高硬水软化中Fe3O4诱导结晶对微晶形成的控制

陆洲, 聂小保, 余志, 何一帆, 易晋, 胡明睿, 隆院男, 蒋昌波. 高硬水软化中Fe3O4诱导结晶对微晶形成的控制[J]. 环境工程学报, 2021, 15(2): 563-571. doi: 10.12030/j.cjee.202005020
引用本文: 陆洲, 聂小保, 余志, 何一帆, 易晋, 胡明睿, 隆院男, 蒋昌波. 高硬水软化中Fe3O4诱导结晶对微晶形成的控制[J]. 环境工程学报, 2021, 15(2): 563-571. doi: 10.12030/j.cjee.202005020
LU Zhou, NIE Xiaobao, YU Zhi, HE Yifan, YI Jin, HU Mingrui, LONG Yuannan, JIANG Changbo. Control of the microcrystal formation during high-hardness water softening with Fe3O4 induced-crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 563-571. doi: 10.12030/j.cjee.202005020
Citation: LU Zhou, NIE Xiaobao, YU Zhi, HE Yifan, YI Jin, HU Mingrui, LONG Yuannan, JIANG Changbo. Control of the microcrystal formation during high-hardness water softening with Fe3O4 induced-crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 563-571. doi: 10.12030/j.cjee.202005020

高硬水软化中Fe3O4诱导结晶对微晶形成的控制

    作者简介: 陆洲(1996—),男,硕士研究生。研究方向:饮用水安全保障等。E-mail:luzhouofficial@qq.com
    通讯作者: 聂小保(1979—),男,博士,副教授。研究方向:饮用水深度处理等。E-mail:niexbcslg@163.com
  • 基金项目:
    国家自然科学基金资助项目(51408068);湖南省教育厅科学研究重点项目(18A122);湖南省重点研发项目(2019SK2191)
  • 中图分类号: X522

Control of the microcrystal formation during high-hardness water softening with Fe3O4 induced-crystallization

    Corresponding author: NIE Xiaobao, niexbcslg@163.com
  • 摘要: 为降低高硬水软化过程中微晶产率和改善结晶产物的分离性能,采用Fe3O4作为诱导结晶体系晶种,通过改变晶种投加量,考察了诱导结晶对结晶体系微晶的控制效果,并探讨了微晶产率与结晶体系上清液浊度的关系,以及诱导结晶体系出水混凝除浊效果。结果表明:诱导结晶和均相结晶产物晶型均为方解石,诱导结晶体系中晶种的引入可起到抑制均相结晶、降低微晶产率的效果,但均相结晶仍不可避免,提高Fe3O4投加量有助于微晶产率的降低;结晶体系中上清液浊度与微晶产率呈线性正相关关系,当Fe3O4投加量由0 g·L−1提高到10 g·L−1时,微晶产率由32.3%降至9.0%,钙去除率由35.6%提高至51.7%,相应上清液浊度由215.9 NTU降至22.7 NTU。Fe3O4投加量为10 g·L−1的诱导结晶体系,经磁分离和7 mg·L−1的PAC混凝后,浊度可降至2.2 NTU。延长诱导结晶时间至50 min以上,pH可降至8.5以下。以上研究结果可为提升高硬度结晶软化效果和降低沉淀污泥的产量提供参考。
  • 污泥未经处理随意排放堆置,会造成严重的环境污染问题。国际上污泥主要有土地利用、卫生填埋、焚烧和投海等4种处置方式[1]。其中,填埋处置对技术指标要求相对宽松、运行成本低,是现阶段我国污泥处置的主要方式,且为简易的单独填埋,即污泥经过脱水消化后,直接倾倒于事先设置好的填埋坑中,并采用膜或土覆盖进行封场。由于我国污水处理厂对污泥处理的重视度不高,技术资金投入力度也不够,导致污泥的含水率高、物理力学性质差,不仅达不到市政污泥的填埋标准,而且造成填埋场库容的日益紧张,更严重的是会埋下安全隐患[2],如深圳下坪垃圾填埋场和山西太原垃圾填埋场均发生过填埋体的滑坡事故。为此,在《城镇污水处理厂污泥处理处置技术指南》[3]的国家规范中对填埋污泥的各项指标做出了明确规定。与此同时,我国的污泥产量也在逐年增加,目前,国内上海老港、成都长安、深圳下坪、杭州天子岭等填埋库区库容已经出现严重不足。因此,污泥填埋场内坑体加固与库内污泥深度脱水减量成为目前多数填埋场所面临的问题。

    现阶段常用机械压滤方式对污泥进行深度脱水。从机械脱水原理来看,机械压滤的过程实质上就是污泥的排水固结过程,即在总应力作用下孔隙水不断被排出的过程。孙政等[4]对污水处理厂脱水污泥的固结特性进行了研究,发现污泥的固结规律与一般黏土差别较大,超孔隙水压力的消散较慢。朱婧等[5]对污泥、淤泥、粘土的压缩特性进行了对比研究,认为污泥与淤泥的固结不同,在外力荷载下其固结过程可以分多个阶段。王鹏等[6]采用纤维加筋技术,研究了不同掺量下加筋污泥的固结压缩特性。范惜辉等[7]选用普通硅酸盐水泥和硫铝酸盐水泥作为固化材料,研究了固化污泥在不同应力下的压缩、渗透规律。机械压滤技术一般是先采用化学药剂预调质,使污泥颗粒的结合水释放出来之后,再其进行深度脱水,将湿基含水率降至60%以下。采用药剂真空预压法处理污泥也是如此,调质改性后的污泥与工程废浆类似,在真空预压过程中存在流固的两相转变,并在大部分时间里处于弹塑性状态,此时需要采用土力学中的固结理论进行分析[8]。武亚军课题组[9][10]对于无机药剂调质过的新鲜污泥的真空固结特性进行了研究,由于暂存库区污泥与新鲜污泥性质不同,固结特性也必然有差异,而目前关于这方面的研究并未见有所报道。此外,FeCl3是比较常用的一种调质药剂,而芬顿试剂在污水处理中应用较多,但不常用于污泥调质,因此,一方面为了对新鲜污泥与暂存库污泥进行对比,另一方面为了对FeCl3和芬顿试剂的调质效果进行对比,本研究采用土力学中的固结实验对分别采用2种不同药剂调质过的填埋污泥的压缩固结特性进行了研究,研究结果可为机械压滤和真空预压处理填埋污泥的工程实践提供参考。

