Processing math: 100%

污染场地异位热脱附修复工程环境监理案例研究

张笑然, 熊樱, 孟祥帅, 岳希. 污染场地异位热脱附修复工程环境监理案例研究[J]. 环境保护科学, 2020, 46(4): 122-127. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.022
引用本文: 张笑然, 熊樱, 孟祥帅, 岳希. 污染场地异位热脱附修复工程环境监理案例研究[J]. 环境保护科学, 2020, 46(4): 122-127. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.022
ZHANG Xiaoran, XIONG Ying, MENG Xiangshuai, YUE Xi. A Case Study of Environmental Supervision of Ex-situ Thermal Desorption in Contaminated Site[J]. Environmental Protection Science, 2020, 46(4): 122-127. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.022
Citation: ZHANG Xiaoran, XIONG Ying, MENG Xiangshuai, YUE Xi. A Case Study of Environmental Supervision of Ex-situ Thermal Desorption in Contaminated Site[J]. Environmental Protection Science, 2020, 46(4): 122-127. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.022

污染场地异位热脱附修复工程环境监理案例研究

    作者简介: 张笑然(1991 − ),女,博士、工程师。研究方向:土壤污染防治与修复。E-mail:zhang_xr@163.com
  • 中图分类号: X53

A Case Study of Environmental Supervision of Ex-situ Thermal Desorption in Contaminated Site

  • 摘要: 文章通过对北京某污染场地异位热脱附修复工程环境监理工作要点进行全过程剖析,明确了在异位热脱附修复工程设计阶段、设施建设阶段、工程实施阶段和工程验收阶段等各环节中环境监理人员需重点关注的事项,并通过案例分析,提出了类似工程在实际工作中存在的问题,旨在为污染场地异位热脱附修复工程环境监理工作提供借鉴,为相关研究及管理制度制定提供案例参考。
  • 微塑料是由塑料制品在紫外线、风力及物理破碎作用衍生而来的新型污染物,已受到国内外研究人员的广泛关注[12]. 近年来,在海洋、河流、湖泊、地下水甚至自来水中均发现了微塑料的存在[3]. 由于其粒径较小,容易被生物误吞,并通过食物链进入到人体[4]. 此外,微塑料由于具有较大的比表面积和疏水性,其还容易吸附环境中的有机污染物和重金属等,所形成的复合污染体会对各种生物产生不同程度的影响[5]. 因此,对环境中的微塑料进行治理尤为重要.

    混凝是一种简单、稳定及低成本的处理技术. 然而,由于微塑料密度较低及其粒径变化较大,低剂量混凝剂的水解产物对其吸附架桥和卷扫能力较弱[6]. 为满足较高的微塑料去除效果,通常需投加较大剂量的混凝剂,由此不可避免会存在药剂和色度残留问题等[7]. 因此,为解决上述问题,有必要探索提高混凝过程对微塑料的去除效果的途径. 助凝剂是常用的强化混凝性能的材料之一,其可提高絮体的吸附和沉降能力,从而提高混凝剂对微塑料的去除效果[8]. 如Ma等[9]研究表明,在pH为7时,加入15 mg·L−1聚丙烯酰胺(PAM)后,5 mmol·L−1的AlCl3·6H2O对粒径< 0.5 mm的PE颗粒的去除效率从25.83%提高到45.34%. 但鉴于PAM水解单体的生物毒性,研究者们开始关注具有高生物亲和性和可降解性的天然聚合物,如淀粉、明胶、纤维素衍生物和微生物多糖等[10]. 其中,壳聚糖等多糖具有较高的离子电荷密度和较长的高分子链,还可对水中的微粒起到桥联作用,使其可作为助凝剂,提高传统混凝剂去除水中微粒的效率[11]. 如Huang等[12]研究发现,在常规剂量下,聚合氯化铝(PAC)与壳聚糖(CTS)的复配体系对纯水中PET微塑料的去除率为PAC体系的近3倍,CTS的加入可提升单一PAC混凝体系的电荷中和及吸附作用. Zhao等[13]研究表明,适度添加昆布多糖(LA)可使聚合氯化铝对天然有机物(NOM)的混凝效率提高15%—35%,且与PAM的助凝效果相当.

