Processing math: 100%

Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能

宋思扬, 吴丹, 赵焕新, 曹宇, 王欣, 赵宇. Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能[J]. 环境工程学报, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147
引用本文: 宋思扬, 吴丹, 赵焕新, 曹宇, 王欣, 赵宇. Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能[J]. 环境工程学报, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147
SONG Siyang, WU Dan, ZHAO Huanxin, CAO Yu, WANG Xin, ZHAO Yu. Fabrication of Co-FeOOH/g-C3N4 composite and its catalytic performance on heterogeneous photo-Fenton[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147
Citation: SONG Siyang, WU Dan, ZHAO Huanxin, CAO Yu, WANG Xin, ZHAO Yu. Fabrication of Co-FeOOH/g-C3N4 composite and its catalytic performance on heterogeneous photo-Fenton[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147

Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能

    作者简介: 宋思扬(1995—),女,硕士研究生。研究方向:环境催化材料。E-mail:songsiyang991@163.com
    通讯作者: 赵焕新(1985—),男,博士,副教授。研究方向:环境催化材料。E-mail:zhaohuanxin@syuct.edu.cn
  • 基金项目:
    辽宁省教育厅一般项目(LQ2019015);大连理工大学工业生态与环境工程教育部重点实验室开放基金(KLIEEE-19-08)
  • 中图分类号: X703

Fabrication of Co-FeOOH/g-C3N4 composite and its catalytic performance on heterogeneous photo-Fenton

    Corresponding author: ZHAO Huanxin, zhaohuanxin@syuct.edu.cn
  • 摘要: 通过化学浴沉淀法制备了Co掺杂的FeOOH与石墨相氮化碳复合材料(Co-FeOOH/g-C3N4),作为非均相光芬顿催化剂,以罗丹明B(RhB)为目标污染物,分别考察了Co掺杂量、pH、温度、H2O2浓度、催化剂剂量等因素对光催化效率的影响。在最佳反应条件下,Co-FeOOH、g-C3N4和Co-FeOOH/g-C3N4对RhB的去除率分别为23.7%、59.6%和91.5%。通过阿伦尼乌斯方程计算得到反应的活化能为12.8 kJ·mol−1,通过自由基捕获实验证实·OH与h+均为起主要作用的活性物种。Co-FeOOH/g-C3N4经过5次循环使用后,对RhB的去除率没有明显下降,说明其具有良好的稳定性。最后,以天然日光作为驱动光源,考察了催化剂对高浓度染料废水的处理性能,反应6 h后,废水的脱色率达到100%,COD去除率为43.9%,延长反应时间至10 h,COD的去除率达到81.6%。在非均相芬顿反应中引进了可见光,在提高降解反应速率的同时降低了催化反应发生的成本,本研究结果可为非均相光芬顿体系的实际应用提供实验基础。
  • 厌氧发酵是一种能够有效实现有机废物资源化和能源化的生物反应过程[1]。在我国,餐厨垃圾(FW)每年的产生量约为6×107 t,占城市固体废弃物总量的40%以上[2]。FW主要由易于降解的碳水化合物、蛋白质和脂质组成,具有较高的产甲烷潜力[3-4]。但是,单独发酵FW时,由于FW水解速度较快会积累挥发性脂肪酸(VFA),易发生系统抑制崩溃的后果[5]。已经有研究证明将剩余活性污泥(WAS)添加到FW厌氧发酵系统提高混合发酵运行性能的可行性[6]。与单独FW或WAS厌氧发酵相比,将2者进行厌氧混合发酵能够促使微生物发挥协同作用,稳定厌氧发酵性能。

    目前,有关FW和WAS厌氧混合发酵系统的构型主要采用间歇进料的连续搅拌反应器(CSTR)[7-8]。然而,CSTR不能实现污泥停留时间(SRT)和水力停留时间(HRT)的有效分离,使得微生物难以持留,难以保障微生物的持续生长,而且CSTR的间歇式进料方式容易引起负荷冲击。动态膜生物反应器(DMBR)使用在膜基材表面上沉积/吸附形成的滤饼层作为过滤层,能有效防止生长缓慢的厌氧微生物尤其是产甲烷菌的流失,提供了较长SRT来维持大量微生物种群生长[9]。已有研究利用板框内置式膜组件,采用连续流运行模式,在2.8 g·L−1·d−1的负荷下,实现了基于DMBR进行玉米秸秆和FW的混合发酵[10]。连续流进料方式可以有效缓解间歇式进料方式引起的基质冲击,增加系统的缓冲能力。目前,有关连续流动态膜厌氧混合发酵系统的稳定运行的解析鲜见报道。

    在厌氧混合发酵系统中,基质的混合比例是影响厌氧发酵的关键参数,李浩等[11]的研究结果表明,在FW和WAS厌氧混合发酵过程中,FW所占比例影响混合发酵的反应速率。同时,厌氧发酵系统的最优基质混合比也会随着系统的长期运行和菌群结构的驯化改变而变化[12]。食微比(F/M)是衡量有机负荷的重要参数[13],F/M与基质种类和接种物中微生物菌群密切相关,不同的F/M会影响系统的效能潜力。截至目前,很少有研究考虑基质混合比(FW/WAS)和F/M对厌氧混合发酵系统长期运行的影响。

    本研究构建了FW和WAS的外置式动态膜厌氧混合发酵系统。在连续流条件下启动动态膜厌氧混合发酵系统,以实现系统的稳定运行;同时,对DMBR运行过程中动态膜的形成和固液分离的效果进行解析。通过FW/WAS的产甲烷潜能和动力学实验,优化连续流厌氧混合发酵系统的因素,结合F/M 动力学实验,评价FW/WAS与F/M对连续流厌氧混合发酵系统运行效能的影响。

