-
近年来,热脱附技术因其高效、快速、适应性强等优势,广泛应用于有机物污染土壤治理领域。热脱附技术适用于土壤中多环芳烃(polycyclic aromatic hydrocarbons, PAHs)、多氯联苯(polychlorinated biphenyls, PCBs)、滴滴涕(dichlorodiphenyltrichloroethane, DDT)、总石油烃(total petroleum hydrocarbons, TPH)和汞等挥发性和半挥发性污染物的处理[1]。根据加热火焰与物料的接触方式又可分为直接热脱附和间接热脱附[2]。除了污染物蒸发/解吸的物理过程,直接热脱附过程同时涉及多种去除机制,比如发生热解、氧化、降解等反应[1]。然而,土壤热脱附过程中产生的二恶英问题不容忽视。二恶英(polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, PCDD/Fs)是一类结构和化学性质上相关的聚卤代芳烃,主要包括多氯代二苯并二恶英(polychlorinated dibenzo-p-dioxins, PCDDs)和多氯代二苯并呋喃(polychlorinated dibenzofurans, PCDFs)[3]。虽然森林火灾、火山喷发等自然过程中也会产生PCDD/Fs,但从1920年以后,钢铁冶炼、造纸、废物焚烧等行业的热处理过程成为PCDD/Fs的主要来源[4]。
本文综述了直接热脱附过程中PCDD/Fs生成的影响因素与条件,总结了PCDD/Fs生成的催化和抑制机理,以期为直接热脱附过程中PCDD/Fs控制的理论研究和工程实践提供借鉴和参考。
土壤直接热脱附过程中二恶英生成特性和抑制机理研究进展
Research progress on formation characteristics and inhibition mechanism of dioxins during direct thermal desorption of soil
-
摘要: 基于已有热脱附技术和二恶英相关研究,综述了有机污染土壤直接热脱附修复过程中二恶英生成的工艺环节、影响因素及抑制二恶英生成的相关机理和措施。直接热脱附流程中可能存在二恶英产生的环节有:污染土壤中存在的二恶英通过加热发生脱附;加热时土壤中的有机污染物通过分子的解构和重组生成二恶英;尾气净化流程中各降温段通过非均相合成反应(包括前驱物反应和从头合成反应)生成二恶英。其次,热脱附工艺参数也会影响二恶英的生成,如加热温度、加热时间、载气流速、反应气氛等。再次,污染土壤中含有的金属化合物、水分、碳源会催化二恶英的生成。此外,场地污染特征对二恶英的产生也存在一定影响。而加入碱基、硫基、氮基或氮硫基阻滞剂则会抑制热脱附过程中二恶英的生成。最后,总结了目前热脱附过程中二恶英抑制研究面临的挑战,包括污染物化学转化机制不明、高效实用性阻滞剂的研发等,并对未来研究方向进行了展望。Abstract: Based on the existing researches related to thermal desorption technology and dioxins, this paper provides a comprehensive review on the technological process, influencing factors of dioxins formation, and the mechanisms and measures of dioxins inhibition during the direct thermal desorption remediation of organic contaminated soil. Firstly, dioxins may be produced during different technological processes: dioxins present in contaminated soil are desorbed by heating; the organic pollutants in soil undergo molecular deconstruction and recombination, thus causing the generation of dioxins during the heating process of rotary kiln; dioxins are generated by heterogeneous catalytic reactions (including precursor and de-novo synthesis reactions) at each cooling stage in the exhaust gas purification process. Secondly, thermal desorption process parameters can also affect dioxins formation, such as heating temperature, heating time, flowing rate of carrier gas, reaction atmosphere and so on. Thirdly, the presence of metal compounds, water, carbon and chlorine source in contaminated soil can catalyze the formation of dioxins. Additionally, the characteristics of site pollution also have a certain impact on dioxins production. The addition of alkaline, sulfur, ammonium/nitrogen or sulfur-nitrogen containing compounds can inhibit the formation of dioxins during thermal desorption. At the end of the paper, the challenges of dioxin inhibition during thermal desorption are summarized, including the unclear chemical transformation mechanisms of various pollutants, the development of high-efficiency and practical inhibitors, etc. In addition, some future research directions are prospected.