    作为一种重要的藻类资源,LA是一种表面带负电荷的链状聚合物,其具有的线性大分子结构有利于产生架桥效应,与合成混凝剂共同使用过程中起到强化混凝的作用[14]. 此外,LA主要含有C、H和O,元素分布集中,较易预测其在混凝过程中的产物,从而分析其助凝机制[13]. 近年来,研究人员主要关注LA的医用功能[15],其在微塑料混凝中的应用研究较少,为了提高微塑料混凝治理中的生物安全性并保持较高的净化效率,本研究创新性地提出在微塑料混凝处理过程中使用LA作为聚合氯化铝铁(PAFC)的助凝剂.

    本文重点研究了LA对PAFC混凝去除PE微塑料的强化性能,评价LA对PAFC混凝去除PE微塑料的强化效果,讨论PAFC及PAFC-LA等不同系统中可能存在的混凝机制,考察PAFC及PAFC-LA等不同系统对不同水质条件的适应性,为微塑料的混凝治理提供技术依据.

    聚合氯化铝铁(PAFC)、昆布多糖(LA)、阳离子型聚丙烯酰胺(CPAM)、阴离子型聚丙烯酰胺(APAM)、海藻酸钠(SA)、壳聚糖(CTS)、腐殖酸(HA)、十六烷基三甲基溴化铵(CTAB)购自上海麦克林生化科技有限公司,盐酸(HCl)、氢氧化钠(NaOH)均购自西陇科学股份有限公司,氯化钠(NaCl)、硫酸钠(Na2SO4)、碳酸钠(Na2CO3)均购自国药化学试剂有限公司,所有试剂均为分析纯. 聚乙烯(PE)购自东莞华创塑化有限公司. 0.45 μm混合纤维素过滤膜购自天津金腾实验设备有限公司.

    JSF-7200F型场发射扫描电镜,日本电子;Nicolet iS5型傅里叶变换红外光谱仪,美国赛默飞;Zetasizer Nano ZS90型纳米粒度仪,英国马尔文;ESCALAB 250Xi型X射线光电子能谱仪,美国赛默飞.

    混凝剂在使用前均配制成溶液,每次实验的PE微塑料重量均为100 mg,CTAB作为分散剂,其投加量固定为100 mg·L−1;投加量影响实验中,采用氢氧化钠溶液将pH预先调至8(除pH影响实验外,均采用此值),微塑料尺寸为50—150 μm(除微塑料尺寸影响实验外,均采用此值),PAFC和LA投加量范围分别为0—250 mg·L−1和0—30 mg·L−1;微塑料尺寸影响实验中,PAFC和LA的投加量分别固定为150 mg·L−1和20 mg·L−1,以下实验均采用此值,所考察范围分别为300—500、150—300、50—150、<50 μm等;pH影响实验所考察的范围分别为3、5、7、8、9、11;腐殖酸(HA)影响实验中,HA的质量浓度为1、10、50 mg·L−1;离子共存实验中,Cl、SO42-、CO32-的质量浓度分别为30、300 mg·L−1;在真实水环境混凝实验中,将微塑料均匀分散至所采集的湖水和自来水样中,其余实验条件与纯水环境一致. 所有混凝试验均在MY3000-6E型混凝试验搅拌仪进行(潜江梅宇仪器有限公司). 搅拌程序设置为快速搅拌(300 r·min−1)1 min和慢速搅拌(70 r·min−1)10 min,反应后静置沉淀30 min,所有实验均设置3组平行.

    微塑料的定量方法尚未统一,重量法是一种相对准确的方法,具体测试过程如下[16],首先,将滤膜置于烘箱中60 °C下干燥,直至恒重,并将质量计为M1(g). 混凝实验完成后,取出溶液上层的微塑料,加入1 mol·L−1的盐酸以去除杂质,然后进行抽滤、干燥和称重,此时将有滤膜的微塑料质量计为M2(g). 微塑料的去除率η(%)如下式1计算.

    stringUtils.convertMath(!{formula.content}) (1)

    SEM测试:取适量样品粘在导电胶上,然后喷金观察,测试过程中的加速电压为10 kV,工作距离为9.7 mm;FTIR测试:采用溴化钾压片法,波数测定范围为400—4000 cm−1;Zeta电位测试:取适量微塑料加入去离子水中,混匀后测定Zeta电位,当混凝沉淀后,测定上清液的Zeta电位;X 射线光电子能谱仪(XPS)测试:窄谱扫描时的通能为30 eV,步长为0.1 eV.