    实验选用的药剂分别为FeCl3·6H2O、FeSO4、浓硫酸,以上药剂均为分析纯(AR)。实验所需H2O2通过40%的双氧水颗粒(昌乐鑫富强商贸有限公司)按浓度比例添加。实验仪器主要包括中压固结仪和电子天平等。

    对暂存库区填埋污泥与新鲜污泥的各项物理指标进行了测试,其中比重采用比重瓶法测试;密度采用环刀法测试;含水率采用低温烘干法测试;有机物采用灼失量法测试。结果表明,填埋污泥与新鲜污泥的含水率分别为74.1%和82.17%,有机质含量分别为40.9%和64.9%,比重分别为1.87和1.57,密度分别为1.2 g·cm−3和1.02 g·cm−3。由此可见,填埋污泥具有比新鲜污泥含水率低、有机物含量低、比重和密度大等特点。

    固结实验的药剂调质方案中氯化铁的添加量分别为0%、10%、20%、30%和40%;芬顿试剂的添加方案如表1所示。装入烧杯中置于常温下放置24 h,待污泥与药剂充分反应后,再均匀装填入固结仪,每个实验组别设置2组平行实验。由于污泥含水率较高,初级固结应力较大时容易发生冒浆,选取初级固结应力为3.125 kPa,加荷比为1,将最大固结应力增加至400 kPa。根据《土工试验方法标准》(GB/T50123-1999),加载过程中按规定时间记录百分表读数,由于污泥稳定达到稳定标准时间较长,每级加载48 h。第1级固结应力p设置为3.125 kPa,之后按6.25、12.5、25、50、100 kPa依次加载,以沉降量小于0.005 mm·h−1为沉降稳定的标准。

    表 1  污泥固结实验芬顿试剂调质方案
    Table 1.  Consolidation test plan of sludge conditioned by Fenton reagent
    编号Fe2+/%H2O2/%H2O2/Fe2+
    1441
    2461.5
    3482
    4881.5
    58122
    68163
      注:添加量表示占污泥干基的质量比。
     | Show Table
    DownLoad: CSV

    添加药剂之后污泥的孔隙比e (指污泥中孔隙体积与固体体积的比值,初始孔隙比e0采用含水率和比重进行换算,压缩过程中的孔隙比根据压缩量测试)会发生较大的变化,不同种类的药剂添加量与初始孔隙比的关系如图1所示。由图1可知,经过药剂调质改性后,e均有不同程度的增大。采用FeCl3调质后(图1(a)),污泥的初始孔隙比e0变化明显,从原始污泥的4.098上升至6.681,但随着药剂掺量的增加,污泥的孔隙变化较为平缓,最终达到7.244。采用芬顿改性后(图1(b)),当Fe2+的掺量为4%时,污泥孔隙比随着H2O2掺量的增加变化明显,由4.802上升至7.092;当Fe2+的掺量为8%时,污泥孔隙比随着H2O2掺量的增加变化较为缓慢,最终达到4.908。这是由于在药剂调质过程中产生了大量气体,这些气体不能完全从污泥中排出,而是积存分布在污泥内部,导致污泥的空隙变多,从而使得孔隙比增大。

    图 1  不同药剂种类的添加量与初始孔隙比的关系
    Figure 1.  Relationship between sludge initial porosity and the dosage of different agents

    压缩实验每级荷载的加载周期为48 h,不同FeCl3添加量下改性污泥的孔隙比e与荷载p的关系如图2(a)所示。污泥初始孔隙比为4.098,略大于常规的软黏土,经过药剂调质后,污泥的初始孔隙比随着药剂添加量的增加逐渐变大,当药剂添加量为40%时,孔隙比达到7.244。不同芬顿配比掺量下改性污泥的e-p关系如图2(b)所示。由图2(b)可知,对比2种药剂调质后的污泥发现,在初级荷载作用下,样品的孔隙比迅速减小。通过对固结应力为100 kPa时的孔隙比变化量进行了分析,发现调质污泥的压缩量基本均达到总压缩量的70%以上。这是因为在前期压缩过程中,调质污泥较原始污泥颗粒间的空隙总量更多,颗粒间没有形成骨架,强度较低,在较低应力作用下,孔隙水排出顺畅,压缩量大,孔隙比减小幅度大。经过3.125、6.25、12.5、25、50 kPa荷载作用下,芬顿改性污泥的沉降量较大,孔隙被大幅压缩;当荷载大于50 kPa时,污泥沉降速率逐渐减慢,沉降幅度逐渐减小,污泥孔隙比被压缩幅度也逐渐减小。由于原始污泥中有机质含量较高,存在大量具有一定承载力的微生物残体和胶结絮状有机物,通过添加FeCl3与芬顿试剂可以一定程度上破坏微生物残体和胞外聚合物,减少了有机物的含量,样品更容易发生固结压缩。