-
表 1 有机污染土壤热脱附过程中PCDD/Fs生成的影响条件
Table 1. Influence conditions of PCDD/Fs formation during thermal desorption of organic contaminated soil
序号 影响因素 污染物 反应基质 反应气氛 污染物
浓度/(μg·g−1)热脱附
温度/℃热脱附
时间/min载气流速/
(mL·min−1)PCDD/Fs生成
量/(ng·kg−1)来源 土壤 尾气 1 工艺参数 PCBs 实际土壤 N2 505 400~600 40 400 753~1 750 1 100~
7 950[14] 2 工艺参数 1,2-DiCBz 沙土 空气 1 000 250~400 10 400 33.7~61.2 109~223 [15] 3 工艺参数 HCBz 沙土 空气 1 000 350~400 10 400 524~1 200 231~333 [15] 4 工艺参数 PCP 沙土 N2 90 200~400 30 250 10~1 436 — [16] 5 工艺参数 PCP 实际土壤 N2 9.35~12.4 400~750 30 10 — — [25] 6 工艺参数 PCBs 实际土壤 空气 500 — 10~40 400 — — [26] 7 工艺参数 PCBs 实际土壤 N2 8 512 500 60 100~600 — — [28] 8 工艺参数 PCBs 实际土壤 0~100% O2 >6 000 500 60 400 1.91×106~
2.53×1061.84×106~
6.51×106[30] 9 土壤组分 PCBs+CuCl2 实际土壤 N2 >500 300~600 60 400 47~1 120 102~118 [33] 10 土壤组分 PCBs 沉积物 O2/N2:10%/90% 11~62 400 5 — 2.73×104~
3.69×1045.75×104~
1.96×105[46] 11 土壤组分 13C-PCBs 沉积物 O2/N2:10%/90% 10 450 5 1 000 — — [47] 12 场地污染特征 p,p′- DDT 沙土 空气 100 300 10 400 20 8.8 [45] 13 场地污染特征 p,p′- DDT 黏土 空气 100 300 10 400 45.2 6.4 [45] 14 场地污染特征 p,p′- DDT 红土 空气 100 300 10 400 37.1 5.4 [45] 15 场地污染特征 p,p′- DDT 红土 空气 100 300 10 400 806.8 57.7 [45] 16 场地污染特征 p,p′- DDT 红土 空气 200 300 10 400 1 119.7 91.3 [45] 注:—为文中无准确信息。 表 2 热处置过程中多种阻滞剂的PCDD/Fs抑制条件与效果
Table 2. Inhibition conditions and effects of PCDD/Fs with different inhibitors during thermal treatment
序号 阻滞剂类型 抑制手段 反应基质 反应气氛 热脱附
温度/℃热脱附
时间/min载气流速/
(mL·min−1)抑制
效果/%来源 PCDD/Fs
生成量TEQ 1 碱基 1% NaOH PCBs污染土壤 N2 300 60 400 98.0 — [48] 2 碱基 1% NaOH PCBs污染土壤 N2 600 60 400 99.0 — [48] 3 碱基 50% CaCO3 垃圾衍生燃料 15% O2+85% N2 350~850 30 300 76.6 76.1 [52] 4 碱基 50% CaO 垃圾衍生燃料 15% O2+85% N2 350~850 30 300 64.3 68.4 [52] 5 碱基 CaCO3 PCP 空气 850 45 300 >70 — [53] 6 碱基 CaO PCP 空气 850 45 300 促进生成 — [53] 7 碱基 CaO+飞灰 PCP 空气 850 45 300 促进生成 — [53] 8 碱基 1% CaO PCBs污染土壤 N2 400 40 400 94.3 — [51] 9 氮基 1% (NH4)2SO4 PCBs污染土壤 N2 400 40 400 73.2 — [51] 10 氮基 1% CO(NH2)2 PCBs污染土壤 N2 400 40 400 93.7 — [51] 11 氮基 CO(NH2)2 索提飞灰 10% O2+90% N2 350 60 300 52.8 42.1 [60] 12 氮基 (NH4)2SO4 索提飞灰 10% O2+90% N2 350 60 300 34.6 23.3 [60] 13 氮基 CO(NH2)2 索提飞灰 10% O2+90% N2 650 60 300 80.4 82.0 [60] 14 氮基 (NH4)2SO4 索提飞灰 10% O2+90% N2 650 60 300 81.6 80.5 [60] 15 氮基 污泥干解气 模拟飞灰 12% O2+88% N2 350 50 300 96.7 91.0 [65] 16 硫基 SO2 模拟飞灰 300×10−6 Cl2/10% O2/10% H2O/N2 350 30 — 90.3 91.8 [55] 17 硫基 SO3 模拟飞灰 300×10−6 Cl2/10% O2/10% H2O/N2 320 30 — 90.5 92.4 [55] 18 硫基 单质S(S/Cl=1) PCP+SiO2 空气 >500 30 300 抑制生成 — [56] 19 硫基 单质S(S/Cl=1) PCP+SiO2 空气 <500 30 300 促进生成 — [56] 20 硫基 单质S(S/Cl=1.5) PCP+SiO2 空气 400 30 300 促进生成 — [56] 21 硫基 煤(S/Cl=0.68) PCP 空气 800 30 300 95.0 70.0 [57] 22 硫基 煤(S/Cl=1~3) PCP 空气 800 30 300 >80.0 — [57] 23 氮硫协同 3% SC(NH2)2 模拟飞灰 12% O2+88% N2 350 50 300 99.8 — [63] 24 氮硫协同 3% NH2SO3H 模拟飞灰 12% O2+88% N2 350 30 300 92.4 — [63] 25 氮硫协同 3% (NH4)2S2O3 模拟飞灰 12% O2+88% N2 350 30 300 85.4 — [63] 26 氮硫协同 0.05% SC(NH2)2 烧结料 空气 1 000 23 3.75×105 38.8 67.6 [66] 27 氮硫协同 0.1% SC(NH2)2 烧结料 空气 1 000 23 3.75×105 47.8 72.6 [66] 28 氮硫协同 0.5% SC(NH2)2 烧结料 空气 1 000 23 3.75×105 77.6 76.5 [66] 注:—为文中无相关信息。 -