    在混凝实验前考察PE微塑料的自沉效率,如图1所示,在未添加PAFC及LA的情况下,仅约10.3%的PE微塑料会自然沉降,这主要由于PE微塑料的密度低于水,这与Zhou等[16]研究结果基本一致. 因此,需进一步测试PAFC及LA对微塑料的混凝效果. 在PAFC的常规用量(0—100 mg·L−1)下,絮体数量较少且存在絮体上浮问题,从而影响水中PE微塑料的去除效果,这与先前研究报道的常规混凝剂用量的混凝效率不足的结果相一致[9]. 此外,在紧急情况下,使用大剂量的混凝剂是有必要的. 因此,本实验主要考察较大剂量(0—250 mg·L−1)的PAFC对PE微塑料的混凝效果.

    图 1  不同投加量的PAFC和PAFC-LA复合混凝体系对PE微塑料的去除率
    Figure 1.  Removal rate of PE microplastics by PAFC and PAFC-LA composite flocculation system with different dosages

    图1所示,单独使用PAFC进行混凝时,当药剂用量由100 mg·L−1增加至250 mg·L−1,对PE微塑料的去除效率从66.5%相应提高到84.5%,值得关注的是,随混凝剂用量继续增加,混凝效率的上升速率逐渐减缓,这表明单纯使用PAFC可去除水中的微塑料,但存在混凝剂用量较大且混凝效率受限等问题,这与之前的研究结果相一致[17]. 因此,为有效减少混凝剂用量且提高微塑料的去除效果,需在混凝过程中加入助凝剂. 此外,在PAFC-LA复配体系的混凝效果测试前,还考察单独使用LA的絮凝效果. 如图1所示,由于生物大分子所具备的吸附架桥等作用,当LA投加量为5 mg·L−1时,微塑料的去除率可达到29.0%,但进一步增加LA的药剂量,对微塑料的絮凝效果提升较为有限,如投加量增加到30 mg·L−1时,PE微塑料的去除率也仅为36.6%. 因此,单一的PAFC或LA均较难达到较好的微塑料去除效果.

    图1所示,在PAFC-LA体系中,LA的加入明显改善微塑料混凝效果,当PAFC投加量为100 mg·L−1时,20 mg·L−1的LA使微塑料的去除效率由66.5%提升至76.9%. 随着LA投加量进一步增加至30 mg·L−1,微塑料的去除效率略微下降. 因此,为达到最佳的PE微塑料去除效果,需要研究PAFC和LA的不同投加量下的混凝效果,如图1所示,微塑料的去除效果随着PAFC和LA投加量的增加而增加. 当PAFC和LA的投加量分别为150 mg·L−1和20 mg·L−1时,可达到较佳的去除率(95.2%),并大幅减小单一体系中的混凝剂用量,从而间接减少水中的药剂残留量. 但进一步增大PAFC用量,LA的助凝作用较为有限,此外,当水中LA浓度过高时,溶液中会出现浑浊或絮体上浮现象,从而导致微塑料的去除效率降低,这与Zhang等[6]研究结果一致. 以上结果表明,LA可增强PAFC混凝去除PE微塑料的效果,合适的PAFC和LA的浓度和配比可实现对微塑料的最佳去除效率.

    助凝剂的存在可能改善一种或几种混凝机制,提高污染物去除率[18]. 然而,不同助凝剂的特性可能导致助凝效果的差异[19]. 通过比较不同助凝剂与PAFC复配的去除性能,探索LA替代传统助凝剂的可行性,为微塑料的复配混凝系统的构建提供必要的技术依据. 助凝剂的投加量均为20 mg·L−1,五种复配体系的实验结果如图2所示,LA、SA、CTS等天然高分子絮凝剂与PAFC复配对微塑料的去除效率较高,分别达到95.2%、90.4%和91.0%,同等条件下,CAPM、APAM等人工合成高分子絮凝剂与PAFC复配的去除率为79.3%—83.5%,低于天然絮凝剂的助凝性能. 然而,有研究表明PAM与混凝剂复配对微塑料的去除效率高于SA及ASA[6]. 与其他研究的实验条件比较结果表明,微塑料去除效率的差异可能是由于微塑料种类及混凝剂种类等因素造成的. 如Zhang等[6]开展PAM、SA及ASA与PAC复配对PET微塑料的混凝性能研究,在PAC及助凝剂投加量分别为200 mg·L−1及100 mg·L−1时,三体系对PET微塑料的去除效率分别为91.5%、73.4%及77.6%. 因此,在PE微塑料的去除效果方面,PAFC与LA复配混凝体系具有较好的性能,从强化混凝效果角度考虑,LA替代传统助凝剂是可行的,有必要进一步探讨该体系对微塑料的混凝机理.