    本研究使用的外置式动态膜生物反应器如图1所示。反应器的有效体积为9.0 L,外部使用水浴层和恒温槽来控制反应器的温度为 (39±1) ℃,基质罐连接4 ℃恒温冷水浴。外置式膜组件由300目不锈钢筛网定制加工而成,平均孔径为48 µm,有效过滤面积为0.047 m2。系统的运行模式为连续进出料,产生的生物气通过水封瓶后用湿式气体流量计计量产气量。通过曝气泵将系统内顶空生物气泵入膜组件腔体底部,对膜组件进行气擦洗后回流至系统内;同时,通过反洗曝气泵将系统内顶空生物气定期泵入膜组件腔体外侧,对膜组件进行气反洗后回流至系统内。当膜组件和出料泵间跨膜压差增加到40 kPa时,开启反洗曝气泵进行气反洗,反洗强度为10 L·min−1,气反洗时间为10 min。当进行气反洗不能提高膜通量时,通过增大曝气泵流量、回流量或气反洗频率进行调控。

    图 1  DMBR实验装置流程示意图
    Figure 1.  Schematic diagram of dynamic membrane bioreactor (DMBR)

    本研究所采用的FW依据学生食堂餐厨剩余物的主要成分进行人工模拟配制[14],WAS取自西安市第五污水处理厂,2者混合后添加微量元素作为最终混合基质[8]。启动阶段FW和WAS的混合比例为4∶1(基于湿重),该最优混合基质比是启动前期批次实验优化的结果[15]。研究所用接种污泥为FW和WAS中温厌氧CSTR的排泥[15],接种体积为9.0 L。本研究中使用的FW、WAS、混合基质和接种污泥的理化特性如表1所示。

    表 1  基质和接种污泥的理化特性
    Table 1.  Physicochemical properties of substrate and seed sludge
    供试对象TS/(g·L−1)VS/(g·L−1)TCOD/(g·L−1)SCOD/(g·L−1)pH乙酸/(g·L−1)蛋白质/(g·L−1)多糖/(g·L−1)NH4+-N/(g·L−1)
    FW140.0±15.3134.0±13.2220.0±18.5104.0±8.34.41.7302.74±0.0385.30±4.100.31±0.01
    WAS56.0±8.330.4±4.252.2±7.3
    混合基质124.0±0.6115.0±0.5181.0±2.374.5±1.43.90.001±0.0008.20±0.122.71±0.030.10±0.01
    接种污泥39.1±0.619.7±1.527.2±0.33.1±0.07.90.003±0.0000.81±0.030.27±0.022.62±0.17
      注:“—”表示未测定。
     | Show Table
    DownLoad: CSV

    设置DMBR系统的初始OLR和HRT分别为(1.84±0.45) g·L−1·d−1和62.5 d,启动运行72 d,测定系统的运行性能参数和动态膜截留性能。启动阶段运行结束后,采用批次实验进行FW/WAS和F/M参数优化,实验设置见表2。FW/WAS批次实验在F/M为0.145 (基于VS)时共设置7组,其中2组为FW和WAS单发酵。F/M批次实验在FW/WAS为4.4∶1时共设置8组。所有批次实验均在120 mL血清瓶中分批进行,同时设置空白组。其中,空白组与实验组均设置2组平行。当混合基质和接种污泥加入血清瓶摇晃均匀后,用氮气吹脱约3 min,橡皮塞封瓶后置于39 ℃恒温摇床内,摇床转速为120 r·min−1,2 min后血清瓶顶空放气,定时测定气组和气量。

    表 2  批次实验的运行设置
    Table 2.  Operating characteristics of the batch experiments
    实验项目FW/WASF/M接种物/mLFW/mLWAS/mL混合基质/mL蒸馏水/mL
    FW单发酵1∶00.206300.90503.095
    WAS单发酵0∶10.2063004.0000
    FW/WAS混合发酵3∶10.206300.6801.0002.320
    FW/WAS混合发酵4∶10.206300.7250.8002.475
    FW/WAS混合发酵4.4∶10.206300.7400.7402.520
    FW/WAS混合发酵5∶10.206300.7550.6702.575
    FW/WAS混合发酵6∶10.206300.7750.5752.650
    F/M混合发酵4.4∶10.090300.96014.040
    F/M混合发酵4.4∶10.176301.86513.135
    F/M混合发酵4.4∶10.354303.75011.250
    F/M混合发酵4.4∶14.4∶10.4720.56730305.0006.00010.0009.000
    F/M混合发酵
    F/M混合发酵4.4∶10.708307.5007.500
    F/M混合发酵4.4∶10.9443010.0005.000
    F/M混合发酵4.4∶11.4173015.0000
      注:“—”表示不适用。
     | Show Table
    DownLoad: CSV

    TS、VS、COD、碱度和NH4+-N的测定采用标准方法[16]。pH采用便携式pH计进行测定(pHS-25型,上海精密科学仪器有限公司)。蛋白质和多糖分别采用Folin-酚试剂法[17]和硫酸-蒽酮法[18]。CH4、CO2、N2、H2和VFA均采用气相色谱法进行测定[8]。浊度采用便携式浊度仪 (Turb®355 IR,德国赛莱默公司) 测定。采用修正的Gompertz方程 (公式1) 拟合批次实验数据,以确定产甲烷潜力、最大产甲烷速率和延滞期[19-20]。采用一级动力学模型 (公式2) 进行数据拟合可得水解常数[21]

    P=P0exp{exp[Rmaxe(t0t)/P0+1] (1)
    P=P0[1exp(kt)] (2)