[1] ZHAO C, DONG Y, FENG Y, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079 [2] 杨勇, 黄海, 陈美平, 等. 异位热解吸技术在有机污染土壤修复中的应用和发展[J]. 环境工程技术学报, 2016, 6(6): 559-570. doi: 10.3969/j.issn.1674-991X.2016.06.081 [3] KULKARNI P S, CRESPO J G, AFONSO C A M. Dioxins sources and current remediation technologies: A review[J]. Environment International, 2008, 34(1): 139-153. doi: 10.1016/j.envint.2007.07.009 [4] KANAN S, SAMARA F. Dioxins and furans: A review from chemical and environmental perspectives[J]. Trends in Environmental Analytical Chemistry, 2018, 17: 1-13. doi: 10.1016/j.teac.2017.12.001 [5] RATHNA R, VARJANI S, NAKKEERAN E. Recent developments and prospects of dioxins and furans remediation[J]. Journal of Environmental Management, 2018, 223: 797-806. [6] ADDINK R, OLIE K. Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems[J]. Environmental Science & Technology, 1995, 29(6): 1425-1435. [7] ZHOU H, MENG A, LONG Y, et al. A review of dioxin-related substances during municipal solid waste incineration[J]. Waste Management, 2015, 36: 106-118. doi: 10.1016/j.wasman.2014.11.011 [8] 詹明秀. 水泥窑协同处置固废二恶英排放特性和生成机理研究[D]. 杭州: 浙江大学, 2017. [9] KUMARI K, KUMAR S, RAJAGOPAL V, et al. Emission from open burning of municipal solid waste in India[J]. Environmental Technology, 2017, 40(17): 1-43. [10] ZHOU T, BO X, QU J, et al. Characteristics of PCDD/Fs and metals in surface soil around an iron and steel plant in North China Plain[J]. Chemosphere, 2019, 216: 413-418. doi: 10.1016/j.chemosphere.2018.10.024 [11] GUEMIZA K, COUDERT L, METAHNI S, et al. Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: A review[J]. Journal of Hazardous Materials, 2017, 333: 194-214. doi: 10.1016/j.jhazmat.2017.03.021 [12] 李秀莉. 垃圾焚烧中抑制二噁英二次生成的方法探讨[J]. 能源技术, 2010, 31(3): 143-144. [13] LEE W, SHIH S, CHANG C, et al. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils[J]. Journal of Hazardous Materials, 2008, 160(1): 220-227. doi: 10.1016/j.jhazmat.2008.02.113 [14] ZHAO Z, NI M, LI X, et al. Combined mechanochemical and thermal treatment of PCBs contaminated soil[J]. RSC Advances, 2017, 7(34): 21180-21186. doi: 10.1039/C7RA01493G [15] ZHAO Z, NI M, LI X, et al. PCDD/F formation during thermal desorption of chlorobenzene contaminated soil[J]. Environmental Science and Pollution Research, 2017, 24(29): 23321-23330. doi: 10.1007/s11356-017-9963-8 [16] THUAN N T, DIEN N T, CHANG M B. PCDD/PCDF behavior in low-temperature pyrolysis of PCP-contaminated sandy soil[J]. Science of the Total Environment, 2013, 443: 590-596. doi: 10.1016/j.scitotenv.2012.11.014 [17] 张峰, 张海军, 陈吉平, 等. 