    图 2  调质污泥的孔隙比-压力曲线
    Figure 2.  e-p curve of conditioned sludge

    将调质污泥的孔隙比e与固结应力p之间的关系可以绘制成半对数坐标曲线 (e-lgp),如图3所示。由图3(a)可知,孔隙比e与固结压力lgp之间呈明显的线性关系,这一结果与常规淤泥类似。填埋污泥的压缩指数为0.64,调质污泥的压缩指数在0.776~0.795,跟新鲜脱水污泥差别较大,且与常规淤泥在数值上也较为接近[1, 5]。由图3(a)可知,污泥初始孔隙比的拟合值要略大于实验实测值。这是由于污泥的机械脱水和长期填埋类似于加卸载过程,压缩之后产生不仅存在塑形变形,而且也会发生一定程度的回弹。污泥的实际孔隙比和理论孔隙比的差值在一定程度上反映了不可恢复的塑形变形。同时,重塑制样及拟合精度也会对该结果产生一定影响。由于污泥中含有凝胶状结构,颗粒接触点处有一定的胶结力,能承受一定的压力而变形较小,使得在初期加荷阶段曲线平缓。此外,一般的原状土由于前期固结应力的存在会发生自重应力下的固结。其压缩曲线会出现屈服应力的折点,污泥的e-lgp曲线近似为一条直线,由此可知,调质污泥不存在应力屈服点,属于欠固结土。不同芬顿配比掺量下改性污泥的e-lgp曲线如图3(b)所示。污泥孔隙比随固结应力增大基本呈线性减小,压缩指数Cc为0.444~0.591,整体上小于原始污泥和经FeCl3调质后的污泥,和常规淤泥土较为接近,但仍属于高压缩性土。

    图 3  调质污泥的孔隙比-压力曲线
    Figure 3.  e-lgp curve of conditioned sludge

    固结系数Cv是表示孔隙水压力消散快慢的物理量,固结系数越大,固结速度越快,反之越慢。采用时间平方根法可得到调质污泥固结系数Cv与固结应力p之间的关系。图4(a)为采用FeCl3在各级压力下的固结系数变化结果。由图4(a)可知,在初级压力下,调质污泥的固结系数在10−3 cm2·s−1数量级变化,随着固结应力的增大,污泥的固结系数逐渐减小。此外,随着FeCl3掺量的增大,固结系数也越大,且在前几级固结应力下固结系数的减小幅度也越来越明显。由各条固结系数曲线关系可以说明在每一级固结应力下,随着FeCl3添加量的增加,污泥的固结系数增大,即FeCl3掺量越多,固结过程中孔隙水压力消散越快,这一点与新鲜脱水污泥固结系数的变化规律一致[9]

    图 4  调质污泥固结系数与固结应力的关系
    Figure 4.  Relation between consolidation coefficient and consolidation stress of conditioned sludge

    对比芬顿调质的实验结果(图4(b))可知:当Fe2+的添加量为4%时,样品的固结系数随着H2O2添加量的增加而增大,当H2O2的掺量为8%时达到最大;当Fe2+的添加量为8%时,样品的固结系数随着H2O2掺量的增大呈现先增大后减小的趋势。这是由于当H2O2添加量过多时,不仅不能分解产生更多的羟基自由基,反而会使最初产生的羟基自由基发生泯灭[11]。就初级固结应力下的固结系数而言,芬顿试剂改性后初级固结应力下Cvmax=9.88×10−3 cm2·s−1,当固结应力增大到400 kPa时,Cv=1.85×10−3 cm2·s−1;经过40%的FeCl3调质后Cvmax=2.91×10−3 cm2·s−1,随着固结应力的增大,Cv减小至4.98×10−4 cm2·s−1。因此,当Fe2+添加量为4%、H2O2掺量为8%时,在固结应力作用下污泥的孔压消散最快。

    污泥与淤泥、黏土最大的区别是污泥的固体物质中存在40%~60%的有机物,这些有机物大多数是生物处理过程中的微生物残体[12]。因此,污泥中的水分赋存状态非常特殊,除了具有孔隙水、表面结合水以外,存在絮凝体内部的结合水和细胞颗粒内部的细胞水(或称为生物水)[13]。这些水赋存于可以承载一定压力的有机物絮体中,这使污泥中水分难以快速排出,因此,孔隙水压力消散时间非常漫长[14]。添加药剂在一定程度上使得微生物残体胞内水以及有机絮体中的结合水释放,从而大大缩短了固结时间。

    图5所示,通过固结系数可以推演出污泥在各级固结压力下的渗透系数k。由图5(a)可知:k和固结应力的规律与固结系数Cv和固结应力的规律相似,受固结应力影响较大;在0~25 kPa阶段,污泥的渗透系数下降明显,渗透性变差,这是因为大孔隙被压缩成小孔隙或密闭孔隙,孔隙比迅速减小导致排水困难。经过试剂调质后,长期填埋污泥的渗透系数增大,初级固结应力下的k从10−7 cm·s−1数量级增大到10−6 cm·s−1数量级,随着压力的增大,k减小为10−8 cm·s−1数量级;当FeCl3的掺量为40%时,样品在初级固结应力下的k=4.439×10−6 cm·s−1,随着固结应力的增加,k减小至3.796×10−8 cm·s−1;采用芬顿试剂调质的污泥在初级固结应力下的k=6.48×10−6 cm·s−1 (图5(b)),随着固结应力的增大k则下降至9.94×10−8 cm·s−1。若以固结系数和渗透系数作为污泥固结效果好坏的指标,芬顿试剂的效果更佳。

    图 5  调质污泥渗透系数和固结应力的关系
    Figure 5.  Relation between permeability coefficient and consolidation stress of conditioned sludge

    此外,土体渗透性与其孔隙比密切相关。有研究[5]表明,土体孔隙比e与lgk存在一定的关系。图6为在不同FeCl3掺量下调质污泥渗透系数与孔隙比关系曲线。由图6可知,随着孔隙比的减小,渗透系数也逐渐减小,反之,渗透性增大,e与lgk之间的线性关系近似成立。在一定孔隙比范围内,相同孔隙比下10%添加量的污泥渗透系数一直小于同样孔隙比的其他掺量污泥,20%、30%和40%添加量下的污泥在孔隙比为5~7时渗透系数较为接近,但是随着孔隙比减小,实验组污泥的渗透系数出现差异,且随着药剂掺量减小而递减,添加量为20%的实验组渗透系数接近于10%添加量的实验组。