    式中:P为生物气产量,mL;P0为生物气潜能,mL;Rmax为最大生物气产生速率,mL·d−1t0为延滞期,d;k为产甲烷速率常数,d−1

    在HRT和OLR分别为62.5 d和(1.84±0.45) g·L−1·d−1的初始条件下,启动连续流FW和WAS厌氧混合发酵动态膜生物反应器。反应器启动运行过程中,系统的生物气产量、甲烷产量和甲烷占比如图2(a)所示。前5 d启动过程中,系统的生物气产量、甲烷产量和甲烷占比逐渐增加,然后趋于稳定。72 d的运行过程中,系统的平均生物气产量达到(0.60±0.11) L·L−1·d−1,平均甲烷产量达到(0.41±0.08) L·L−1·d−1,甲烷占比稳定在66%~71%,平均甲烷占比达到69.00%。pH和VFA的变化趋势能够直观的表明反应器的运行状况。如图2(b)所示,启动过程中,系统的pH始终稳定在7.6~8.0,在产甲烷菌最适pH(7.0~8.0)内[8]。本研究VFA最大质量浓度仅为284 mg·L−1,无VFA积累现象。这表明,连续流动态膜混合发酵系统启动成功[22]。如图2(c)所示,TVFA/碱度最大值仅为0.024,低于阈值0.4[23]。VFA和TVFA/碱度均未超过阈值,这表明厌氧发酵系统稳定性良好。厌氧发酵系统成功启动后,系统的平均TVFA质量浓度为(15.9±1.89) mg·L−1,低于产甲烷菌TVFA的抑制浓度5 000 mg·L−1,相应的总碱度为11 000~14 000 mg·L−1,也在稳定运行范围内[24]。上述结果表明,连续流FW和WAS厌氧混合发酵DMBR启动成功且能稳定运行。此外,对系统进行物料平衡分析可知,在该系统基质VSS的生物降解转化去除率为84%±3.8%,去除单位质量COD的基质甲烷产量为(294±13) mL。

    图 2  DMBR的运行性能图
    Figure 2.  Operating performance of DMBR system

    本实验的反应器装置为外置式的柱型动态膜组件,开启出料泵后,反应器内污泥先通过回流泵进入膜组件腔体内部,当回流污泥充满膜组件内部腔体后附着在动态膜基材上,逐渐形成过滤层。在第35 d膜组件清洗后,动态膜组件的跨膜压差、膜通量和浊度变化如图3所示。前4 h,动态膜组件的跨膜压差快速升高,由8.34 kPa增至22.3 kPa,相应的出料浊度由252 NTU降低至90.4 NTU,通量降低至0.42 L·m−2·h−1,2者均呈现快速下降的趋势。这是因为,动态膜组件腔体内充满了污泥,污泥开始附着在动态膜基材上,具有一定的截留效果。从4 h至21 h,通量降低了约40% (由0.42 L·m−2·h−1降至0.25 L·m−2·h−1) ,浊度也降至100 NTU以下,表明动态膜逐渐形成。随着过滤过程的进行,通量下降速度减缓,出料浊度趋于稳定。约40 h后,出料浊度稳定在50 NTU,通量在0.2 L·m−2·h−1左右。动态膜层逐渐增厚,进入稳定过滤阶段,具有稳定的截留效果。此外,当跨膜压差增至40 kPa时,进行动态膜气反洗后,能够快速形成动态膜,相应的压差逐渐增加 (如图3),长期运行过程中动态膜跨膜压差呈现周期性变化。袁宏林等[10]采用相同材质和孔径的动态膜基材,以玉米秸秆和FW为混合基质进行厌氧混合发酵,也获得了较优的固液分离效果,相应的有机物截留率达到95.9%,与本研究动态膜截留效果相当。通过借用在大孔径膜基材上形成的滤饼层作为过滤层,能够将传统膜生物反应器运行中存在的“膜污染”瓶颈问题转化为过滤层加以利用。本研究虽然对动态膜的过滤周期进行了表征,但仍需进一步解析动态膜滤饼层的过滤机理。此外,对接种物、运行末期动态膜滤饼层和系统排泥进行宏全基因组菌群分析可知:混合发酵系统以细菌为主,其中细菌主要包括Bacteroidetes (30.5%~44.6%) 、Chloroflexi (10.5%~24.5%) 和Firmicutes (23.1%~36.5%) ,古菌主要包括Methanosarcina (53.0%~97.9%) 和Methanobacterium (0.16%~18.7%) 。不同的微生物菌群结构组成及其变化,对于动态膜的形成和过滤效能均有一定程度的影响,但其作用机理仍需进一步研究。

    图 3  DMBR系统运行过程中跨膜压差、通量和浊度的变化
    Figure 3.  Changes of trans-membrane pressure (TMP), flux and turbidity during the operation period in DMBR system

    为进一步揭示动态膜过滤截留效能的周期稳定性,在反应器运行的第7、15、21、28、41、53和60 d取样分析动态膜过滤液中TCOD、蛋白质及多糖质量浓度。如图4(a)所示,出料TCOD均低于3 g·L−1,且动态膜对TCOD的截留率可达到99.5%,最终可稳定在99%以上。这表明,该外置式动态膜组件可实现较好的出料质量,实现有机物和微生物的稳定截留。如图4(b)所示,经过动态膜出料的蛋白质和多糖质量浓度均低于300 mg·L−1,相应的蛋白质和多糖截留率均不低于95%。其中,出料蛋白质质量浓度始终高于多糖,主要由于混合基质中蛋白质质量浓度是多糖质量浓度的3倍以上 (表1) ;同时,出料蛋白质质量浓度逐渐下降,相应的去除率逐渐增加。分析其原因主要是,由于形成的动态膜对蛋白质的截留效果逐渐增强;相反,出料多糖质量浓度略有增加,相应的多糖截留率略有降低,但仍维持较高水平 (>95%) ,也与动态膜的过滤效能密切相关。动态膜滤饼层中蛋白质和多糖以及凝胶层对混合发酵系统中物质的截留作用是目前膜生物反应器探究的热点,相应的过滤截留机理有待进一步深入解析,以实现动态膜对蛋白质和多糖的截留调控。

    图 4  DMBR系统长期运行过程中出料性能
    Figure 4.  Permeate characteristics of the DMBR system during the long-term operation

    1) FW/WAS的优化。如表3所示,一级动力学模型和修正的Gompertz模型的拟合相关系数分别为0.971~0.991和0.975~0.987。这表明,2者均可较好地拟合FW和WAS厌氧发酵系统的累积产甲烷量。FW和WAS混合发酵的t0值趋近于0,表明FW和WAS混合发酵产甲烷基本无延滞期。在F/M为0.206条件下,不同FW/WAS的单位基质累积产甲烷量如图5所示。当厌氧发酵时间约为15 d时,FW/WAS等于4∶1和4.4∶1的单位基质累积产甲烷量明显高于3∶1、5∶1和6∶1时的单位基质累积产甲烷量。这表明,FW/WAS等于4∶1或4.4∶1时,FW和WAS混合发酵产甲烷的互促效果最佳。在FW/WAS为4∶1和4.4∶1时,运用Gompertz模型拟合分析可得P0Rmax,如表3所示。可看出,在4.4∶1时,可获得更高的产甲烷潜能和最大生物气产率。如图6所示,当FW/WAS为4∶1和6∶1外,混合发酵的实际甲烷产率相对于单独发酵的加权平均值 (即理论甲烷产量) 均有不同程度的提升 (7.1%~15.2%)。其中,FW/WAS为4.4∶1时,相应的甲烷产量提升率最高。对比先前优化结果可发现[1],FW和WAS厌氧混合发酵系统经过长期驯化,最优基质混合比由初始最优值4∶1逐渐变为4.4∶1。因此,定期调整优化FW/WAS有利于厌氧混合发酵系统获得更高的产甲烷效能。

