-
活性污泥法是当今应用最广泛的污水处理技术。伴随着污水处理过程会产生大量的剩余污泥,而污泥的处理处置已成为污水处理中最主要的问题之一[1]。污泥在最终处置或再利用前,需进行污泥脱水减量化。但是,由于污泥中有机物含量高,其污泥絮体颗粒呈胶状结构且拥有高度亲水性,易与水分子以不同的形式结合使得污泥中部分水分难以脱除,最终导致简单脱水后的污泥仍具有较高的含水率。脱水污泥的高含水率已成为制约其后续处理处置的主要障碍之一,故了解污泥脱水的制约因素显得尤为重要。不同的气候差异可能导致不同地区的污泥在理化性质上产生区别。有研究[2]表明,在北方污泥有机质组成中,蛋白质和脂质的比例高于南方;北方污泥中N、P元素含量远高于南方。而且,随着我国城市建设的不断发展,不同城市的污泥性质也会发生变化[3]。不同城市的污水水质存在明显差异,这些因素都会对污泥性质产生影响[4]。
本研究在我国南北方各选取5座相对分散且具有代表性的污水处理厂的污泥为研究对象,对其理化性质进行系统性对比分析,并对污泥脱水性能与其理化性质间的关系进行研究,以期根据不同的污泥特性为各污水处理厂的污泥调理脱水技术选择提供参考。
我国不同地区市政污泥理化性质及其对脱水性能的影响
Effect of the physicochemical properties of municipal sludge from different areas in China and their influence on dewatering performance
-
摘要: 选取我国南北方地区各5处典型污水处理厂,对其污泥的絮体特性、胞外聚合物(EPS)、脱水性能进行了对比研究。Pearson相关性分析结果表明,不同地区污水处理厂污泥的理化性质和脱水性能方面具有明显差异;污泥絮体粒径与污泥有机质含量呈显著正相关。相比多糖,污泥EPS中蛋白质对污泥脱水性能的影响更大,尤其溶解性胞外聚合物(S-EPS)中的蛋白质含量对污泥脱水性能的影响最为显著(r=0.704, P<0.05)。三维荧光和平行因子分析显示,溶解性EPS分为色氨酸类蛋白质(TPN)和腐殖酸(HA) 2类荧光组分,而疏松结合型EPS和紧密结合型EPS中含有TPN和富里酸(FA) 2类荧光组分。本研究结果可以为污泥调理脱水提供参考。Abstract: In this study, five typical sewage treatment plants in southern China and northern China were selected to compare floc properties, extracellular polymeric substances (EPS) and dewatering performances of sludge, respectively. The Pearson correlation analysis results showed some obvious differences in physicochemical properties and dewatering performances of sludge from sewage treatment plants in different areas. The average particle size of sludge had a positive correlation with its organic matter content. The protein content in EPS had greater influence on dewatering performance than polysaccharide. The protein content in soluble EPS (S-EPS) had the most significant effect on sludge dewatering performance (r=0.704, P<0.05). Three-dimensional fluorescence analysis and parallel factor analysis showed S-EPS contained tryptophan proteins (TPN) and humic acid (HA), while loosely-bound EPS (LB-EPS) and tightly-bound EPS (TB-EPS) contained TPN and fulvic acid (FA). This study provided new insights for sludge conditioning and dewatering.
-
表 1 污泥样品取样点及污泥基本指标情况
Table 1. Sampling points and basic information of sludge samples
编号 水厂名称 省市 区域 污水处理工艺 进水组成 污泥类型 MLSS/MLVSS 进水COD/(mg·L−1) SVI/(mL·g−1) S1 长沙污水处理厂 湖南省 南方 氧化沟 100%生活水 剩余污泥 0.354 4 248.37 50 S2 永州污水处理厂 湖南省 南方 A2/O 100%生活水 剩余污泥 0.405 8 156.55 62 S3 锦州污水处理厂 辽宁省 北方 A2/O 90%生活水 剩余污泥 0.601 1 265.31 109 S4 沙河污水处理厂 北京市 北方 A2/O 100%生活水 混合污泥 0.441 3 279.07 80 S5 张北污水处理厂 河北省 北方 氧化沟 50%生活水 混合污泥 0.688 9 628.61 142 S6 玉溪污水处理厂 云南省 南方 A2/O 100%生活水 混合污泥 0.475 7 367.13 127 S7 阎良污水处理厂 陕西省 北方 A2/O 100%生活水 混合污泥 0.591 8 854.72 110 S8 都匀污水处理厂 贵州省 南方 A2/O 100%生活水 混合污泥 0.427 9 156.45 95 S9 路桥污水处理厂 浙江省 南方 氧化沟 93%生活水 混合污泥 0.500 1 202.72 106 S10 莒南污水处理厂 山东省 北方 A2/O 30%生活水 混合污泥 0.409 8 188.08 146 表 2 污泥的基本性质与污泥脱水性能的相关性分析
Table 2. Correlation analysis of sludge basic properties and its dewatering performance
考察量 nCST pH d0.5 Zeta MLSS/MLVSS nCST 1 pH 0.528 1 d0.5 −0.256 0.311 1 Zeta 0.350 0.513 −0.035 1 MLSS/MLVSS 0.287 0.330 0.709* 0.235 1 注:*P<0.05。 表 3 污泥EPS中多糖组分含量与污泥脱水性能的相关性分析
Table 3. Correlation analysis of polysaccharide content in EPS and its dewatering performance
