-
印染废水具有水量大、有机污染物负荷高、可生化性差等特点[1-2]。目前,国内外处理印染废水的方法主要有物理法[3-4]、生物法[5-6]和高级氧化法(advanced oxidation processes, AOPs)[7-8]等。作为AOPs之一的非均相光芬顿(Fenton)技术,因其具有pH适用范围广、不产生铁泥、较高的Fe3+/Fe2+循环效率等优势,从而得到了广泛的关注[9-11]。然而,非均相光Fenton技术仍然面临催化效率低、催化剂稳定性差、需要紫外光介入等问题。因此,开发高效、稳定、能以可见光或天然日光作为驱动光源的非均相光Fenton技术具有重要的意义。
针铁矿(α-FeOOH)作为一种天然矿物,因化学性质稳定、环境友好、低毒、廉价等优势而被广泛应用于光Fenton/类光Fenton中[12-14]。最近的研究[15-16]表明,Cu、Ni等金属元素掺杂可以进一步提高FeOOH的催化效率。相比于Cu、Ni,Co不仅能够分解H2O2产生·OH,而且多价态的Co以及Co(Ⅲ)/Co(Ⅱ)和Fe(Ⅲ)/Fe(Ⅱ)之间的标准电势,有利于Co与Fe之间形成协同作用,进而提高催化效率和催化剂的稳定性。然而,较低的Fe(III)/Fe(II)循环效率及必要的紫外光诱导仍然是亟待解决的问题。石墨相氮化碳(g-C3N4)是一种不含金属元素的可见光催化剂[17-18]。将g-C3N4与FeOOH复合,利用g-C3N4被可见光激发产生的光生电子(e−)可以有效促进Fe(III)/Fe(II)的还原,从而提高催化效率[19-21]。
综上所述,本研究拟通过化学浴沉淀法制备Co掺杂的FeOOH与g-C3N4复合催化剂(Co-FeOOH/g-C3N4),并构建可见光驱动的非均相光芬顿反应体系。在该体系中,利用可见光激发g-C3N4产生光生e−和空穴(h+),光生e−从g-C3N4迁移至Co-FeOOH,一方面促进Fe(Ⅲ)/Fe(Ⅱ)和Co(Ⅲ)/Co(Ⅱ)的循环,加速催化H2O2产生·OH,另一方面,光生e−和h+的有效分离强化了h+的直接氧化作用,从而使催化效率得到提高。本研究考察了各影响因素对该体系催化效率的影响规律,优化了反应参数;在最佳反应条件下,考察了Co-FeOOH/g-C3N4/H2O2体系在天然日光辐照下对高浓度染料废水脱色及化学需氧量(COD)的去除性能。
Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能
Fabrication of Co-FeOOH/g-C3N4 composite and its catalytic performance on heterogeneous photo-Fenton
-
摘要: 通过化学浴沉淀法制备了Co掺杂的FeOOH与石墨相氮化碳复合材料(Co-FeOOH/g-C3N4),作为非均相光芬顿催化剂,以罗丹明B(RhB)为目标污染物,分别考察了Co掺杂量、pH、温度、H2O2浓度、催化剂剂量等因素对光催化效率的影响。在最佳反应条件下,Co-FeOOH、g-C3N4和Co-FeOOH/g-C3N4对RhB的去除率分别为23.7%、59.6%和91.5%。通过阿伦尼乌斯方程计算得到反应的活化能为12.8 kJ·mol−1,通过自由基捕获实验证实·OH与h+均为起主要作用的活性物种。Co-FeOOH/g-C3N4经过5次循环使用后,对RhB的去除率没有明显下降,说明其具有良好的稳定性。最后,以天然日光作为驱动光源,考察了催化剂对高浓度染料废水的处理性能,反应6 h后,废水的脱色率达到100%,COD去除率为43.9%,延长反应时间至10 h,COD的去除率达到81.6%。在非均相芬顿反应中引进了可见光,在提高降解反应速率的同时降低了催化反应发生的成本,本研究结果可为非均相光芬顿体系的实际应用提供实验基础。
-
关键词:
- 非均相光芬顿 /
- 太阳光 /
- Co-FeOOH/g-C3N4
Abstract: In this study, a kind of heterogeneous photo-Fenton catalyst: Co-doped FeOOH and graphitic carbon nitride composite (Co-FeOOH/g-C3N4), was prepared through the chemical bath precipitation method. Rhodamine B (RhB) was chosen as the target to investigate the effects of the operational conditions such as Co dosage in composite, pH, temperature, H2O2 concentration and catalyst dosage on the light catalytic efficiency. Under the optimal conditions, the removal rates of RhB by Co-FeOOH, g-C3N4 and Co-FeOOH/g-C3N4 were 23.7%, 59.6% and 91.5%, respectively. The calculated activation energy of the reaction was 12.8 kJ·mol−1 through the Arrhenius equation. The radical trapping experiments confirmed that both ·OH and h+ were active species in the reaction process. After 5 cycles of Co-FeOOH/g-C3N4 regeneration-recycling, the removal rate of RhB did not decreased significantly, indicating its good stability. Finally, a simulative dye wastewater with high concentration was treated by the composite catalyst under natural solar light irradiation. Six hours later, the decolorization rate and COD removal rate from wastewater reached 100% and 43.9%., respectively. When the reaction time was extended to 10 h, the COD removal rate reached 81.6%. In this study, visible light was introduced into the heterogeneous Fenton reaction, which increased the degradation reaction rate and reduced the cost of the catalytic reaction, it provides an experimental basis for the practical application of the heterogeneous Fenton system.-
Key words:
- heterogeneous photo-Fenton /
- solar light /
- Co-FeOOH/g-C3N4
-