    表 3  不同FW/WAS和F/M通过修正Gompertz模型和一级动力学模型拟合后产甲烷性能参数
    Table 3.  Kinetic parameters of CH4 production with respect to different FW/WAS and F/M obtained from the modified Gompertz model and first-order model
    实验项目FW/WASF/M修正的Gompertz模型一级动力学模型
    P0/mLRmax/mLt0/dR2P0/mLk/d-1R2
    FW单发酵1∶00.2061640.20.975170.2870.971
    WAS单发酵0∶10.206325220.70.9843440.0220.988
    FW/WAS混合发酵3∶10.20670600.984740.1600.993
    FW/WAS混合发酵4∶10.206781000.982860.1690.989
    FW/WAS混合发酵4.4∶10.206821100.985880.1720.994
    FW/WAS混合发酵5∶10.20667900.987740.1790.990
    FW/WAS混合发酵6∶10.20663800.985680.1810.991
    F/M混合发酵4.4∶10.0905110500.985512.6100.977
    F/M混合发酵4.4∶10.176918500.979911.6100.989
    F/M混合发酵4.4∶10.3541669900.9691690.9680.981
    F/M混合发酵4.4∶10.47221912600.9802230.8740.987
    F/M混合发酵4.4∶10.56724011800.9822460.7510.990
    F/M混合发酵4.4∶10.70827710600.9892860.5750.996
    F/M混合发酵4.4∶10.944325430.020.9944020.1350.984
    F/M混合发酵4.4∶11.417002.00.902000
     | Show Table
    DownLoad: CSV
    图 5  不同FW/WAS下,厌氧混合发酵的单位基质累积产甲烷量
    Figure 5.  Cumulative CH4 production with same volatile substrate under different FW/WAS ratios
    图 6  不同FW/WAS下,FW和WAS单发酵和混合发酵的单位基质最大累积产甲烷量和甲烷产量提升率
    Figure 6.  Maximum and theoretical cumulative CH4 production with same volatile substrate of mono- and co-digestion, and CH4 production enhancement percentage of co-digestion under different FW/WAS ratios

    2) F/M实验。将FW/WAS的最优值4.4∶1作为基质混合比,使用相同接种物评价F/M的影响。不同F/M下,FW和WAS厌氧发酵系统的累积产甲烷量如图7所示。当厌氧发酵时间约为12 d,F/M分别为0.09、0.176、0.354、0.472、0.567、0.708和0.944时,相应的甲烷产量对应为54.0、94.8、192、236、264、298和317 mL。如表3所示,运用Gompertz模型模拟分析可知相应的产甲烷潜能分别为51、91、166、219、240、277和325 mL,模型拟合相关系数为0.969~0.994,这表明拟合结果与实际吻合较好。此外,FW和WAS混合发酵的t0值也都趋于0,与前述结果一致。如图7和表3所示,当F/M为1.42时,累积产甲烷量和Rmax均为负值,这表明该结果无法用一级动力学模型和Gompertz模型拟合。其原因在于,在此负荷下,产甲烷菌的活性受到严重抑制。当F/M由0.090增至0.944时,累积产甲烷量和P0逐渐增加。当F/M为0.944时,与F/M为0.708相比,Rmax由106 mL降至43 mL,k由0.575 d−1降为0.135 d−1,分别降低了59.8%和76.5%。这表明,当F/M>0.708时,FW和WAS 混合发酵产甲烷的速率减缓。综上,FW和WAS厌氧混合发酵的最大耐受F/M为0.944,且当F/M>0.708时,相应的产甲烷速率减缓。

    图 7  不同F/M下,厌氧混合发酵的累积产甲烷量
    Figure 7.  Cumulative CH4 production in the anaerobic co-digestion system under different F/M ratio

    1) 在较低的有机负荷条件下能够实现连续流FW和WAS厌氧动态膜混合发酵系统的启动及其长期稳定运行,且系统碱度缓冲能力强、无酸累积,系统甲烷产量稳定。

    2) 在连续流厌氧动态膜系统启动和长期运行过程中,能短时间形成动态膜,且对TCOD、蛋白质和多糖具有良好的截留率 (>95%) ,固液分离效果显著且能实现低浊度出料 (<50 NTU) 。

    3) 厌氧动态膜混合发酵系统长期运行后,最优混合基质比为4.4∶1,同时,该系统的最大食微比为0.944,为该系统后续运行效能的优化提升提供了调控依据,以最大限度的快速实现连续流动态膜混合发酵系统的高效稳定运行。