    图 6  经FeCl3调质污泥渗透系数与孔隙比关系
    Figure 6.  Relation between permeability coefficient and porosity of sludge conditioned by FeCl3

    对比调质污泥和原始污泥可以发现,在重合的孔隙比区间内,相同孔隙比下对照组的渗透系数要大于添加药剂的实验组。这是因为与天然细粒土一样,污泥由于初期的加药絮凝和板框压滤,其初始状态的结构也很复杂,一旦扰动,原有的过水通道的形状、大小及其分布都会改变,故渗透系数也不同。这一点与普通的性质相近,相同孔隙比时扰动土样的渗透系数通常小于原状土样[15]。实际加药时由于搅拌分散以及药剂的作用导致污泥颗粒分散变小,絮状结构一定程度上被破坏,使得调质后的污泥在相同孔隙比下的k小于原始污泥。

    1)污泥经试剂调质后能在较短时间内排水固结稳定;调质污泥在低荷载水平下沉降量较大,在高荷载水平下沉降逐渐平稳,孔隙变化不大;经过FeCl3调质后的污泥压缩性增大,压缩指数由0.64增大至0.776~0.795。

    2)在初级固结应力下,调质污泥的固结系数在10−3 cm2·s−1数量级内变化。添加FeCl3的实验组Cv,max=2.91×10−3 cm2·s−1;芬顿调质实验组Cv,max=9.88×10−3 cm2·s−1。比阻和固结系数并不是简单呈负相关性,两者之间的定量关系还需要进一步研究。

    3)渗透系数受固结应力影响较大。当FeCl3的掺量为40%时,样品在初级固结应力下的渗透系数为4.439×10−6 cm·s−1,在400 kPa下,渗透系数减小为3.796×10−8 cm·s−1;采用芬顿试剂调质的污泥在初级固结应力下,k=6.48×10−6 cm·s−1,在400 kPa下,k=9.94×10−8 cm·s−1

    4)在芬顿试剂最小添加量时(4% Fe2++4% H2O2)的调质效果均比FeCl3最大添加量40%时的调质效果要好,因此,建议在工程实践中采用芬顿试剂进行调质污泥。

  • 图 1  Fe3O4投加量对体系结晶与软化效果的影响

    Figure 1.  Effect of Fe3O4 dosage on the crystallization and softening of systems

    图 2  Fe3O4投加量对结晶体系出水pH和浊度的影响

    Figure 2.  Effect of Fe3O4 dosage on pH and turbidity of system effluents

    图 3  诱导结晶体系上清液浊度与微晶产率线性拟合

    Figure 3.  Linear fitting of effluent turbidity and microcrystal yield ratio of induced-crystallization systems

    图 4  诱导结晶时间对体系出水pH的影响

    Figure 4.  Effect of induced-crystallization time on pH of system effluent

    图 5  PAC投加量对诱导结晶体系出水除浊效果的影响

    Figure 5.  Influence of PAC dosage on the turbidity removal effect of effluent from induced-crystallization systems

