-
矿山开采、冶炼、电镀与金属加工等工业活动引发了一系列的水体重金属污染问题,形势严峻,亟待解决[1]。铜是常见重金属污染物之一,经食物或饮用水摄入过量的铜,将导致人体肝脏损害、急性中毒和造血功能失常[2]。因此,寻求一种高效便捷的除铜的方法势在必行。
目前,水体重金属治理的方法主要囊括了电化学、吸附、膜分离以及化学沉淀等技术[3-4]。其中吸附法因其吸附剂原料易得、操作简便及高效利用的优点,受到了科研工作者的高度关注[5]。海藻酸钠(SA)是一种二元线性多糖类聚合物,其具有生物降解性和非生物毒性的优点,被认为是环境友好型的重金属吸附剂[6]。其分子链上含有丰富的羟基(—OH)和羧基(—COOH)[7]。对pH具有高度敏感性的羧基(—COOH)基团能在合适的pH条件下,迅速与钙离子配位,形成网状结构的海藻酸钙凝胶球[8]。这种结构能有效固定小颗粒磁性物质,同时也相应地削弱吸附剂的吸附能力。L-半胱氨酸(L-Cys)是一种人体常见的非必需氨基酸,具有氨基、羧基和巯基官能团,颇具重金属富集潜力[9]。在海藻酸钠中引入这部分基团,将有望提高其对重金属的吸附能力。
但在吸附过后,吸附剂难与水媒介分离,从而导致二次污染。有研究[10-11]表明,将吸附剂赋予磁性后进行高效吸附,且利用其磁性进行快速分离是一种有效的解决办法。因此,本研究把L-Cys、磁性物质Fe3O4和SA通过钙离子交联,制备得到了一种环保型磁性复合材料,旨在进一步改善其吸附能力和磁响应性。以中山市某工业园含铜电镀废水为对象,验证了该磁性复合材料在实际水处理中的吸附效能,重点考察了pH、共存离子和吸附时间对铜吸附效果的影响。分析了其吸附动力学、吸附等温模型以及热力学过程,并采用SEM-EDS、PPMS以及XPS分析手段探索了可能的吸附机理。
SA@L-Cys@Fe3O4磁性复合材料对含Cu(Ⅱ)废水的处理效能及其机理
Performance and mechanism of Cu(Ⅱ)-containing wastewater treatment by magnetic composite of SA@L-Cys@Fe3O4
-
摘要: 以海藻酸钠(SA)、L-半胱氨酸(L-Cys)、CaCl2和Fe3O4为原材料制备了一种环保型的磁性复合材料MSAL,以模拟废水和实际含铜电镀废水为研究对象,探索了pH、共存离子和吸附时间对Cu(II)吸附性能的影响。采用SEM-EDS、PPMS和XPS等分析手段对MSAL进行了表征,且探索了其可能的吸附机理。单因素条件优化实验结果表明:MSAL的适宜制备条件为30.0 g·L−1 SA、6.0 g·L−1 L-Cys、2.5 g·L−1 CaCl2、2.0 g·L−1 Fe3O4;MSAL对Cu(Ⅱ)的吸附性能随pH增大而明显提高,并在pH为3.0~5.0时,对Cu(Ⅱ)维持较高的去除率;在pH=5时,MSAL对电镀废水中铜去除率可高达94.02%。吸附倾向于遵循拟准二级动力学模型和Langmuir等温模型,这表明吸附以单分子层吸附为主,并受化学过程控制,最大吸附容量可达到175.45 mg·g−1。表征结果发现:MSAL具备出色的磁响应性,容易从溶液中被去除;吸附过程主要受离子交换作用以及氨基,羧基与Cu(Ⅱ)之间的配位作用影响。以上结果可为磁性复合材料在电镀废水中重金属污染治理奠定坚实基础。Abstract: In this study, an environmentally friendly magnetic composite MSAL was prepared using sodium alginate, L-cysteine, CaCl2 and Fe3O4 as raw materials. The effects of pH, coexisting ions and contact time on Cu(Ⅱ) adsorption performance of MSAL were explored using simulated and actual copper-containing electroplating wastewater. SEM-EDS, PPMS and XPS were used to characterize MSAL and its possible adsorption mechanism was investigated. The single factor optimization experiments indicated that the suitable preparation conditions were following: sodium alginate concentration of 30.0 g·L−1, L-cysteine concentration of 6.0 g·L−1, CaCl2 concentration of 2.5 g·L−1, and Fe3O4 concentration of 2.0 g·L−1. Cu(Ⅱ) adsorption amount by MSAL increased significantly with the increase of pH and high removal rate was maintained at pHs of 3.0~5.0. When the pH was 5, Cu(Ⅱ) removal rate in electroplating wastewater reached 94.02%. Adsorption followed well with the pseudo-second-order kinetic model and Langmuir isothermal model, indicating that the adsorption was dominated by monolayer adsorption and was controlled by chemical processes, and the maximum adsorption capacity reached 175.45 mg·g−1. Characterization results revealed that MSAL exhibited excellent magnetic responsiveness and was easily removed from the solution. The adsorption process was mainly affected by ion exchange and coordination between amino, carboxyl and copper ions. This study will lay a solid foundation for control heavy metal pollution in electroplating wastewater by magnetic composite materials.