  • 图 1  20Co-FeOOH/g-C3N4和g-C3N4样品的XRD图谱

    Figure 1.  XRD patterns of 20Co-FeOOH/g-C3N4 and g-C3N4

    图 2  g-C3N4和20Co-FeOOH/g-C3N4的SEM图

    Figure 2.  SEM images of g-C3N4 and 20Co-FeOOH/g-C3N4

    图 3  不同反应体系对RhB的转化

    Figure 3.  RhB transformation in different systems

    图 4  Co的掺杂量对RhB转化的影响

    Figure 4.  Effect of Co dosage on transformation of RhB

    图 5  H2O2浓度对RhB转化率的影响

    Figure 5.  Effect of H2O2 concentration on transformation of RhB

    图 6  pH对RhB转化率的影响

    Figure 6.  Effect of pH on transformation of RhB

    图 7  反应温度对RhB转化的影响

    Figure 7.  Effect of temperature on transformation of RhB

    图 8  催化剂投加量对RhB转化率的影响

    Figure 8.  Effect of catalyst dosage on transformation of RhB

    图 9  自由基捕获实验

    Figure 9.  Radical trapping experiments

    图 10  催化剂稳定性实验

    Figure 10.  Experiment on catalyst stability

    图 11  太阳光辐照下RhB的脱色率

    Figure 11.  Decolorization rate of RhB under solar light irradiation

    图 12  太阳光辐照下RhB的COD变化

    Figure 12.  COD change of RhB under solar light irradiation

  • [1] 戴日成, 张统, 郭茜, 等. 印染废水水质特征及处理技术综述[J]. 给水排水, 2000, 26(10): 33-37. doi: 10.3969/j.issn.1002-8471.2000.10.010
    [2] 王彤凝, 祖格, 杨林, 等. 国内外印染废水研究进展[J]. 环境保护与循环经济, 2015, 35(4): 28-31. doi: 10.3969/j.issn.1674-1021.2015.04.009
    [3] 陈梦瑶, 王营茹, 曾伟, 等. 吸附-絮凝法处理亚甲基蓝染料废水的研究[J]. 工业安全与环保, 2017, 43(1): 24-28. doi: 10.3969/j.issn.1001-425X.2017.01.007
    [4] LI R Y, ZHANG L B, WANG P. Rational design of nanomaterials for water treatment[J]. Nanoscale, 2015, 7: 17167-17194. doi: 10.1039/C5NR04870B
    [5] 温猛, 刘景明, 郭永福, 等. 改良型A/O生物膜法处理印染废水的应用研究[J]. 工业水处理, 2015, 35(7): 50-54. doi: 10.11894/1005-829x.2015.35(7).050
    [6] 金一中, 魏岩岩, 陈小平. 水解酸化-SBR工艺处理印染废水的研究[J]. 中国环境科学, 2004, 24(4): 489-491. doi: 10.3321/j.issn:1000-6923.2004.04.023
    [7] 赵菁, 张改, 马爱洁, 等. 高级氧化法处理模拟印染废水的研究[J]. 工业水处理, 2015, 35(3): 37-39. doi: 10.11894/1005-829x.2015.35(3).037
    [8] 张静, 杨忆新, 马军, 等. CoOx-TiO2催化臭氧氧化草酸的研究[J]. 中国环境科学, 2014, 34(6): 1457-1462.
    [9] MINELLA M, MARCHETTI G, LAURENTIIS E D, et al. Photo-Fenton oxidation of phenol with magnetite as iron source[J]. Applied Catalysis B: Environmental, 2014, 154-155(5): 102-109.
    [10] KLAMERTH N, MALATO S, AGUERA A, et al. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison[J]. Water Research, 2013, 47(2): 833-840. doi: 10.1016/j.watres.2012.11.008
    [11] KIM S, VOGELPOHL A. Degradation of organic pollutants by the photo-Fenton-process[J]. Chemical Engineering & Technology, 2015, 21(2): 187-191.
    [12] 苗笑增, 蒋柏泉, 龚娴. 草酸根对α-FeOOH多相UV-Fenton催化能力的增效实验[J]. 环境科学, 2018, 39(3): 1202-1211.
    [13] CAO Y, SHEN L, HU X, et al. Low temperature desulfurization on Co-doped α-FeOOH: Tailoring the phase composition and creating the defects[J]. Chemical Engineering Journal, 2016, 306: 124-130. doi: 10.1016/j.cej.2016.07.047
    [14] MIAO X, DAI H, CHEN J, et al. The enhanced method of hydroxyl radical generation in the heterogeneous UV-Fenton system with α-FeOOH as catalyst[J]. Separation & Purification Technology, 2018, 200: 36-43.
    [15] XU J, LI Y, YUAN B, et al. Large scale preparation of Cu-doped α-FeOOH nanoflowers and their photo-Fenton-like catalytic degradation of diclofenac sodium[J]. Chemical Engineering Journal, 2016, 291: 174-183. doi: 10.1016/j.cej.2016.01.059
    [16] ROCHA T D S, NASCIMENTO E S, SILVA A C D, et al. Enhanced photocatalytic hydrogen generation from water by Ni(OH)2 loaded on Ni-doped δ-FeOOH nanoparticles obtained by one-step synthesis[J]. RSC Advances, 2013, 3(43): 20308-20314. doi: 10.1039/c3ra43561j
    [17] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401. doi: 10.1021/la900923z
    [18] WANG X, MAEDA K, CHEN X, et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society, 2009, 131(5): 1680-1681. doi: 10.1021/ja809307s
    [19] HE D, CHEN Y, SITU Y, et al. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: An integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light[J]. Applied Surface Science, 2017, 425: 862-872. doi: 10.1016/j.apsusc.2017.06.124
    [20] ZHANG G, WU Z, LIU H, et al. Photoactuation healing of α-FeOOH@g-C3N4 catalyst for efficient and stable activation of persulfate[J]. Small, 2017, 13(41): 1702225. doi: 10.1002/smll.201702225
    [21] YANG H, ZHANG S, CAO R. Constructing the novel ultrafine amorphous iron oxyhydroxide/g-C3N4 nanosheets heterojunctions for highly improved photocatalytic performance[J]. Scientific Reports, 2017, 7(1): 8686. doi: 10.1038/s41598-017-09283-1
    [22] MAMBA G, MISHRA A K. Graphitic carbon nitride(g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B: Environmental, 2016, 198: 347-377. doi: 10.1016/j.apcatb.2016.05.052
    [23] LI S, DONG G, HAILILI R, et al. Effective photocatalytic H2O2, production under visible light irradiation at g-C3N4, modulated by carbon vacancies[J]. Applied Catalysis B: Environmental, 2016, 190(8): 26-35.
    [24] 戴竹青, 王密华, 贾韧刃, 等. 微波/过氧化氢降解水中甲基红[J]. 石油化工高等学校学报, 2014, 27(6): 11-15. doi: 10.3969/j.issn.1006-396X.2014.06.003
    [25] YANG X J, XU X M, XU J, et al. Iron oxychloride (FeOCl): An efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013, 135(43): 16058-16061. doi: 10.1021/ja409130c
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.9 %DOWNLOAD: 3.9 %HTML全文: 90.9 %HTML全文: 90.9 %摘要: 5.3 %摘要: 5.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.6 %其他: 95.6 %XX: 2.9 %XX: 2.9 %上海: 0.1 %上海: 0.1 %北京: 0.8 %北京: 0.8 %晋城: 0.1 %晋城: 0.1 %深圳: 0.2 %深圳: 0.2 %运城: 0.1 %运城: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %其他XX上海北京晋城深圳运城郑州重庆Highcharts.com
图( 12)
计量
  • 文章访问数:  5613
  • HTML全文浏览数:  5613
  • PDF下载数:  100
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-25
  • 录用日期:  2020-04-04
  • 刊出日期:  2020-12-10
宋思扬, 吴丹, 赵焕新, 曹宇, 王欣, 赵宇. Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能[J]. 环境工程学报, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147
引用本文: 宋思扬, 吴丹, 赵焕新, 曹宇, 王欣, 赵宇. Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能[J]. 环境工程学报, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147
SONG Siyang, WU Dan, ZHAO Huanxin, CAO Yu, WANG Xin, ZHAO Yu. Fabrication of Co-FeOOH/g-C3N4 composite and its catalytic performance on heterogeneous photo-Fenton[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147
Citation: SONG Siyang, WU Dan, ZHAO Huanxin, CAO Yu, WANG Xin, ZHAO Yu. Fabrication of Co-FeOOH/g-C3N4 composite and its catalytic performance on heterogeneous photo-Fenton[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147

Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能

    通讯作者: 赵焕新(1985—),男,博士,副教授。研究方向:环境催化材料。E-mail:zhaohuanxin@syuct.edu.cn
    作者简介: 宋思扬(1995—),女,硕士研究生。研究方向:环境催化材料。E-mail:songsiyang991@163.com
  • 1. 沈阳化工大学环境与安全工程学院,沈阳 110142
  • 2. 抚顺市环境科学研究院,抚顺 113006
基金项目:
辽宁省教育厅一般项目(LQ2019015);大连理工大学工业生态与环境工程教育部重点实验室开放基金(KLIEEE-19-08)

摘要: 通过化学浴沉淀法制备了Co掺杂的FeOOH与石墨相氮化碳复合材料(Co-FeOOH/g-C3N4),作为非均相光芬顿催化剂,以罗丹明B(RhB)为目标污染物,分别考察了Co掺杂量、pH、温度、H2O2浓度、催化剂剂量等因素对光催化效率的影响。在最佳反应条件下,Co-FeOOH、g-C3N4和Co-FeOOH/g-C3N4对RhB的去除率分别为23.7%、59.6%和91.5%。通过阿伦尼乌斯方程计算得到反应的活化能为12.8 kJ·mol−1,通过自由基捕获实验证实·OH与h+均为起主要作用的活性物种。Co-FeOOH/g-C3N4经过5次循环使用后,对RhB的去除率没有明显下降,说明其具有良好的稳定性。最后,以天然日光作为驱动光源,考察了催化剂对高浓度染料废水的处理性能,反应6 h后,废水的脱色率达到100%,COD去除率为43.9%,延长反应时间至10 h,COD的去除率达到81.6%。在非均相芬顿反应中引进了可见光,在提高降解反应速率的同时降低了催化反应发生的成本,本研究结果可为非均相光芬顿体系的实际应用提供实验基础。

English Abstract

  • 印染废水具有水量大、有机污染物负荷高、可生化性差等特点[1-2]。目前,国内外处理印染废水的方法主要有物理法[3-4]、生物法[5-6]和高级氧化法(advanced oxidation processes, AOPs)[7-8]等。作为AOPs之一的非均相光芬顿(Fenton)技术,因其具有pH适用范围广、不产生铁泥、较高的Fe3+/Fe2+循环效率等优势,从而得到了广泛的关注[9-11]。然而,非均相光Fenton技术仍然面临催化效率低、催化剂稳定性差、需要紫外光介入等问题。因此,开发高效、稳定、能以可见光或天然日光作为驱动光源的非均相光Fenton技术具有重要的意义。

    针铁矿(α-FeOOH)作为一种天然矿物,因化学性质稳定、环境友好、低毒、廉价等优势而被广泛应用于光Fenton/类光Fenton中[12-14]。最近的研究[15-16]表明,Cu、Ni等金属元素掺杂可以进一步提高FeOOH的催化效率。相比于Cu、Ni,Co不仅能够分解H2O2产生·OH,而且多价态的Co以及Co(Ⅲ)/Co(Ⅱ)和Fe(Ⅲ)/Fe(Ⅱ)之间的标准电势,有利于Co与Fe之间形成协同作用,进而提高催化效率和催化剂的稳定性。然而,较低的Fe(III)/Fe(II)循环效率及必要的紫外光诱导仍然是亟待解决的问题。石墨相氮化碳(g-C3N4)是一种不含金属元素的可见光催化剂[17-18]。将g-C3N4与FeOOH复合,利用g-C3N4被可见光激发产生的光生电子(e)可以有效促进Fe(III)/Fe(II)的还原,从而提高催化效率[19-21]

    综上所述,本研究拟通过化学浴沉淀法制备Co掺杂的FeOOH与g-C3N4复合催化剂(Co-FeOOH/g-C3N4),并构建可见光驱动的非均相光芬顿反应体系。在该体系中,利用可见光激发g-C3N4产生光生e和空穴(h+),光生e从g-C3N4迁移至Co-FeOOH,一方面促进Fe(Ⅲ)/Fe(Ⅱ)和Co(Ⅲ)/Co(Ⅱ)的循环,加速催化H2O2产生·OH,另一方面,光生e和h+的有效分离强化了h+的直接氧化作用,从而使催化效率得到提高。本研究考察了各影响因素对该体系催化效率的影响规律,优化了反应参数;在最佳反应条件下,考察了Co-FeOOH/g-C3N4/H2O2体系在天然日光辐照下对高浓度染料废水脱色及化学需氧量(COD)的去除性能。