    图 6  不同Fe3O4投加量结晶产物扫描电镜图

    Figure 6.  SEM images of crystallized products at various Fe3O4 dosages

    图 7  不同Fe3O4投加量结晶产物XRD谱图

    Figure 7.  XRD patterns of crystallized products at various Fe3O4 dosages

  • [1] MAHASTI N N N, SHIH Y J, VU X T, et al. Removal of calcium hardness from solution by fluidized-bed homogeneous crystallization (FBHC) process[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 378-385. doi: 10.1016/j.jtice.2017.06.040
    [2] CHAUSSEMIER M, POURMOHTASHAM E, GELUS D, et al. State of art of natural inhibitors of calcium carbonate scaling[J]. Desalination, 2015, 356: 47-55. doi: 10.1016/j.desal.2014.10.014
    [3] 张程, 刘成, 胡伟. 复配药剂软化法对地下水中硬度的去除效能研究[J]. 中国给水排水, 2014, 30(7): 43-46.
    [4] 黄明珠, 董燕珊, 苏锡波, 等. 石灰软化法处理地下水源水硬度实验研究[J]. 中国给水排水, 2012, 38(3): 26-29.
    [5] COMSTOCK S E H, BOYER T H. Combined magnetic ion exchange and cation exchange for removal of DOC and hardness[J]. Chemical Engineering Journal, 2014, 241: 366-375. doi: 10.1016/j.cej.2013.10.073
    [6] LABBAN O, LIU C, CHONG T H, et al. Fundamentals of low-pressure nanofiltration: Membrane characterization, modeling, and understanding the multiionic interactions in water softening[J]. Journal of Membrane Science, 2017, 521: 18-32. doi: 10.1016/j.memsci.2016.08.062
    [7] 张华, 崔柳华, 吴百春. 国内外除硬技术现状研究[J]. 工业水处理, 2011, 31(12): 5-8. doi: 10.11894/1005-829x.2011.31(12).5
    [8] GAREA A, ALDACO R, IRABIEN A. Improvement of calcium crystallization by means of the reduction of fines formation[J]. Chemical Engineering Journal, 2009, 154: 231-235. doi: 10.1016/j.cej.2009.04.050
    [9] SCHETTERS M J A, VAN DER HOEK J P, KRAMER O J I, et al. Circular economy in drinking water treatment: Reuse of ground pellets as seeding material in the pellet softening processs[J]. Water Science and Technology, 2015, 71(4): 479-486. doi: 10.2166/wst.2014.494
    [10] TANG C, HEDEGAARD M J, LOPATO L, et al. Softening of drinking water by the pellet reactor: Effects of influent water composition on calcium carbonate pellet characteristics[J]. Science of the Total Environment, 2019, 652: 538-548. doi: 10.1016/j.scitotenv.2018.10.157
    [11] LU H, WANG J, WANG T, et al. Crystallization techniques in wastewater treatment: An overview of applications[J]. Chemosphere, 2017, 173: 474-484. doi: 10.1016/j.chemosphere.2017.01.070
    [12] TIANGCO K A A, DE LUNA M D G, VILANDO A C, et al. Removal and recovery of calcium from aqueous solutions by fluidized-bed homogeneous crystallization[J]. Process Safety and Environmental Protection, 128: 307-315.
    [13] 胡明睿, 聂小保, 周梨, 等. 饮用水钙硬度去除CaCO3的均相和非均相行为[J]. 给水排水, 2019, 45(12): 37-42.
    [14] DA SILVA C A M, BUTZGE J J, NITZ M, et al. Monitoring and control of coating and granulation processes in fluidized beds: A review[J]. Advanced Powder Technology, 2014, 25: 195-210. doi: 10.1016/j.apt.2013.04.008
    [15] AMOR M B, ZGOLLI D, TLILI M M, et al. Influence of water hardness, substrate nature and temperature on heterogeneous calcium carbonate nucleation[J]. Desalination, 2004, 166: 79-84. doi: 10.1016/j.desal.2004.06.061
    [16] NASON J A, LAWLER D F. Particle size distribution dynamics during precipitative softening: Declining solution composition[J]. Water Research, 2009, 43(2): 303-312. doi: 10.1016/j.watres.2008.10.017
    [17] MERCER K L, LIN Y P, SINGER P C. Enhancing calcium carbonate precipitation by heterogeneous nucleation during chemical softening[J]. Journal of American Water Works Association, 2005, 97(12): 116-312. doi: 10.1002/j.1551-8833.2005.tb07545.x
    [18] CHEN Y F, FAN R, AN D F, et al. Water softening by induced crystallization in fluidized bed[J]. Journal of Environmental Science, 2016, 50: 109-116. doi: 10.1016/j.jes.2016.08.014
    [19] 顾艳梅, 许航, 孙宇辰, 等. 造粒反应器处理高硬度水试验研究[J]. 土木建筑与环境工程, 2015, 37(3): 151-116.
    [20] 胡瑞柱, 黄廷林, 文刚, 等. 造粒流化床反应器去除地下水中硬度试验研究[J]. 中国给水排水, 2016, 32(21): 39-44.
    [21] FATTAH K P, MAVINIC D S, KOCH F A, et al. Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant[J]. Journal of Environmental Science and Health, 2008, 43(7): 756-764. doi: 10.1080/10934520801960052
    [22] DAI H, LU X, PENG Y, et al. An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors[J]. Chemosphere, 2016, 165: 211-220. doi: 10.1016/j.chemosphere.2016.09.001
    [23] YANG M G, SHI J, XU Z W, et al. Phosphorus removal and recovery from fosfomycin pharmaceutical wastewater by the induced crystallization process[J]. Journal of Environmental Management, 2019, 231: 207-212.
    [24] TAI C Y. Crystal growth kinetics of two-step growth process in liquid fluidized-bed crystallizers[J]. Journal of Crystal Growth, 1999, 206(1/2): 109-118.
    [25] TAI C Y, CHANG M C, LIU C C, et al. Growth of calcite seeds in a magnetized environment[J]. Journal of Crystal Growth, 2014, 389: 5-11. doi: 10.1016/j.jcrysgro.2013.11.006
    [26] 智奥帆. 化学结晶循环造粒法去除水中硬度的试验研究[D]. 西安: 西安建筑科技大学, 2018.
    [27] 张浩程. 金沙江某水厂低浊水采用药剂软化法除硬度的试验研究[D]. 重庆: 重庆大学, 2015.
  • 加载中
图( 7)
计量
  • 文章访问数:  5501
  • HTML全文浏览数:  5501
  • PDF下载数:  66
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-06
  • 录用日期:  2020-08-17
  • 刊出日期:  2021-02-10
陆洲, 聂小保, 余志, 何一帆, 易晋, 胡明睿, 隆院男, 蒋昌波. 高硬水软化中Fe3O4诱导结晶对微晶形成的控制[J]. 环境工程学报, 2021, 15(2): 563-571. doi: 10.12030/j.cjee.202005020
引用本文: 陆洲, 聂小保, 余志, 何一帆, 易晋, 胡明睿, 隆院男, 蒋昌波. 高硬水软化中Fe3O4诱导结晶对微晶形成的控制[J]. 环境工程学报, 2021, 15(2): 563-571. doi: 10.12030/j.cjee.202005020
LU Zhou, NIE Xiaobao, YU Zhi, HE Yifan, YI Jin, HU Mingrui, LONG Yuannan, JIANG Changbo. Control of the microcrystal formation during high-hardness water softening with Fe3O4 induced-crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 563-571. doi: 10.12030/j.cjee.202005020
Citation: LU Zhou, NIE Xiaobao, YU Zhi, HE Yifan, YI Jin, HU Mingrui, LONG Yuannan, JIANG Changbo. Control of the microcrystal formation during high-hardness water softening with Fe3O4 induced-crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 563-571. doi: 10.12030/j.cjee.202005020

高硬水软化中Fe3O4诱导结晶对微晶形成的控制

    通讯作者: 聂小保(1979—),男,博士,副教授。研究方向:饮用水深度处理等。E-mail:niexbcslg@163.com
    作者简介: 陆洲(1996—),男,硕士研究生。研究方向:饮用水安全保障等。E-mail:luzhouofficial@qq.com
  • 1. 长沙理工大学水利工程学院,长沙 410114
  • 2. 洞庭湖水环境治理与生态修复湖南省重点实验室,长沙 410114
  • 3. 湖南省环境保护河湖疏浚污染控制工程技术中心,长沙 410114
基金项目:
国家自然科学基金资助项目(51408068);湖南省教育厅科学研究重点项目(18A122);湖南省重点研发项目(2019SK2191)