飞灰中二噁英热脱附行为的研究[J]. 环境科学, 2008, 29(2): 525-528. [18] 郑玉峰, 祁国恕. 固体废物焚烧二恶英的生成机制及其控制技术[J]. 环境保护科学, 2008, 34(3): 16-18. doi: 10.3969/j.issn.1004-6216.2008.03.005 [19] HU Z, SAMAN W R, NAVARRO R R, et al. Removal of PCDD/Fs and PCBs from sediment by oxygen free pyrolysis[J]. Journal of Environmental Sciences, 2006, 18(5): 989-994. doi: 10.1016/S1001-0742(06)60027-2 [20] 章骥, 李晓东, 严建华, 等. 水对垃圾焚烧飞灰二噁英从头合成的影响[J]. 工程热物理学报, 2006, 27(S2): 191-194. [21] LI X, ZHANG J, YAN J, et al. Effect of water on catalyzed de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans[J]. Journal of Hazardous Materials, 2006, 137(1): 57-61. doi: 10.1016/j.jhazmat.2006.01.068 [22] 许优, 顾海林, 詹明秀, 等. 有机污染土壤异位直接热脱附装置节能降耗方案[J]. 环境工程学报, 2019, 13(9): 2074-2082. doi: 10.12030/j.cjee.201906011 [23] EVERAERT K, BAEYENS J. The formation and emission of dioxins in large scale thermal processes[J]. Chemosphere, 2002, 46(3): 439-448. doi: 10.1016/S0045-6535(01)00143-6 [24] ZHAN M, FU J, HAVUKAINEN J, et al. Recycling ash into the first stage of cyclone pre-heater of cement kiln[J]. Waste Management, 2016, 56: 229-237. doi: 10.1016/j.wasman.2016.06.024 [25] HUNG P, CHANG S, OU-YANG C, et al. Simultaneous removal of PCDD/Fs, pentachlorophenol and mercury from contaminated soil[J]. Chemosphere, 2016, 144: 50-58. doi: 10.1016/j.chemosphere.2015.08.058 [26] 赵中华. 含氯有机污染土壤热脱附及联合处置研究[D]. 杭州: 浙江大学, 2018. [27] MECHATI F, ROTH E, RENAULT V, et al. Pilot scale and theoretical study of thermal remediation of soils[J]. Environmental Engineering Science, 2004, 21(3): 361-370. doi: 10.1089/109287504323067003 [28] 白四红, 陈彤, 祁志福, 等. 载气流量及升温速率对污染土壤中多氯联苯热脱附的影响[J]. 化工学报, 2014, 65(6): 2256-2263. doi: 10.3969/j.issn.0438-1157.2014.06.041 [29] WU H, LU S, YAN J, et al. Thermal removal of PCDD/Fs from medical waste incineration fly ash: Effect of temperature and nitrogen flow rate[J]. Chemosphere, 2011, 84(3): 361-367. doi: 10.1016/j.chemosphere.2011.02.015 [30] LIU J, QI Z, LI X, et al. Effect of oxygen content on the thermal desorption of polychlorinated biphenyl-contaminated soil[J]. Environmental Science and Pollution Research, 2015, 22(16): 12289-12297. doi: 10.1007/s11356-015-4478-7 [31] YANG J, LI X D, MENG W J, et al. Reducing dioxin formation by adding hydrogen in simulated fly ash[J]. Environmental Science and Pollution Research, 2015, 22(17): 13077-13082. doi: 10.1007/s11356-015-4335-8 [32] ZHANG M, YANG J, BUEKENS A, et al. PCDD/F catalysis by metal chlorides and oxides[J]. Chemosphere, 2016, 159: 536-544. doi: 10.1016/j.chemosphere.2016.06.049 [33] LIU J, QI Z, LI X, et al. Thermal desorption of PCBs from contaminated soil with copper dichloride[J]. Environmental Science and Pollution Research, 2015, 22(23): 19093-19100. doi: 10.1007/s11356-015-5113-3 [34] 张梦玫, 李晓东, 陈彤. 