  • 采用热聚合三聚氰胺法[22]制备了g-C3N4。将500 mg的g-C3N4溶于40 mL乙醇中,加入1 mmol FeCl3·6H2O和一定量Co(NO3)3·6H2O(Co分别占Fe的物质的量的0、10%、15%、20%、30%,并表示为XCo-FeOOH/g-C3N4),搅拌10 min,再加入3 mmol NH4HCO3,持续搅拌8 h。将所得的悬浊液离心,用无水乙醇洗涤数次,在40 ℃下干燥,即得到Co-FeOOH/g-C3N4样品。Co-FeOOH采用相同的制备方法,但反应体系中不加入g-C3N4

  • 称取0.1 g Co-FeOOH/g-C3N4,加入100 mL浓度为10 mg·L−1的RhB溶液中,在暗态下搅拌30 min,达到吸附-解吸平衡,然后加入2 mmol浓度为30%的H2O2,在可见光照射下开始反应(500 W氙灯,用400 nm滤光片滤掉光源中的紫外光部分)。每间隔15 min取样,经离心后取上清液测试溶液的吸光度。反应后体系中残留的H2O2通过硫酸氧钛/硫酸-紫外分光光度法检测。

  • 配制1 L浓度为800 mg·L−1的RhB,将其放置在太阳光下(平均辐照强度为800 W·m−2),加入1.0 g催化剂,2.0 mL H2O2(摩尔比H2O2∶RhB约为12.5∶1),每间隔1 h取样,使用MnO2分解掉残余的H2O2后,采用重铬酸钾法(GB 11914-1989)测定染料废水中的COD。

  • 由XRD图谱(图1)可见,在2θ=12.8°和27.2°处有2个明显的衍射峰,分别归属于g-C3N4的(100)和(002)面[23]。对于20Co-FeOOH/g-C3N4复合材料,在2θ=50.0°和71.1°处出现FeOOH的特征峰(JCPDS NO.290-713)。而在图谱中没有出现Co或其氧化物的衍射峰,这可能是由于Co在样品中含量较少,以高度分散的状态存在或者其与Fe形成非晶态结构的复合氧化物所导致[13]

    g-C3N4和20Co-FeOOH/g-C3N4的扫描电子显微镜(SEM)分析结果见图2。由图2(a)可以看出,g-C3N4样品呈现出不规则的块状结构。和g-C3N4相比,Co-FeOOH/g-C3N4复合催化剂表面粗糙,化学浴沉淀过程生成的颗粒状Co-FeOOH均匀附着在g-C3N4表面。

  • 不同反应体系下催化处理RhB的结果如图3所示。由图3可见,在可见光/H2O2催化体系中,RhB转化率不足10%,这表明可见光无法激发H2O2产生自由基。在可见光/催化剂/H2O2体系中,RhB转化率显著提高,20Co-FeOOH、g-C3N4、20Co-FeOOH +g-C3N4机械混合和20Co-FeOOH/g-C3N4复合催化剂对RhB的转化率分别为23.7%、59.6%、60.0%和91.5%,这表明复合催化剂具有最高的催化活性,且20Co-FeOOH与g-C3N4之间复合后相比于简单的机械混合产生了耦合作用。对于20Co-FeOOH/g-C3N4复合催化剂,在可见光催化、H2O2催化氧化和可见光/H2O2光Fenton作用下,RhB的转化率分别为35.6%、38.9%和91.5%。光Fenton体系下的去除率远高于两者单独作用之和。进一步对反应进行动力学拟合,发现反应过程符合准一级动力学方程(式(1))。

    式中:k为一级动力学常数,min−1t为反应时间,min;C0为RhB溶液的初始浓度,mol·L−1C为RhB溶液反应t时间后的浓度,mol·L−1。可见光催化、H2O2催化氧化和光Fenton作用下的动力学常数分别为0.004 7、0.004 9和0.027 2 min−1。RhB的去除率和动力学常数计算结果表明,光Fenton作用下,20Co-FeOOH与g-C3N4之间产生了显著的协同效应。这种协同效应的产生是由于在复合催化剂中,g-C3N4在可见光激发下,产生光生e和h+,e从g-C3N4迁移到Co-FeOOH表面。这一过程不仅加速了Fe(Ⅲ)/Fe(Ⅱ)和Co(Ⅲ)/Co(Ⅱ)的还原过程,提高了对H2O2的催化效率,而且促进了e与h+的分离,提高了h+对RhB的直接氧化效率,从而产生协同效应,使光Fenton体系对RhB的处理效率显著提高,表现出去除率及动力学常数均大于光催化与H2O2催化氧化两者之和的现象。

    在复合催化剂中,Co的掺杂量会影响体系对RhB的去除效果,结果如图4所示。复合催化剂中当Co的掺杂量为0、10%、15%、20%和30%时,反应90 min后,RhB的转化率分别为51.16%、52.87%、77.64%、91.45%和66.02%。结果表明,在掺杂Co后,催化剂的催化活性得到提高,这主要归于以下3点原因:1) Co2+和Fe2+均能够活化H2O2产生·OH;2) g-C3N4的导带电位为-1.12 V(vs NHE)低于Fe(Ⅲ)/Fe(Ⅱ) (0.77 V)和Co(Ⅲ)/Co(Ⅱ) (1.82 V),g-C3N4导带产生的光生e可以分别还原Co(Ⅲ)、Fe(Ⅲ)为Co(Ⅱ)、Fe(Ⅱ),加速Fe(Ⅲ)/Fe(Ⅱ)和Co(Ⅲ)/Co(Ⅱ)的循环过程;3) Co(Ⅲ)可以氧化Fe(Ⅱ)为Fe(Ⅲ),减少反应过程中过量的Fe(Ⅱ)对·OH的消耗(Fe2++·OH Fe3++OH),因此,Co掺杂能够提高催化活性。然而对于Fenton反应,Fe的活性大于Co,在催化剂中金属总量不变的情况下,Co的含量增加可使得Fe的含量会相对减少,导致Fe可提供的活性位点减少,使催化剂整体活性下降。综上所述,本研究确定Co的最佳掺杂量为20%。