摘要: 为降低高硬水软化过程中微晶产率和改善结晶产物的分离性能,采用Fe3O4作为诱导结晶体系晶种,通过改变晶种投加量,考察了诱导结晶对结晶体系微晶的控制效果,并探讨了微晶产率与结晶体系上清液浊度的关系,以及诱导结晶体系出水混凝除浊效果。结果表明:诱导结晶和均相结晶产物晶型均为方解石,诱导结晶体系中晶种的引入可起到抑制均相结晶、降低微晶产率的效果,但均相结晶仍不可避免,提高Fe3O4投加量有助于微晶产率的降低;结晶体系中上清液浊度与微晶产率呈线性正相关关系,当Fe3O4投加量由0 g·L−1提高到10 g·L−1时,微晶产率由32.3%降至9.0%,钙去除率由35.6%提高至51.7%,相应上清液浊度由215.9 NTU降至22.7 NTU。Fe3O4投加量为10 g·L−1的诱导结晶体系,经磁分离和7 mg·L−1的PAC混凝后,浊度可降至2.2 NTU。延长诱导结晶时间至50 min以上,pH可降至8.5以下。以上研究结果可为提升高硬度结晶软化效果和降低沉淀污泥的产量提供参考。

English Abstract

  • 水中硬度超标将对日常生活、工业生产造成一定影响,如洗涤剂去污能力降低、锅炉结垢、受热不均,严重时甚至引发爆炸;高硬水还直接威胁人类健康,如导致胃肠功能紊乱,增加患肾结石的风险[1-2]。目前,水的软化方法主要有化学沉淀、离子交换、膜分离和吸附等[3-6]。其中,基于结晶反应的化学沉淀法,其具有操作简单、去除率高、易与净水工艺相结合的特点,特别是软化剂石灰来源广、价格低,已有上百年应用历史,至今仍是最常用的软化技术[7]

    过饱和度S是结晶反应的推动力。高硬水由于Ca2+和/或Mg2+浓度高,相应软化所需CO23和/或OH投加量大,导致结晶体系过饱和度S较高。此时若结晶体系为均相结晶体系,则成核速率快,结晶产物数量密度大、颗粒细碎,部分结晶产物沉降性能差,难以实现固液分离,即所谓微晶[8]。微晶的出现不但降低软化效果,而且增加体系出水浊度,需投加大量混凝剂进行混凝促沉才能被去除,由此会产生大量难以脱水的沉淀污泥。

    以流化床结晶为代表的诱导结晶软化技术,通过外投晶种,将均相结晶调控为以晶种表面结晶为主的非均相结晶,结晶产物粒径可控,加上流化床自身优良的固液分离性能,可有效降低出水微晶含量,应用于高硬水软化优势明显[9-11]。但诱导结晶过程将伴随发生均相结晶,微晶的产生仍不可避免,原水硬度较高时尤为明显,导致软化效果有限[12]。笔者所在的课题组前期开展了CaCO3诱导结晶体系中均相与非均相结晶竞争行为研究,发现体系均相结晶比例随过饱和度的增加而增加,相应微晶产率也会提升[13]。因此,控制诱导结晶体系微晶产率,成为提升高硬水软化效果的关键。

    提高反应器内诱导结晶活性位点体积密度可强化体系诱导结晶,达到抑制均相结晶、降低微晶产率效果[1, 14-15]。减小晶种粒径和增加晶种投量均可有效提升诱导结晶活性位点体积密度,但研究者在诱导结晶软化中采用的晶种粒径和投加量差异往往很大。NASON等[16]采用11 μm方解石为晶种,投加量为8~70 mg·L−1;MERCER等[17]采用0.43~3.98 μm方解石为晶种,投加量为100~500 mg·L−1;CHEN等[18]采用200~400 μm石英砂为晶种,投加量为375 g·L−1;顾艳梅等[19]采用200~500 μm砂石为晶种,投加量为225 g·L−1;胡瑞柱等[20]采用100~250 μm石榴石为晶种,投加量为200 g·L−1。上述研究均采用流化床为反应器,但晶种粒径相差上千倍,投加量相差甚至上万倍,这可能对微晶产率和软化效果造成影响。因此,有必要对诱导结晶中微晶的形成与控制进行深入研究,从而为晶种的选择提供理论依据。

    考虑到流化床投放晶种粒径过小时容易流失[21-22],为最大程度减小晶种粒径并避免流失,本文选择常用晶种材料中密度最大的Fe3O4为晶种。通过改变Fe3O4投加量,研究高硬水诱导结晶软化中微晶的形成与控制,主要考察了晶种投加量对微晶产率和软化效果的影响,探讨了微晶与结晶体系上清液浊度的关系,分析了聚合氯化铝(PAC)对结晶体系出水的除浊效果。此外,还对诱导结晶体系出水pH的变化进行了研究,对结晶产物的晶型进行了分析。本研究成果可为提升高硬度结晶软化效果和降低沉淀污泥的产量提供参考。

  • 高硬度水采用CaCl2配制,沉淀剂采用Na2CO3,均为分析纯,国药集团化学试剂有限公司产品。PAC为分析纯,购自天津光复精细化工。实验用水由Millipore Milli-Q Gradient水净化系统(Billerica,MA)制备,电阻率为18.2 MΩ·cm,pH=6.6~6.8。CaCl2溶液和Na2CO3溶液均现用现配,浓度分别为5 mmol·L−1和0.5 mol·L−1

    Fe3O4购自宝能环保科技公司,平均粒径为45 μm。Fe3O4首先用自来水冲洗至上清液基本清澈,然后8%稀硝酸溶液浸泡除去锈渍和杂质,再用超纯水多次冲洗,烘干至恒重后密封备用。