氯化铜催化二噁英生成实验及指纹特性分析[J]. 环境科学学报, 2019, 39(8): 2735-2746. [35] 陆胜勇, 严建华, 李晓东, 等. 废弃物焚烧飞灰中从头合成二噁英的试验研究: 氧、碳、催化剂的影响[J]. 中国电机工程学报, 2003, 23(11): 178-183. doi: 10.3321/j.issn:0258-8013.2003.11.036 [36] RYAN S P, ALTWICKER E R. The formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from carbon model mixtures containing ferrous chloride[J]. Chemosphere, 2000, 40(9/10/11): 1009-1014. [37] NI M, HUANG J, LU S, et al. A review on black carbon emissions, worldwide and in China[J]. Chemosphere, 2014, 107: 83-93. doi: 10.1016/j.chemosphere.2014.02.052 [38] 尹雪峰, 李晓东, 罗建松, 等. 温度和气氛对PAHs由从头合成反应生成PCDD/Fs的作用[J]. 燃烧科学与技术, 2008, 14(2): 117-121. doi: 10.3321/j.issn:1006-8740.2008.02.005 [39] 陆胜勇, 尹雪峰, 李晓东, 等. 模拟飞灰催化芴生成二噁英试验研究[J]. 浙江大学学报(工学版), 2007, 41(5): 756-760. doi: 10.3785/j.issn.1008-973X.2007.05.011 [40] ZHANG M, BUEKENS A. De novo synthesis of dioxins: A review[J]. International Journal of Environment and Pollution, 2016, 60(1/2/3/4): 63-110. doi: 10.1504/IJEP.2016.082115 [41] XIN S, GAO W, WANG Y, et al. Thermochemical emission and transformation of chlorinated paraffins in inert and oxidizing atmospheres[J]. Chemosphere, 2017, 185: 899-906. doi: 10.1016/j.chemosphere.2017.07.019 [42] XIN S, GAO W, WANG Y, et al. Identification of the released and transformed products during the thermal decomposition of a highly chlorinated paraffin[J]. Environmental Science & Technology, 2018, 52(17): 10153-10162. [43] BADERNA D, BORIANI E, GIOVANNA F D, et al. Lubricants and additives: A point of view[M]//BILITEWSKI B, DARBRA R M, BARCELÓ D. Global Risk-Based Management of Chemical Additives I: Production, Usage and Environmental Occurrence. Berlin: Springer, 2012: 109-132. [44] HATANAKA T, IMAGAWA T, TAKEUCHI M. Formation of PCDD/Fs in artificial solid waste incineration in a laboratory-scale fluidized-bed reactor: Influence of contents and forms of chlorine sources in high-temperature combustion[J]. Environmental Science & Technology, 2000, 34(18): 3920-3924. [45] ZHAO Z, NI M, LI X, et al. PCDD/F formation during thermal desorption of p, p′-DDT contaminated soil[J]. Environmental Science and Pollution Research, 2017, 24(15): 13659-13665. doi: 10.1007/s11356-017-8885-9 [46] SATO T, TODOROKI T, SHIMODA K, et al. Behavior of PCDDs/PCDFs in remediation of PCBs-contaminated sediments by thermal desorption[J]. Chemosphere, 2010, 80(2): 184-189. doi: 10.1016/j.chemosphere.2010.02.055 [47] ZHAO L, HOU H, SHIMODA K, et al. Formation pathways of polychlorinated dibenzofurans (PCDFs) in sediments contaminated with PCBs during the thermal desorption process[J]. Chemosphere, 2012, 88(11): 1368-1374. doi: 10.1016/j.chemosphere.2012.05.042 [48] LIU J, QI Z, ZHAO Z, et al. Thermal desorption of PCB-contaminated soil with sodium hydroxide[J]. Environmental Science and Pollution Research, 2015, 22(24): 19538-19545. doi: 10.1007/s11356-015-5136-9 [49] SUN R, IRIE H, NISHIKAWA T, et al. Suppressing effect of CaCO3 on the dioxins emission from poly(vinyl chloride) (PVC) incineration[J]. Polymer Degradation and Stability, 2003, 79(2): 253-256. doi: 10.1016/S0141-3910(02)00288-4 [50] LIU W, ZHENG M, ZHANG B, et al. Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide[J]. Chemosphere, 2005, 60(6): 785-790. doi: 10.1016/j.chemosphere.2005.04.020 [51] ZHAO Z, NI M, LI X, et al. Suppression of PCDD/Fs during thermal desorption of PCBs-contaminated soil[J]. Environmental Science and Pollution Research, 2016, 23(24): 25335-25342. doi: 10.1007/s11356-016-7732-8 [52] 王灵树, 詹明秀, 李泽杰, 等. 不同RDF/生料比例下二恶英抑制特性研究[J]. 能源工程, 2017(1): 54-59. [53] LU S Y, CHEN T, YAN J H, et al. Effects of calcium-based sorbents on PCDD/F formation from pentachlorophenol combustion process[J]. Journal of Hazardous Materials, 2007, 147(1): 663-671. [54] 付建英, 陈彤, 吴海龙, 等. SO2抑制二噁英从头合成的实验及其过程模拟[J]. 化工学报, 2014, 65(9): 3687-3693. doi: 10.3969/j.issn.0438-1157.2014.09.052 [55] SHAO K, YAN J, LI X, et al. Effects of SO2 and SO3 on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans by de novo synthesis[J]. Journal of Zhejiang University: Science A, 2010, 11(5): 363-369. doi: 10.1631/jzus.A0900267 [56] 严建华, 陆胜勇, 徐旭, 等. 硫和五氯酚加热生成二噁英的试验研究[J]. 中国电机工程学报, 2003, 23(10): 180-185. doi: 10.3321/j.issn:0258-8013.2003.10.035 [57] 石谊双, 李晓东, 陆胜勇, 等. 硫对煤与五氯酚混烧过程二噁英生成影响规律的试验研究[J]. 热能动力工程, 2005, 20(3): 280-283. doi: 10.3969/j.issn.1001-2060.2005.03.015 [58] 付建英. 硫胺/铵基复合阻滞剂抑制二噁英生成实验研究[D]. 杭州: 浙江大学, 2015. [59] 石谊双, 李晓东, 陆胜勇, 等. 硫对垃圾焚烧过程中二恶英生成的抑制作用[J]. 能源工程, 2005(1): 36-41. doi: 10.3969/j.issn.1004-3950.2005.01.009 [60] 严密, 杨杰, 李晓东, 等. 硫酸铵和尿素抑制飞灰合成二噁英[J]. 化工学报, 2013, 64(11): 4196-4202. [61] 詹明秀, 陈彤, 林晓青, 等. 氮基阻滞剂抑制二恶英生成研究综述[J]. 能源工程, 2013(6): 43-49. doi: 10.3969/j.issn.1004-3950.2013.06.008 [62] RYAN S P, LI X, GULLETT B K, et al. Experimental study on the effect of SO2 on PCDD/F emissions: Determination of the importance of gas-phase versus solid-phase reactions in PCDD/F formation[J]. Environmental Science & Technology, 2006, 40(22): 7040-7047. [63] FU J, LI X, CHEN T, et al. PCDD/Fs’ suppression by sulfur-amine/ammonium compounds[J]. Chemosphere, 2015, 123: 9-16. doi: 10.1016/j.chemosphere.2014.10.073 [64] LIN X, YAN M, DAI A, et al. Simultaneous suppression of PCDD/F and NOx during municipal solid waste incineration[J]. Chemosphere, 2015, 126: 60-66. doi: 10.1016/j.chemosphere.2015.02.005 [65] CHEN T, ZHAN M, LIN X, et al. Inhibition of the de novo synthesis of PCDD/Fs on model fly ash by sludge drying gases[J]. Chemosphere, 2014, 114: 226-232. doi: 10.1016/j.chemosphere.2014.03.123 [66] 陈祖睿, 严密, 白四红, 等. 硫脲对铁矿石烧结过程中二恶英的抑制作用[J]. 能源工程, 2014(4): 48-52. doi: 10.3969/j.issn.1004-3950.2014.04.010