    图 2  不同助凝剂与PAFC复配对PE微塑料的去除率
    Figure 2.  Removal rate of PE microplastics by different coagulant aids combined with PAFC

    电荷中和是混凝过程的主要机理之一,无机金属混凝剂水解所形成的阳离子产物,可中和微塑料表面的负电荷,使水中微塑料脱稳[20]. 如图3所示,在混凝前,pH为8时的PE微塑料的Zeta电位测量值为−33.03 mV,其表面带有负电荷,此时微塑料由于相互间的静电斥力作用而保持稳定,因此,PE微塑料在水中沉降效率仅为10.3%. 投加聚合氯化铝铁后所形成的水解产物带正电荷,体系的Zeta电位迅速由初始的−33.03 mV上升至9.17 mV,微塑料颗粒间斥力大大减弱,更容易发生凝聚现象. 值得关注的是,在PAFC-LA混凝体系中,Zeta电位显著降低至0.92 mV,这可能是由于LA的含氧基团在碱性条件下发生去质子化而带负电荷,中和体系中净余的正电荷,从而使Zeta电位降低. 一般认为,体系中Zeta电位越接近于0,颗粒间排斥作用较弱,微塑料更易发生聚沉现象[16]. 以上分析结果表明,LA的加入可能改善了PAFC体系的电荷中和作用效果.

    图 3  混凝前后PE微塑料Zeta电位的变化
    Figure 3.  Changes of PE microplastics zeta potential before and after coagulation

    吸附架桥也是混凝的重要机理之一. 本实验采用SEM观察PAFC及PAFC-LA体系的絮体表面形貌. 如图4a所示,PAFC产生的絮体具有较高的聚集程度,且呈现堆叠形态,微塑料附着或结合于絮体中,这表明混凝剂水解过程中可能发生吸附架桥或卷扫捕集效应;当溶液中加入LA后,如图4b所示,复配混凝体系引起的絮体具有明显的支化结构,改善了单一PAFC产生絮体的堆叠状态,使形成的絮凝体得以完全扩展,提升絮体的吸附架桥能力,这其中的机制可能是LA中的—OH作为路易斯碱,可将孤对电子转移到PAFC的金属原子上,形成相对稳定的Fe/Al-LA复合体,通过此桥接作用,进一步强化絮体生长,形成桥联网络结构[13]. 即LA的负电荷官能团可通过静电引力作用与带正电的混凝剂水解产物发生吸附架桥作用,改善絮体的沉降性能,进一步提高PE微塑料的混凝效果.

    图 4  PAFC(a)和PAFC-LA(b)体系中的絮体的扫描电镜图像
    Figure 4.  SEM images of flocs in PAFC(a) and PAFC-LA(b) systems

    为进一步阐明PAFC-LA与PE微塑料的吸附架桥机制,通过FTIR分析了PE及絮凝体的表面官能团. 如图5所示,在PE微塑料的红外光谱图中,在2915 cm−1和2848 cm−1附近分别出现由 —CH2不对称和对称伸缩振动引起的吸收峰[21],而1471 cm−1和717 cm−1附近出现的吸收峰可归因于 C—H的弯曲振动和摇摆振动[22],以上四处PE微塑料的特征峰强在混凝后明显减弱,表明部分微塑料的表面被混凝剂水解产物所覆盖或被包裹至絮体中[23].