考察量 nCST SEPS LBEPS TBEPS nCST 1 S-EPS 0.352 1 LB-EPS 0.170 0.769** 1 TB-EPS 0.392 0.138 0.504 1 注:**P< 0.01。 表 4 污泥EPS中蛋白质组分含量与污泥脱水性能的相关性分析
Table 4. Correlation analysis of protein content in EPS and its dewatering performance
考察量 nCST SEPS LBEPS TBEPS nCST 1 S-EPS 0.858** 1 LB-EPS 0.618 0.877** 1 TB-EPS 0.448 0.687* 0.723* 1 注:*P<0.05,**P< 0.01。 表 5 污泥性质与进水COD的相关性分析
Table 5. Correlation analysis of sludge properties and sewage COD content
考察量 COD nCST MLSSMLVSS COD 1 nCST −0.034 1 MLSS/MLVSS 0.704* 0.287 1 注:*P<0.05。 -
[1] PILLI S, YAN S, LEBLANC R J, et al. Ultrasonic pretreatment of sludge: A review[J]. Ultrasonics Sonochemistry, 2011, 18(1): 1-18. [2] 吕丰锦, 刘俊新. 我国南北方城市污水处理厂污泥性质比较分析[J]. 给水排水, 2016, 42(S1): 63-66. [3] 郭广慧, 杨军, 陈同斌, 等. 中国城市污泥的有机质和养分含量及其变化趋势[J]. 中国给水排水, 2009, 25(13): 120-121. [4] 张玲玲, 陈立, 郭兴芳, 等. 南北方污水处理厂进水水质特性分析[J]. 给水排水, 2012, 38(1): 45-49. doi: 10.3969/j.issn.1002-8471.2012.01.009 [5] ZHANG W, TANG M, YANG P, et al. Micro-interfacial mechanisms on sludge dewaterability enhancement using cerium chloride for preparation of carbon-based functional material[J]. Journal of Hazardous Materials, 2020, 386: 121930. [6] CAO B, ZHANG W, WANG Q, et al. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation[J]. Water Research, 2016, 105(15): 615-624. [7] ZHANG W, PENG S, XIAO P, et al. Understanding the evolution of stratified extracellular polymeric substances in full-scale activated sludges in relation to dewaterability[J]. RSC Advances, 2014, 5(2): 1282-1294. [8] AI J, ZHANG W, CHEN F, et al. Catalytic pyrolysis coupling to enhanced dewatering of waste activated sludge using KMnO4Fe(II) conditioning for preparing multi-functional material to treat groundwater containing combined pollutants[J]. Water Research, 2019, 158: 424-437. [9] 李彬彬, 余静, 何成达, 等. OSA工艺活性污泥的吸附性能研究[J]. 环境工程, 2016, 34(S1): 272-277. [10] CURVERS D, USHER S P, KILCULLEN A R, et al. The influence of ionic strength and osmotic pressure on the dewatering behaviour of sewage sludge[J]. Chemical Engineering Science, 2009, 64(10): 2448-2454. [11] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. [12] 梁嘉林. 芬顿氧化联合氧化钙对五种市政污泥深度脱水性能影响的研究[D]. 广州: 广东工业大学, 2016. [13] HOUGHTON J I, STEPHENSON T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J]. Water Research, 2002, 36(14): 3620-3628. [14] 何培培, 余光辉, 邵立明, 等. 污泥中蛋白质和多糖的分布对脱水性能的影响[J]. 环境科学, 2008, 29(12): 3457-3461. [15] ZHANG W, YANG P, YANG X, et al. Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process[J]. Bioresource Technology, 2015, 181: 247-253. [16] 付尧, 暴瑞玲, 顾文卓, 等. 低水力负荷下好氧颗粒污泥的特性及胞外聚合物关键组分对该污泥稳定性的影响[J]. 净水技术, 2017, 36(2): 11-18. [17] HENDERSON R K, BAKER A, MURPHY K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43(4): 863-881. [18] YU G H, HE P J, SHAO L M. Novel insights into sludge dewaterability by fluorescence excitation-emission matrix combined with parallel factor analysis[J]. Water Research, 2010, 44(3): 797-806. [19] FENG X, DENG J, LEI H, et al. Dewaterability of waste activated sludge with ultrasound conditioning[J]. Bioresource Technology, 2009, 99(3): 1074-1081.