  • 结晶反应采用六联搅拌装置进行。往5个1 L烧杯中分别倒入500 mL的CaCl2溶液后投放Fe3O4,投加量分别为0、0.5、2、5、10 g·L−1,其中0 g·L−1称对照组,其余为实验组。烧杯置于六联搅拌装置,500 r·min−1搅拌5 min形成晶种悬浊液。

    调整搅拌转速为300 r·min−1,同时往每个烧杯中加入Na2CO3溶液2.5 mL(对应C/Ca摩尔比为0.5),结晶反应开始启动,反应时间10 min。反应结束后静沉30 min,取20 mL上清液2份,一份测定Ca2+浓度(Ca)、pH和浊度,另一份经0.45 μm滤膜过滤后,测滤液Ca2+浓度(Cb),取沉淀结晶产物进行SEM观测和XRD分析。

    在5 L烧杯中投入CaCl2溶液2.5 L和10 g·L−1的Fe3O4进行诱导结晶,其他条件同上。反应结束后立即磁分离,剩余结晶溶液分为4份进行PAC混凝除浊,PAC投加量2、5、7、10 mg·L−1。混凝条件为200 r·min−1 30 s+100 r·min−1 5 min+50 r·min−1 5 min。混凝结束后静沉30 min测上清液浊度。

    以上实验均在(25±1) ℃下进行,每个样品进行3次重复。

  • pH和浊度采用pH电极(雷磁PHSJ-3C,上海仪电科学)和浊度仪(WGZ-500B,上海昕瑞仪器)测定。Ca2+测定采用EDTA滴定法。结晶产物形态观测和晶型分析分别采用扫描电子显微镜(SU-8020,日立公司)和X射线衍射仪(D8-Advance,布鲁克公司)进行。

    实际流化床结晶工艺中,未结晶到晶种表面且随水流出流化床的微小颗粒为微晶。本文由于在烧杯实验条件下,将反应结束后静置30 min仍未沉降的结晶颗粒视为微晶。结晶体系的总结晶率、微晶产率、Ca2+去除率依次按照式(1)、式(2)和式(3)进行计算。

    式中:α为总结晶率;β为微晶产率;γ为钙离子去除率;Ca为反应结束后静沉30 min的上清液Ca2+浓度,mmol·L−1Cb为反应后出水经0.45 μm滤膜过滤后滤液Ca2+浓度,mmol·L−1

  • Fe3O4的投加提高了体系总结晶率(图1(a)),但与对照组相比,提高并不显著(P>0.05)。体系微晶产率随Fe3O4投加量增加而降低(图1(b)),与对照组相比,在Fe3O4的投加量2 g·L−1和5 g·L−1时显著降低(P<0.05),在投加量为10 g·L−1时极显著降低(P<0.01)。体系软化效果随Fe3O4投加量增加而提高(图1(c)),与对照组相比,在投加量为2 g·L−1时显著提高(P<0.05),在投加量为5 g·L−1和10 g·L−1时极显著提高(P<0.01)。

    总结晶率由结晶体系初始过饱和度S0和临界过饱和度S*之差ΔS决定,ΔS越大,则总结晶率越高。诱导结晶体系中晶种的加入可降低S*[23],但实验中Fe3O4的投加却未引起总结晶率显著提升,说明对照组与实验组结晶体系S*最终处于大致相等水平。根据经典结晶理论,对照组中CaCO3均相结晶过程分成核和晶核成长2个阶段[24]。实验中对照组S0较高(S0=3 775,以方解石Ksp计),可以认为成核过程耗时较短,后续均为晶核成长过程,体系残余构晶离子(Ca2+CO23)在晶核表面进行表面结晶,这一过程与诱导结晶的区别仅在于前者晶种为成核阶段生成的晶核,后者晶种为外投Fe3O4。正是因为对照组与实验组ΔS无显著差异,相应总结晶率也无显著差异。

    对照组钙的总结晶率为(52.0±1.6)%,甚至高于理论值(实验中C/Ca摩尔比=0.5,理论总结晶率50%),这可能是因为来自大气中的CO2经水合、去质子后可提供少量结晶所需构晶离子CO23[25],所以总结晶率略高于理论值。而实验组的总结晶率均高于理论值,可能是因为Fe3O4的诱导结晶导致体系碱度低于均相结晶体系,相应大气中CO2的补充更明显。

    在对照组的均相结晶过程中,晶核的形成消耗了大量的构晶离子,导致晶核成长动力不足,最终产物粒度较小,因而固液分离性能不佳,有(32.3±3.1)%的结晶产物即微晶无法顺利沉降。实验组微晶产率随着Fe3O4投加量的增加明显降低,当Fe3O4的投加量为10 g·L−1时,微晶产率仅为(9.0±0.8)%。Fe3O4的投加对微晶产率的削减作用:一方面,因为Fe3O4诱导结晶与均相成核对构晶离子的竞争,降低了均相成核规模,相应微晶数量降低;另一方面,由于Fe3O4诱导结晶的竞争,均相成核期间体系过饱和度小于对照组。GAREA等[8]研究表明,过饱和度越低,均相成核生成的晶核尺寸越大,沉降分离性能越好。

    在实际高硬水软化工程中,为了获得预期的硬度去除效果,往往不得不过量投加沉淀剂(CO23或OH)或延长结晶反应时间[26],这与图1(c)中显示结果一致:当C/Ca摩尔比为0.5时,由于微晶的形成,对照组钙硬度实际去除率仅为(35.6±1.6)%,远小于理论值50%,此时若要提高软化效果,只有增加CO23投加量或延长反应时间,以增大结晶产物粒径,降低微晶产率。在实验组中投加Fe3O4后,微晶产率得到有效控制,钙去除率显著提升,当Fe3O4投加量为10 g·L−1时,去除率为(51.7±0.8)%,甚至略高于理论值。