[1] 戴日成, 张统, 郭茜, 等. 印染废水水质特征及处理技术综述[J]. 给水排水, 2000, 26(10): 33-37. doi: 10.3969/j.issn.1002-8471.2000.10.010 [2] 王彤凝, 祖格, 杨林, 等. 国内外印染废水研究进展[J]. 环境保护与循环经济, 2015, 35(4): 28-31. doi: 10.3969/j.issn.1674-1021.2015.04.009 [3] 陈梦瑶, 王营茹, 曾伟, 等. 吸附-絮凝法处理亚甲基蓝染料废水的研究[J]. 工业安全与环保, 2017, 43(1): 24-28. doi: 10.3969/j.issn.1001-425X.2017.01.007 [4] LI R Y, ZHANG L B, WANG P. Rational design of nanomaterials for water treatment[J]. Nanoscale, 2015, 7: 17167-17194. doi: 10.1039/C5NR04870B [5] 温猛, 刘景明, 郭永福, 等. 改良型A/O生物膜法处理印染废水的应用研究[J]. 工业水处理, 2015, 35(7): 50-54. doi: 10.11894/1005-829x.2015.35(7).050 [6] 金一中, 魏岩岩, 陈小平. 水解酸化-SBR工艺处理印染废水的研究[J]. 中国环境科学, 2004, 24(4): 489-491. doi: 10.3321/j.issn:1000-6923.2004.04.023 [7] 赵菁, 张改, 马爱洁, 等. 高级氧化法处理模拟印染废水的研究[J]. 工业水处理, 2015, 35(3): 37-39. doi: 10.11894/1005-829x.2015.35(3).037 [8] 张静, 杨忆新, 马军, 等. CoOx-TiO2催化臭氧氧化草酸的研究[J]. 中国环境科学, 2014, 34(6): 1457-1462. [9] MINELLA M, MARCHETTI G, LAURENTIIS E D, et al. Photo-Fenton oxidation of phenol with magnetite as iron source[J]. Applied Catalysis B: Environmental, 2014, 154-155(5): 102-109. [10] KLAMERTH N, MALATO S, AGUERA A, et al. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison[J]. Water Research, 2013, 47(2): 833-840. doi: 10.1016/j.watres.2012.11.008 [11] KIM S, VOGELPOHL A. Degradation of organic pollutants by the photo-Fenton-process[J]. Chemical Engineering & Technology, 2015, 21(2): 187-191. [12] 苗笑增, 蒋柏泉, 龚娴. 草酸根对α-FeOOH多相UV-Fenton催化能力的增效实验[J]. 环境科学, 2018, 39(3): 1202-1211. [13] CAO Y, SHEN L, HU X, et al. Low temperature desulfurization on Co-doped α-FeOOH: Tailoring the phase composition and creating the defects[J]. Chemical Engineering Journal, 2016, 306: 124-130. doi: 10.1016/j.cej.2016.07.047 [14] MIAO X, DAI H, CHEN J, et al. The enhanced method of hydroxyl radical generation in the heterogeneous UV-Fenton system with α-FeOOH as catalyst[J]. Separation & Purification Technology, 2018, 200: 36-43. [15] XU J, LI Y, YUAN B, et al. Large scale preparation of Cu-doped α-FeOOH nanoflowers and their photo-Fenton-like catalytic degradation of diclofenac sodium[J]. Chemical Engineering Journal, 2016, 291: 174-183. doi: 10.1016/j.cej.2016.01.059 [16] ROCHA T D S, NASCIMENTO E S, SILVA A C D, et al. Enhanced photocatalytic hydrogen generation from water by Ni(OH)2 loaded on Ni-doped δ-FeOOH nanoparticles obtained by one-step synthesis[J]. RSC Advances, 2013, 3(43): 20308-20314. doi: 10.1039/c3ra43561j [17] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401. doi: 10.1021/la900923z [18] WANG X, MAEDA K, CHEN X, et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society, 2009, 131(5): 1680-1681. doi: 10.1021/ja809307s [19] HE D, CHEN Y, SITU Y, et al. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: An integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light[J]. Applied Surface Science, 2017, 425: 862-872. doi: 10.1016/j.apsusc.2017.06.124 [20] ZHANG G, WU Z, LIU H, et al. Photoactuation healing of α-FeOOH@g-C3N4 catalyst for efficient and stable activation of persulfate[J]. Small, 2017, 13(41): 1702225. doi: 10.1002/smll.201702225 [21] YANG H, ZHANG S, CAO R. Constructing the novel ultrafine amorphous iron oxyhydroxide/g-C3N4 nanosheets heterojunctions for highly improved photocatalytic performance[J]. Scientific Reports, 2017, 7(1): 8686. doi: 10.1038/s41598-017-09283-1 [22] MAMBA G, MISHRA A K. Graphitic carbon nitride(g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B: Environmental, 2016, 198: 347-377. doi: 10.1016/j.apcatb.2016.05.052 [23] LI S, DONG G, HAILILI R, et al. Effective photocatalytic H2O2, production under visible light irradiation at g-C3N4, modulated by carbon vacancies[J]. Applied Catalysis B: Environmental, 2016, 190(8): 26-35. [24] 戴竹青, 王密华, 贾韧刃, 等. 微波/过氧化氢降解水中甲基红[J]. 石油化工高等学校学报, 2014, 27(6): 11-15. doi: 10.3969/j.issn.1006-396X.2014.06.003 [25] YANG X J, XU X M, XU J, et al. Iron oxychloride (FeOCl): An efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013, 135(43): 16058-16061. doi: 10.1021/ja409130c