    图 5  PE和絮体的红外光谱
    Figure 5.  FTIR spectrum of PE and flocs

    与PE微塑料的图谱相比,PAFC加入后所形成的絮凝体出现4处新的吸收峰,如在1638 cm−1和1057 cm−1附近出现了Al/Fe—OH中羟基弯曲振动引起的吸收峰[24],3250—3410 cm−1出现的宽峰可能与—OH的伸缩振动有关[25],以上吸收峰可能与聚合氯化铝铁的水解产物有关. 此外,在533 cm−1附近还出现Fe/Al—O弯曲振动引起的吸收峰[25]. 以上结果表明,聚合氯化铝铁充分参与混凝反应,含铝、铁化学键发生断裂并重组生成等羟基铝铁络合物,通过静电引力作用吸附表面带负电荷的微塑料颗粒,使PE微塑料脱稳沉降. 值得关注的是,在LA加入后,—OH、Al/Fe—OH及Fe/Al—O的峰形更为尖锐,且向低波数方向移动,这可能是LA中的—OH通过氢键或与絮体表面的铝、铁产生更为稳定的吸附架桥作用,进一步提升PAFC的混凝效果,这与SEM分析结果一致. Zhang等[6]研究也表明含有氨基和羟基的助凝剂,可将孤用电子对转移到金属离子的空轨道上形成稳定的配合物,从而提升PAC去除微塑料的能力.

    为进一步明确絮凝体中的铝及氧元素的化学态,采用XPS技术对干燥后的絮凝体进行分析,如图6a所示,530.45 eV、531.56 eV及532.94 eV的O 1s峰值分别归因于Al—O、Al—OH及吸附水[26],表明絮体中存在羟基铝离子等PAFC的水解产物,其可增强絮凝体与PE微塑料间静电吸附作用. 值得关注的是,如图6b所示,当加入LA后,Al—OH的含量由65.34%上升至72.38%,这可能由于LA的羟基与混凝剂中铝发生了作用,促进Al—OH的生成,增强PAFC对PE微塑料的吸附架桥效应,与FTIR分析结果一致. 如图6c所示,谱图中出现两处Al 2p的特征峰(74.52 eV,73.96 eV). 结合能为74.52 eV的峰可归因于六面体状态存在的Al[6,12],而73.96处的峰可归因于四面体形式存在的Al[6,12],絮体中六面体铝与四面体铝的比值在LA加入前后并未发生明显变化,表明LA存在并没有显著改变PAFC水解产物中铝的类型,这与Zhang等[6]研究结果一致. 如图6d所示,在PAFC-LA的体系中,Al的结合能位置发生明显的偏移,这可能是LA中的官能团与铝作用的结果,这与O 1s谱图结果一致. 由此可推断,LA的加入可改善PAFC的吸附架桥能力.

    图 6  絮凝体中Al 2p和O 1s的高分辨窄扫谱图
    Figure 6.  High-resolution narrow-sweep spectra of Al 2p and O 1s in flocks

    溶液pH会影响混凝剂的表面电荷和水解形态,从而影响其混凝效果[13]. 图7a对比了PAFC和PAFC-LA在酸性、中性和碱性条件下对PE微塑料的混凝去除率. 如图7a所示,随着pH值的变化,PAFC-LA对PE微塑料的混凝效果均优于单一PAFC体系,且两种体系的混凝效率均呈现先升高后降低趋势,在pH为8时,达到微塑料的最佳混凝效果,这表明两种混凝体系在不同pH下的混凝机理是一致的,LA的加入主要起到增强混凝效果的作用. 在酸性条件下(pH为3—5),体系中大量H+与混凝剂中的—OH发生反应,降低了水解产物的聚合程度[27],从而导致混凝效率降低,但LA由于其所具有的特殊的大分子结构,有效地弥补了对PAFC混凝效率的抑制. 在中性及弱碱性条件(pH为7—8)下,铝、铁的种类主要是低电荷多核络合离子或氢氧化物,可进一步对微塑料产生吸附架桥或卷扫捕集效应,此外,在该条件下,LA通过去质子化和解离作用产生了更多有效的吸附活性位点[13],且中和体系中多余的正电荷,从而以增强电中和和吸附架桥的形式进一步提高了PAFC对PE微塑料的去除能力. 在pH>8时,随着PAFC的水解程度进一步提高,Al(OH)3等水解产物逐渐增加,而Al(OH)2+及Fe(OH)2+等水解物种逐渐减少[28],减弱混凝体系对PE微塑料的电荷中和能力,因此,PAFC-LA对PE微塑料的去除率呈现下降趋势. 本实验微塑料去除效果最佳时所对应pH与其他研究成果较不一致,这可能是混凝剂和助凝剂的种类的不同所致,如He等[29]分别采用PAC和APAM作为混凝剂和助凝剂,在pH为7时,对PE微塑料的去除率最高.

