可能以非晶态的硅酸盐或硅铝酸盐的形式存在。

  • 由热解渣特性分析可知,热解渣中的S多以低价形式存在,而低价S2−具有还原性,也具有与重金属离子生成硫化物沉淀的作用。这一特性使热解渣具有充当水中污染Cr(Ⅵ)的还原剂、污染重金属的硫化剂使用的可能。此外,热解渣在水溶液中呈碱性,图5为热解渣用量对pH=2的硫酸溶液pH的影响。显然,pH=2的硫酸溶液加入热解渣后,其pH得到提高。且随着热解渣用量的增大,溶液pH逐渐增大,最后趋于平衡。可以判断,热解渣在水中可能发生了式(2) ~式(4)的水化反应。

    热解渣发生水化反应后,使水溶液呈碱性,其表面或溶液出现Ca2+。因此,水溶液中污染重金属离子还有可能在加入热解渣后形成氢氧化物沉淀而被去除,水溶液中污染阴离子有可能与其Ca2+反应生成钙盐沉淀而被去除。

    图6为热解渣用量对3种典型污染阴离子去除率的影响。可见,热解渣对3种污染阴离子均具有较好的去除作用。随着热解渣用量的增大,去除率亦随之迅速增大,然后趋于平衡。但不同类型的阴离子,要达到最大去除率时所需的热解渣用量不同。当Cr(Ⅵ)、PO34和F达到其最大去除率99.6%、98.9%和96.8%时,需要的热解渣用量分别为3、10、12 g·L−1,表明热解渣可以作为水中污染阴离子Cr(Ⅵ)、FPO34的去除材料使用,去除能力顺序为Cr(Ⅵ)>PO34>F

    为考察Cr(Ⅵ)、PO34和F的去除机理,对其在热解渣表面吸附生成的物相分别进行了XRD分析,结果见图7。通过图7图4的对比可知,热解渣去除典型阴离子前后,其表面的主要物相没有发生明显变化,仍然以FeS、Fe1-xS、Fe7S8、CaS和CaAl2Si2O8为主。不同的是,用于去除典型阴离子后,热解渣表面的CaS和CaAl2Si2O8衍射峰有所减弱,特别是CaS衍射峰减弱到几乎消失,热解渣表面新生成了FeCr2O4、Ca3(PO4)2和CaF2等物相。这表明水中Cr(Ⅵ)、PO34和F在热解渣表面发生了吸附,并与其表面相关成分发生了反应,可能的化学反应如式(5) ~式(11)所示。通过这些反应,使水中Cr(Ⅵ)、PO34和F得以去除。

    图8为热解渣用量对3种污染阳离子去除率的影响。可见,热解渣对3种阳离子均具有较好的去除作用。随着热解渣用量的增大,去除率亦随之迅速增大,然后趋于平衡。不同类型的3种阳离子,其达到最大去除率时所需的热解渣用量差别不大。当Cd2+、Pb2+和Cu2+达到最大去除率99.3%、98.9%和99.4%,需要的热解渣用量分别为1、0.8、0.8 g·L−1,表明热解渣可以作为水中污染阳离子Cd2+、Pb2+和Cu2+的去除材料,且热解渣对这3种阳离子的去除能力相近。

    为考察Cd2+、Pb2+和Cu2+的去除机理,对其在热解渣表面吸附生成的物相进行了XRD分析,结果见图9。如图所示,与去除阴离子类似,热解渣表面主要物相也没有发生明显变化,仅CaS和CaAl2Si2O8衍射峰较图4明显减弱。分别去除Cd2+、Pb2+和Cu2+后,热解渣表面出现了CdS、Cd(OH)2、硅铝酸镉,PbS、Pb(OH)2、硅铝酸铅和CuS、Cu(OH)2的新衍射峰,表明Cd2+、Pb2+和Cu2+与热解渣表面的S2−、OHAl2Si2O82发生了化学反应,生成了相应的硫化物、氢氧化物及硅铝酸盐沉淀。其可能发生的化学反应如式(12)~式(19)所示。通过这些反应,使水中Cd2+、Pb2+和Cu2+得以去除。

  • 1)在罐底油泥通过热解得到的油品中,(n-C12)~(n-C30)正构烷烃化合物占比为47.05%,(i-C13)~(n-C15)异构烷烃化合物占比为3.86%。热解渣具有疏松多孔的骨架结构,元素C、S、Fe、Ca、Al、Si等以FeS、Fe1-xS、Fe7S8、CaS、CaAl2Si2O8晶体矿物及非晶态硅酸盐或硅铝酸盐镶嵌在其骨架结构中。热解渣表面能水解生成Ca2+、S2−、OH等离子,其中Ca2+可促使溶液中污染阴离子生成难溶性钙盐,S2−既可充当还原剂又可充当硫化物沉淀剂,OH可与S2−一起共同沉淀去除溶液中污染的重金属离子。

    2)热解渣不仅能有效去除溶液中的阴离子Cr(Ⅵ)、FPO34,也能有效去除溶液中的阳离子Cd2+、Pb2+和Cu2+,但对于不同离子,去除机理亦不同。

    3)热解渣的特殊组成和结构使其可在阴、阳离子处理中获得高附加值利用,有望成为去除工业废水中阴、阳离子的吸附材料。

参考文献 (30)

返回顶部

目录

/

返回文章
返回