-
近年来我国水产事业快速发展,养殖品种产量日益增加[1]。在养殖水体中培养微生物絮团的生物絮凝已成为集约化水产养殖的热点[2-3],生物絮凝是利用养殖环境系统中微生物絮团吸收转化水中有害含氮无机物,减少水环境对养殖鱼类的毒害[4-5]。但生物絮凝系统的养殖水磷酸盐高于20 mg·L−1[6],且碳酸氢根(
${\rm{HCO}}_3^ - $ )、硝氮(${\rm{NO}}_3^ - $ -N)浓度普遍较高[2-3]。直接排放养殖水易造成湖泊富营养化,环境污染[7]。因此,对养殖水进行除磷是必要的。目前,养殖水除磷技术主要有人工湿地除磷[8]、生物除磷[9]、吸附法[10],吸附法因具有高效快速、易操作、成本廉价、无二次污染等特点而成为研究热点[11]。废弃牡蛎壳因其获取便利,独特的多孔结构[12],被视为一种天然的除磷吸附剂。李林锋等[13]发现天然牡蛎壳吸附除磷的最大吸附量为0.88 mg·g−1。浦晨霞等[14]将牡蛎壳进行高温改性,对总磷的去除率可达90%,吸附量为1.10 mg·g−1。改性有助于提高牡蛎壳吸附效率,通常含铁氧化物改性制备的吸附剂吸附除磷效果更佳[15],目前,含铁化合物改性牡蛎壳吸附除磷鲜有报道。因此,本文选择牡蛎壳粉进行载铁改性,制成载铁牡蛎壳粉(magnetic modified oyster shell powder, magnetic modified OSP),探究了吸附剂添加量、初始总磷(total phosphorus, TP)浓度、pH对载铁牡蛎壳粉在模拟含磷水中吸附除磷的影响,并对其进行了表征,同时选择生物絮凝系统水中含量较多的
${\rm{HCO}}_3^ - $ 、${\rm{NO}}_3^ - $ -N作为共存离子,考察了共存离子对吸附除磷的影响。通过吸附热动力学探讨了其除磷的吸附机理,以期为实际生物絮凝养殖废水除磷提供参考。
载铁牡蛎壳粉对水中磷的吸附性能及机理
Adsorption performance and mechanism of magnetic modified oyster shell powder on phosphorus in water
-
摘要: 为解决生物絮凝养殖水体含磷物质积累,初步研究了载铁牡蛎壳粉吸附除磷性能及相关机理。结果表明,8 g·L−1载铁牡蛎壳粉在初始TP浓度为20.00~50.00 mg·L−1吸附效果最佳,TP去除率由(84.94±0.94)%增至(87.35±1.06)%,吸附量由(2.37±0.03) mg·g−1增至(5.45±0.22) mg·g−1;当pH为2.00~6.00时,TP去除率大于(80.13±3.27)%,吸附量大于(2.04±0.02) mg·g−1;碳酸氢根的存在对载铁牡蛎壳粉吸附除磷有明显的抑制作用。X射线衍射结果表明,载铁牡蛎壳粉表面覆盖成分为Fe2(PO)5和Fe4(PO4)2O。载铁牡蛎壳粉吸附过程符合Freundlich模型和准二级动力学模型,最大吸附量为9.81 mg·g−1,吸附过程存在物理吸附和化学吸附,主要由化学吸附决定,膜扩散和颗粒内扩散为主要限速步骤,配位交换和静电吸附为主要吸附机理。以上研究结果可为实际养殖废水除磷方法提供参考。Abstract: In order to solve the problem of phosphorus accumulation in bio-floc culture water, the performance and and mechanism of magnetic modified oyster shell powder on phosphorus removal were studied. The results showed that the best adsorption efficiency occurred for 8 g·L−1 magnetic modified oyster shell powder at the initial TP concentration of 20.00~50.00 mg·L−1, the TP removal rate increased from (84.94±0.94)% to (87.35±1.06)%, the adsorption amount (qe) increased from (2.37±0.03) mg·g−1 to (5.45±0.22) mg·g−1. When the pH was 2.00~6.00, the TP removal rate was higher than (80.13±3.27)%, and qe was higher than (2.04±0.02) mg·g−1.