    H2O2的浓度是影响RhB去除效果的因素之一,实验结果如图5所示。由图5可知,当H2O2的浓度为10、20、30和40 mmol·L−1时,RhB的转化率分别为61.5%、91.4%、93.1%和94.4%。这表明RhB的转化率随着H2O2浓度的升高而提高,但当H2O2浓度大于20 mmol·L−1时,继续增加H2O2对RhB转化率提高并不明显。这是因为过量的H2O2会与·OH发生淬灭反应(H2O2+·OHH2O+·O2H,·OH +·O2HH2O+O2),从而影响反应体系的降解效果。此外,通过测试反应后H2O2残留量,计算出H2O2的利用率。当浓度为10、20、30和40 mmol·L−1时,其利用率分别为67%、42%、27%和14%。这表明随着H2O2剂量的增加,其利用率逐步下降。考虑光Fenton过程的经济性,在后续实验中H2O2添加量均为20 mmol·L−1

    pH对催化反应的影响情况如图6所示。由图6可知,酸性条件下的处理效率优于碱性条件。在酸性条件下,反应90 min后,RhB的转化率达到96%,中性条件下RhB的转化率能达到91.5%。与传统的Fenton方法相比(pH仅为2~4),该体系拓宽了反应的pH适用范围。

    反应温度对RhB去除效果的影响如图7所示。结果表明,随着反应温度的升高,反应速率加快。根据一级动力学方程,可计算20、30、40、50 ℃下的动力学常数,分别为0.027 2、0.032 3、0.038 4、0.043 8 min−1。根据阿伦尼乌斯方程(式(2)),计算出反应活化能Ea为12.8 kJ·mol−1,远低于断裂H2O2分子中O—O键形成·OH所需的键能(126.6 kJ·mol−1)[24],这表明光Fenton体系大幅降低了反应所需的活化能,从而有利于提高反应速率。

    式中:R为常数,取值8.314 J·(mol·K)−1T为热力学温度,K;lnA为截距。

    催化剂的投加量在对RhB的处理中也起到了重要作用,结果如图8所示。当催化剂的投加量由0.5 g·L−1增加至1.5 g·L−1时,反应速率随之提高。这是因为增加催化剂的投加量能够提供更多的活性位点,进而加速分解RhB。但是,当催化剂投加量进一步增加至2.0 g·L−1时,RhB的转化率有轻微降低。这是由于粉体催化剂投加量过大,降低了溶液的透光性,影响了催化剂的光吸收,导致RhB转化率下降。因此,确定催化剂的最佳投加量为1.0 g·L−1

    为进一步确定光Fenton过程中的主要活性物种,本研究进行了自由基捕获实验。分别以叔丁醇(TBA)、三乙醇胺(TEOA)、对苯醌(BQ)和L-组氨酸分别作为·OH、h+、超氧自由基(·O2-)和单线态氧(1O2)的捕获剂,实验结果如图9所示。在反应过程中加入TBA后,RhB的转化率由91.5%降至33.1%,说明光Fenton体系中·OH对RhB转化起到主要作用。·OH一部分来源于Fe、Co诱导的H2O2分解,一部分是光生e与O2分子反应经过·O2-最终形成的(g-C3N4价带位置决定光生h+无法直接氧化H2O产生·OH)。在反应体系中加入BQ后,RhB的转化率由91.5%降至67.1%,这说明转化RhB的·OH大部分来源于H2O2,少部分来自于光生e还原O2。在反应中加入TEOA后,RhB的转化率降低至18.6%,说明光生h+的直接氧化作用也是RhB转化的重要原因。此外,L-组氨酸对反应体系几乎没有影响,这说明1O2不是反应过程中起主要作用的活性物种。

  • 通过5次循环实验考察了催化剂的稳定性,结果如图10所示。催化剂在5次的连续反应中对RhB的去除率分别为91.5%、90.5%、89.0%、88.6%和87.2%,证明催化剂具有良好的稳定性。通过原子吸收光谱测定反应后溶液中铁离子的浓度为0.9 mg·L−1,仅占催化剂总铁量的0.36%,溶出的铁离子浓度低于欧盟和美国规定的最高排放标准(2.0 mg·L−1)[25]。反应后溶液中Co离子浓度未检出,说明反应过程中金属离子的溶出量较低,不会造成二次污染。

  • 实际染料废水普遍具有高浓度、高色度的特点,不利于光线在水体中的传播。此外,光Fenton体系中的人造光源能耗较高,这些因素严重制约了光Fenton技术在实际中的应用。为了考察20Co-FeOOH/g-C3N4复合催化剂的实用性,本研究构建了以天然日光驱动的光Fenton体系,考察了催化剂对高浓度(800 mg·L−1)染料废水的处理性能,结果如图11图12所示。在天然日光的照射下,该体系6 h可使废水脱色率达到100%,此时废水的COD由初始的651.5 mg·L−1降低至365.5 mg·L−1,COD去除率达到43.9%。继续延长反应时间至10 h时,废水的COD的去除率可进一步达到81.6%。上述结果表明,在反应过程中,·OH和光生h+首先破坏了染料分子的发色基团导致脱色,然后再进一步将染料分子分解为CO2和H2O等无机物,使COD得到去除。

  • 1)由可见光/20Co-FeOOH/g-C3N4/H2O2构成的光Fenton体系,对RhB的处理效果最好,最佳反应条件下的去除率可达91.5%。催化剂具有良好的稳定性。

    2) 20Co-FeOOH/g-C3N4复合催化剂良好的催化性能主要归因于20Co-FeOOH和g-C3N4之间的协同作用。g-C3N4受到可见光激发产生e和h+,其中e转移至20Co-FeOOH表面,提高Fe(Ⅲ)/Fe(Ⅱ)和Co(Ⅲ)/Co(Ⅱ)的循环率。同时也降低了e/h+的复合率,从而提高了复合催化剂的催化效率。

    3)在天然日光驱动下,20Co-FeOOH/g-C3N4复合催化剂对高浓度染料废水的脱色率可达100%,COD去除率可达81.6%,具有一定的实用性。

参考文献 (25)

返回顶部

目录

/

返回文章
返回