-
Key words:
- sodium alginate /
- L-cysteine /
- electroplating wastewater /
- adsorption mechanism /
- magnetic response
-
表 1 MSAL吸附Cu(Ⅱ)的动力学参数
Table 1. Kinetic parameters for adsorption of Cu(Ⅱ) onto MSAL
初始Cu(Ⅱ)
浓度/(mg·L−1)准一级动力学 准二级动力学 Qe/(mg·g−1) k1 R2 Qe/(mg·g−1) k2 R2 20 26.694 6 0.022 9 0.901 6 26.617 4 1.228 2×10−3 0.999 2 50 44.466 2 0.031 4 0.943 1 61.237 0 1.685 2×10−3 0.999 9 100 90.737 4 0.039 6 0.908 1 107.758 6 7.647 5×10−4 0.999 6 表 2 吸附等温模型参数
Table 2. Adsorption isotherm model parameters
温度/℃ Langmuir Freundlich Qmax/(mg·g−1) kL R2 kF n R2 25 175.438 6 0.060 9 0.997 9 29.268 1 2.828 9 0.944 8 30 178.571 4 0.063 9 0.997 3 30.793 4 2.878 5 0.949 6 35 181.818 2 0.069 2 0.997 5 32.446 7 2.907 0 0.940 7 40 185.185 2 0.078 0 0.997 3 35.673 2 3.037 7 0.935 6 表 3 吸附热力学参数
Table 3. Thermodynamic parameters for adsorption
温度/℃ kF ΔG/(kJ·mol−1) ΔS/(kJ·(mol·K)−1) 25 29.27 −11.90 73.49 30 30.80 −12.20 73.27 35 32.45 −12.51 73.08 40 35.67 −12.82 71.90 注:ΔH为系统吸收或者释放的热量,此处由lnKF−1/T函数的斜率计算所得。 -
[1] ALI I, PENG C S, LIN D C, et al. Encapsulated green magnetic nanoparticles for the removal of toxic Pb2+ and Cd2+ from water: Development, characterization and application[J]. Journal of Environmental Management, 2019, 234: 273-289. [2] LALHMUNSIAMA, LEE S M, TIWARI D. Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper (II) and lead (II)[J]. Chemical Engineering Journal, 2013, 225: 128-137. doi: 10.1016/j.cej.2013.03.083 [3] LI J X, JIANG B Q, LIU Y, et al. Preparation and adsorption properties of magnetic chitosan composite adsorbent for Cu2+ removal[J]. Journal of Cleaner Production, 2017, 158: 51-58. doi: 10.1016/j.jclepro.2017.04.156 [4] XU Q H, WANG Y L, JIN L Q, et al. Adsorption of Cu(II), Pb(II) and Cr(VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose[J]. Journal of Hazardous Materials, 2017, 339: 91-99. doi: 10.1016/j.jhazmat.2017.06.005 [5] SAHRAEI R, POUR Z S, GHAEMY M. Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water[J]. Journal of Cleaner Production, 2017, 142: 2973-2984. doi: 10.1016/j.jclepro.2016.10.170 [6] 于长江, 王苗, 董心雨, 等. 海藻酸钙@Fe3O4/生物碳磁性复合材料的制备及其对Co(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2018, 35(6): 1549-1557. [7] WANG Y Y, YAO W B, WANG Q W, et al. Synthesis of phosphate-embedded calcium alginate beads for Pb(II) and Cd(II) sorption and immobilization in aqueous solutions[J]. Transactions of Nonferrous Metals Society of China, 2016, 26: 2230-2237. doi: 10.1016/S1003-6326(16)64340-6 [8] 孔岩, 韩志勇, 庄媛, 等. 磁性高分子复合水凝胶的制备及其对水中铜离子的吸附性能[J]. 环境科学学报, 2018, 38(3): 1001-1009. [9] BAGBI Y, SARSEAT A, MOHAN D, et al. Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles[J]. Scientific Reports, 2017, 7: 7672. doi: 10.1038/s41598-017-03380-x [10] ALQADAMI A A, KHAN M A, OTERO M, et al. A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water[J]. Journal of Cleaner Production, 2018, 178: 293-304. doi: 10.1016/j.jclepro.2018.01.023 [11] XU P, ZENG G M, HUANG D L, et al. Use of iron oxide nanomaterials in wastewater treatment: A review[J]. Science of the Total Environment, 2012, 424: 1-10. doi: 10.1016/j.scitotenv.2012.02.023 [12] FAN H L, MA X Z, ZHOU S F, et al. Highly efficient removal of heavy metal ions by carboxymethyl cellulose-immobilized Fe3O4 nanoparticles prepared via high-gravity technology[J]. Carbohydrate Polymers, 2019, 213: 39-49. doi: 10.1016/j.carbpol.2019.02.067 [13] TAVAKOLI H, SEPEHRIAN H, CHERAGHALI R. Encapsulation of nanoporous MCM-41 in biopolymeric matrix of calcium alginate and its use as effective adsorbent for lead ions: Equilibrium, kinetic and thermodynamic studies[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44: 343-348. doi: 10.1016/j.jtice.2012.11.019 [14] HWANG K S, PARK C W, LEE K W, et al. Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516: 375-382. doi: 10.1016/j.colsurfa.2016.12.052 [15] XIAO C W, LIU X J, MAO S M, et al. Sub-micron-sized polyethylenimine-modified polystyrene/Fe3O4/chitosan magnetic composites for the efficient and recyclable adsorption of Cu(II) ions[J]. Applied Surface Science, 2017, 394: 378-385. doi: 10.1016/j.apsusc.2016.10.116 [16] 陶虎春, 李硕, 张丽娟, 等. 一种新型磁性壳聚糖/海藻酸钠复合凝胶球的制备与性能研究[J]. 北京大学学报(自然科学版), 2018, 54(4): 781-791. [17] MAIA L F O, HOTT R C, LADEIRA P C C, et al. Simple synthesis and characterization of L-cystine functionalized δ-FeOOH for highly efficient Hg(II) removal from contamined water and mining waste[J]. Chemosphere, 2019, 215: 422-431. doi: 10.1016/j.chemosphere.2018.10.072 [18] 孔静, 李和生, 王亚儿, 等. 半胱氨酸-海藻酸钠-壳聚糖凝胶球的制备研究[J]. 食品工业科技, 2013, 34(6): 265-267. [19] 饶思奇, 徐祖顺. 壳聚糖/聚乙烯醇/半胱氨酸复合水凝胶的制备及其性能研究[J]. 胶体与聚合物, 2014, 32(3): 132-134. [20] 于长江, 董心雨, 王苗, 等. 海藻酸钙/生物炭复合材料的制备及其对Pb(Ⅱ)的吸附性能和机制[J]. 环境科学, 2018, 39(8): 256-265. [21] 张连科, 王洋, 王维大, 等. 磁性羟基磷灰石/生物炭MSAL的制备及对Pb2+的吸附性能[J]. 环境科学学报, 2018, 38(11): 4360-4370. [22] 刘帆, 张荣斌, 王飞, 等. 粪石-沸石复合材料对水中镉的吸附性能研究[J]. 环境科学学报, 2019, 39(9): 2988-2996. [23] 孙俊芝, 王静霞, 倪茂君, 等. 海藻酸钠微球对Pb2+吸附性能的研究[J]. 环境科学与技术, 2019, 42(7): 100-104. [24] 赵天赐, 周世真, 马小龙, 等. 载铁锰氧化物的玉米芯炭对Pb2+的吸附作用[J]. 环境科学学报, 2019, 39(9): 2997-3009. [25] 王君, 周怡伶, 陈勇, 等. Fe3O4@SiO2-Chitosan的制备及其对水中Cu2+的吸附效能研究[J]. 环境科学学报, 2019, 39(8): 2567-2574. [26] 王敏, 黄运龙, 黄耀葛, 等. 改性海藻酸钙气凝胶的制备及吸附铅离子性能研究[J]. 化工新型材料, 2017, 45(9): 231-234. [27] WANG M, YANG Q, ZHAO X Q, et al. Highly efficient removal of copper ions from water by using a novel alginate-polyethyleneimine hybrid aerogel[J]. International Journal of Biological Macromolecules, 2019, 138: 1079-1086. doi: 10.1016/j.ijbiomac.2019.07.160