${\rm{HCO}}_3^ - $ had an obvious inhibitory effect on phosphorus adsorption by magnetic modified oyster shell powder. X-ray diffraction showed that the surface covering composition of the shell powder were Fe2(PO)5 and Fe4(PO4)2O. The adsorption process of magnetic modified oyster shell powder accorded with Freundlich model and pseudo-second kinetic model, the maximum adsorption capacity was 9.81 mg·g−1. Both physisorption and chemisorption contributed to the adsorption process, and the chemisorption played the main role. The film diffusion and intra-particle diffusion were the main speed limiting steps, ligand exchange and electrostatic interaction were the main phosphorus removal contributors. The above results can provide a reference for the actual phosphorus removal methods of aquaculture wastewater. -
表 1 不同牡蛎壳粉表面结构特征参数
Table 1. Surface structure characteristic parameters of different OSP
样品 比表面积/(m2·g−1) 孔容/(cm3·g−1) 平均孔径/nm 天然牡蛎壳粉 1.18 0.005 16.52 载铁牡蛎壳粉 0.68 0.061 35.60 表 2 不同温度下载铁牡蛎壳粉等温线拟合结果
Table 2. Isotherm constants of magnetic modified OSP at different temperatures
温度/℃ Langmuir Freundlich qm/(mg·g−1) K R2 Kf 1/n R2 15 24.49 0.28 0.880 0.59 0.91 0.910 25 22.81 1.11 0.821 1.09 0.80 0.973 35 9.81 6.11 0.980 1.79 0.42 0.987 表 3 不同初始TP浓度下载铁牡蛎壳粉吸附除磷的热力学参数
Table 3. Thermodynamic parameters for phosphorus adsorption on magnetic modified OSP at different initial TP concentrations
C0/
(mg·L−1)H0/
(kJ·mol−1)S0/
(kJ·(mol·K)−1)G0/(kJ·mol−1) 15 ℃ 25 ℃ 35 ℃ 26.41 118.08 0.46 −10.19 −14.48 −17.85 36.95 102.18 0.40 −11.27 −14.95 −17.90 47.42 101.98 0.40 −12.13 −15.23 −18.76 61.17 53.19 0.24 −12.65 −15.93 −16.07 71.08 63.04 0.27 −13.00 −15.88 −17.08 表 4 载铁牡蛎壳粉吸附动力学拟合参数
Table 4. Adsorption kinetic parameters of magnetic modified OSP
温度/℃ qe,exp/(mg·g−1) 准一级动力学 准二级动力学 qe,cal/(mg·g−1) k1/(g·(min·mg)−1) R2 qe,cal/(mg·g−1) k2/(g·(min·mg)−1) R2 15 4.01 4.48 0.001 7 0.832 2.25 0.001 1 0.185 25 5.55 5.29 0.002 8 0.979 6.64 0.000 6 0.988 35 6.06 5.85 0.003 3 0.988 7.19 0.000 6 1.000 表 5 载铁牡蛎壳粉颗粒内模型拟合参数
Table 5. Fitting parameters of intra-particle diffusion model of magnetic modified OSP
温度/
℃第1阶段 第2阶段 第3阶段 Kp C R2 Kp C R2 Kp C R2 15 0.04 −0.14 0.245 0.08 −0.57 0.449 0.16 −2.02 0.885 25 0.16 −0.07 0.972 0.24 −0.68 0.999 0.07 3.13 0.524 35 0.24 −0.48 0.999 0.22 0.06 0.957 0.05 4.18 0.705 注:Kp的单位为g·(min·mg1/2)−1;C的单位为mg·g−1。 -
[1] 农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019. [2] 陈伟. 功能性生物絮团和BFT系统的构建及其在对虾养殖中的应用效果研究[D]. 上海: 上海海洋大学, 2018. [3] 庞云. 硝化型生物絮体养殖凡纳滨对虾(Litopenaeus vannmei)的应用效果研究[D]. 上海: 上海海洋大学, 2017. [4] 刘文畅. 酿酒废水添加、SRT和HRT对生物絮凝反应器处理RAS养殖污染物的影响[D]. 上海: 上海海洋大学, 2015. [5] 赵培. 生物絮团技术在海水养殖中的研究与应用[D]. 上海: 上海海洋大学, 2011. [6] 陈伟, 谭洪新, 罗国芝, 等. 碳氮比对生物絮凝反应器处理水质效果的影响[J]. 上海海洋大学学报, 2018, 27(6): 907-915. [7] 杨树润, 张世熔, 冯灿, 等. 4种镧改性海藻粉末对养殖废水中磷的去除[J]. 环境工程学报, 2019, 13(10): 2357-2368. doi: 10.12030/j.cjee.201903042 [8] 刘兴国, 刘兆普, 徐皓, 等. 生态工程化循环水池塘养殖系统[J]. 农业工程学报, 2010, 26(11): 237-244. doi: 10.3969/j.issn.1002-6819.2010.11.041 [9] 杨丽芳, 朱树文, 高红武, 等. ABR厌氧/CASS好氧工艺处理养殖废水[J]. 中国给水排水, 2007, 23(8): 62-66. doi: 10.3321/j.issn:1000-4602.2007.08.017 [10] BRAUN J C A, BORBA E C, GODINHO M, et al. Phosphorus adsorption in Fe-loaded activated carbon: Two-site monolayer equilibrium model and phenomenological kinetic description[J]. Chemical Engineering Journal, 2019, 361: 751-763. doi: 10.1016/j.cej.2018.12.073 [11] LIU T, CHEN X, WANG X, et al. Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3[J]. Chemical Engineering Journal, 2018, 335: 443-449. doi: 10.1016/j.cej.2017.10.117 [12] 陈玉枝, 林舒. 牡蛎壳与龙骨成分的分析[J]. 福建医科大学学报, 1999, 33(4): 432-434. doi: 10.3969/j.issn.1672-4194.1999.04.021 [13] 李林锋, 吴小凤. 天然牡蛎壳对磷吸附特性试验研究[J]. 三峡环境与生态, 2011, 33(6): 1-4. [14] 浦晨霞, 曹玉成, 钱璨, 等. 改性牡蛎壳对低磷浓度水体的净化性能研究[J]. 环境污染与防治, 2019, 41(3): 59-63. [15] ZHANG B A Q, CHEN N, FENG C, et al. Adsorption for phosphate by crosslinked/non-crosslinked-chitosan -Fe(Ⅲ) complex sorbents: characteristic and mechanism[J]. Chemical Engineering Journal, 2018, 353: 361-372. doi: 10.1016/j.cej.2018.07.092 [16] IFTHIKAR J, WANG J, WANG Q, et al. Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications[J]. Bioresource Technology, 2017, 238: 399-406. doi: 10.1016/j.biortech.2017.03.133 [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [18] 梁越敢, 方涛, 李伟, 等. 磁性龙虾壳吸附去除水中磷的特性[J]. 中国环境科学, 2019, 39(5): 138-143. [19] MONDAL P, MAJUMDER C B, MOHANTY B. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon[J]. Journal of Hazardous Materials, 2008, 150(3): 695-702. doi: 10.1016/j.jhazmat.2007.05.040 [20] O’NEIL J R, VENNEMANN T W, MCKENZIE W F. Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4)aq and H2O[J]. Geochimica Et Cosmochimica Acta, 2003, 67(17): 3135-3144. doi: 10.1016/S0016-7037(02)00970-5 [21] 王正芳. 载铁活性炭的制备及对P(V)的吸附性能研究[D]. 南京: 南京大学, 2011. [22] 姚淑华, 贾永锋, 汪国庆, 等. 活性炭负载Fe(Ⅲ)吸附剂去除饮用水中的As(Ⅴ)[J]. 过程工程学报, 2009, 9(2): 250-256. doi: 10.3321/j.issn:1009-606X.2009.02.008 [23] GU Z, FANG J, DENG B. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal[J]. Environmental Science & Technology, 2005, 39(10): 3833-3843. [24] REY A, FARALDOS M, CASAS J A, et al. Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface[J]. Applied Catalysis B: Environmental, 2009, 86(1/2): 69-77. [25] 李炳. 颗粒活性炭负载氧化铁(IOCGAC)吸附除Cr(Ⅵ)研究[D]. 长沙: 湖南大学, 2007. [26] 熊慧欣. 不同晶型羟基氧化铁(FeOOH)的形成及其吸附去除Cr(Ⅵ)的作用[D]. 南京: 南京农业大学, 2008. [27] HE Y, LIN H, DONG Y, et al. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism[J]. Applied Surface Science, 2017, 426(31): 995-1004. [28] LIU H, SUN X, YIN C, et al. Removal of phosphate by mesoporous ZrO2[J]. Journal of Hazardous Materials, 2008, 151(2/3): 616-622. [29] KIM D S. Adsorption characteristics of Fe(III) and Fe(III)-NTA complex on granular activated carbon[J]. Journal of Hazardous Materials, 2004, 106(1): 67-84. doi: 10.1016/j.jhazmat.2003.09.005 [30] 周强, 冒咏秋, 段钰锋, 等. 溴素改性活性炭汞吸附特性研究[J]. 工程热物理学报, 2014, 35(12): 211-214. [31] SMITH J M. Chemical Engineering Kinetics[M]. New York: McGraw Hill, 1981. [32] ACELAS N Y, MARTIN B D, LÓPEZ D, et al. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media[J]. Chemosphere, 2014, 119: 1353-1360. [33] AKSU Z, KARABAYIR G. Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye[J]. Bioresource Technology, 2008, 99(16): 7730-7741. doi: 10.1016/j.biortech.2008.01.056 [34] HAN R, ZHANG L, SONG C, et al. Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode[J]. Carbohydrate Polymers, 2010, 79(4): 1140-1149. doi: 10.1016/j.carbpol.2009.10.054