  • 图2可知,与对照组相比,在不同Fe3O4投加量的实验组中,结晶体系出水pH的变化均不显著 (P>0.05);但浊度却得到显著降低(P<0.05),Fe3O4投加量越大,浊度降低越明显,当Fe3O4投加量为5 g·L−1和10 g·L−1时,降低为极显著(P<0.01)。

    在前面的讨论中已经指出,Fe3O4诱导结晶对体系总结晶率的影响较小,在相同初始Ca2+浓度和C/Ca摩尔比的条件下,这就意味着最终结晶体系CO23浓度及其与总无机碳浓度摩尔比基本不变,因此,结晶体系出水pH也基本不变。由于Fe3O4诱导结晶优良的微晶控制效果,结晶体系上清液浊度改善明显,这就可以显著降低后续混凝所需混凝剂投量,减小污泥产量。结晶体系上清液浊度与微晶产率的拟合关系表明,两者呈明显正相关关系(图3)。

    需要指出的是,尽管与对照组相比,Fe3O4诱导结晶体系出水pH无明显降低,仍高于《生活饮用水卫生标准》(GB 5749-2006)规定的8.5,但Fe3O4诱导结晶仍有望用于降低结晶体系出水pH。这是因为相同结晶条件下,Fe3O4诱导结晶提高了钙硬度去除率,若要获得相同软化效果,相应沉淀剂CO23或OH用量可以减小,这将有效降低出水pH。

    若要进一步降低诱导结晶体系出水pH,可以适当延长结晶反应时间,如图4所示。当Fe3O4投加量为10 g·L−1时,随着结晶时间的延长,残余构晶离子CO23浓度继续降低,体系中HCO3去质子化过程加强,pH逐渐降低。结晶时间超过50 min后pH稳定在8.38~8.47,达到GB 5749-2006的要求。

  • 磁分离后结晶体系上清液浊度在40 NTU左右,此时浊度绝大部分由同步发生的均相结晶产物引起。经PAC混凝并静沉30 min后浊度显著降低,且PAC投加量越大,效果越明显(图5)。当PAC投加量为7 mg·L−1,浊度仅为(2.2±0.2) NTU。

    混凝沉淀对结晶体系出水除浊效果有限的问题一直困扰高硬度软化。特别是当以石灰为软化剂时,为确保除浊效果,往往不得不加大混凝剂投加量,产生大量沉淀污泥,即便如此,沉淀后出水浊度仍然偏高,容易堵塞滤池。黄明珠等[4]采用“石灰+PAC”软化总硬度为278.5~298.4 mg·L−1的地下水,反应后静沉30 min后,总硬度去除率为50%左右,上清液浊度高达300 NTU以上,经40 mg·L−1的PAC混沉后,浊度仍约为10 NTU。当采用纯碱替代部分石灰时,浊度明显降低。张浩程[27]的研究表明,当石灰、纯碱和混凝剂(PAC)的投加量分别为80~120、30~40和 5~9 mg·L−1时,沉淀后出水浊度可以控制在6.4~12.7 NTU。

    本文中实验组由于诱导结晶的竞争,均相结晶得以在较低过饱和度下进行,因而均相结晶产物与对照组相比,数量密度有所降低、粒径增加、微晶产率降低,上清液浊度得到改善(图2(b))。当Fe3O4投加量为10 g·L−1时,不经静沉仅磁分离浊度就可降至40 NTU左右(静沉30 min后进一步降至(22.7±3.9) NTU,见图2(b))。磁分离后悬浊液再经7 mg·L−1的PAC混凝并静沉30 min后,上清液浊度降至(2.2±0.2) NTU,除浊效果优良。

  • 图6给出了当Fe3O4投加量为0、0.5和10 g·L−1时结晶产物的扫描电镜图。当Fe3O4投加量为0 g·L−1时,为均相结晶,产物绝大多数是生长完全的斜方六面体或正方体颗粒,晶型完整,表面光滑,粒径为3~7 μm (图6(a))。当Fe3O4投加量0.5 g·L−1时,均相结晶产物数量明显减小(图6(b)),表明Fe3O4诱导结晶一定程度抑制了均相结晶。同时,均相结晶产物仍呈规则斜方六面体或正方体,粒径也不超过10 μm。当继续增大Fe3O4投加量至10 g·L−1时,只有少量均相结晶产物出现,且规则性状逐渐消失(图6(c)),说明均相结晶过程明显被Fe3O4诱导结晶抑制。

    图7给出了均相结晶产物(Fe3O4投加量为0 g·L−1)和Fe3O4诱导结晶产物(Fe3O4投加量为10 g·L−1)的XRD谱图。均相结晶产物的晶型均为方解石(图7(a))。由图7(b)可知,Fe3O4表面的诱导结晶产物晶型同样为方解石。

  • 1)与均相结晶软化相比,采用Fe3O4诱导结晶进行高硬水的软化,不会引起体系总结晶率和出水pH的明显变化;但Fe3O4诱导结晶可明显抑制均相结晶,从而降低结晶体系的微晶产率,进而提高软化效果。当Fe3O4投加量为10 g·L−1、C/Ca摩尔比为0.5时,微晶产率仅为(9.0±0.8)%,钙硬度去除率为(51.7±0.8)%,略高于理论值。

    2) Fe3O4诱导结晶可以显著降低结晶体系悬浊液浊度,当Fe3O4投加量由0 g·L−1增加至10 g·L−1时,结晶体系经30 min静沉后,浊度可由215.9 NTU降至22.7 NTU;同时Fe3O4诱导结晶悬浊液的混凝除浊性能良好,当Fe3O4投加量为10 g·L−1时,结晶体系经磁分离后,悬浊液采用7 mg·L−1的PAC混凝,浊度就可由40 NTU左右降至2.2 NTU。

    3)均相结晶和Fe3O4诱导结晶产物晶型均为方解石。均相结晶结晶产物数量密度随着Fe3O4投加量的增加而减小。

参考文献 (27)

返回顶部

目录

/

返回文章
返回