    图 7  不同影响因素对PAFC and PAFC-LA体系去除效率的影响
    Figure 7.  The influence of different factors on the removal efficiency of PAFC and PAFC-LA systems

    在实际水体中,水中微塑料的颗粒大小差异较大,其中小粒径微塑料(粒径<500 μm)占比较多,而不同颗粒大小的微塑料去除效率通常也不一致. 因此,选用300—500 μm、150—300 μm、50—150 μm及<50 μm的PE微塑料作为研究对象. 结果如图7b所示,粒径对PAFC及PAFC-LA体系的混凝效率的影响趋势基本一致,且LA的加入提升PAFC对不同粒径微塑料的去除效率. PE微塑料的粒径为50—150 μm时,各体系均显示出较好的去除效果(78.4%及95.2%),且随着粒径进一步增大或减小时,PE微塑料去除效率均出现下降,Zhou等[16]研究也表明,对于<5000 μm的PE微塑料,粒径越小,其去除效率越高. 然而Shahi等[30]研究表明,对粒径为10—100 μm的微塑料,随着颗粒粒径的增大,其混凝去除效率随之升高. 与较大粒径微塑料相比,小粒径微塑料更难以克服水的表面张力,其沉降性能会受到抑制[16],这可能是50—150 μm的微塑料去除率高于<50 μm的微塑料的原因. 综上所述,过小或过大的微塑料粒径对PAFC的混凝沉降效果具有一定的抑制作用,但LA的加入提升其对PE微塑料的去除效率.

    天然水体中广泛存在NOM,其表面存在丰富的官能团会影响无机混凝剂对微塑料的混凝性能[31]. HA是一种常见NOM,因此,本研究将其作为目标考察对象. 从图7c可以看出,在PAFC-LA体系中,HA的存在抑制PE微塑料的去除,当HA浓度从0 mg·L−1增加到50 mg·L−1时,PE的去除率由95.2 %下降至73.6%,这可能是由于HA表面富含官能团,可吸附在PE及LA的表面,占据其活性位点,从而阻碍了PE、LA与PAFC水解产物之间的相互作用,减弱了混凝体系吸附架桥能力[32]. 与之相反,由于单一PAFC混凝机制主要受电荷中和作用控制,因此,HA的存在对其去除微塑料的抑制作用较小,这与表征分析结果一致.

    天然水体中通常含有多种离子,如碳酸根、硫酸根及氯离子等,这些离子可能会影响混凝性能[29]. 因此,有必要研究共存离子对复合体系混凝效果的影响. 如图7d所示,对于PAFC及PAFC-LA体系,PE的去除效率均随阴离子浓度的增加而降低,即阴离子的存在均抑制PE微塑料的去除. 据报道,水中的Cl、SO42-会与带正电荷的羟基铝离子发生反应,而造成混凝体系中Al(OH)2+、Al(OH)2+等水解产物的减少[33]. 此外,CO32-的存在会促进混凝剂水解生成氢氧化物,同样会造成带正电荷羟基铝离子的减少,从而减弱混凝体系的电荷中和及吸附架桥作用,使PE微塑料的去除效率下降. Zhou等[16]在用PAC和氯化铁去除PE微塑料的实验中,也发现SO42-对混凝效果有负面影响,但与Zhang等[6]采用PAC去除PET的研究结果相反,不同的实验结果可能是混凝剂和微塑料的类型差异造成的. 值得关注的是,在不同的离子及浓度下,PAFC-LA对PE微塑料的去除效果均优于单一PAFC混凝体系,表明LA的加入提升复配混凝体系的吸附架桥能力,减弱了共存离子所带来的负面效应.

    采集了两种真实水样,包括自来水(tap water)及湖水(lake water),与实验室纯水(pure water)进行对比,进一步评价PAFC及PAFC-LA混凝体系对PE微塑料的去除效果. 如图8所示,对于PAFC体系,湖水环境中的微塑料去除效果(82.2%)略优于纯水条件(78.4%),这可能由于湖水中存在多种悬浮物,在絮凝过程中被絮体捕集,从而增加絮凝体的质量,提高微塑性颗粒的沉降率[12]. 此外,由图7c可看出,HA等水体天然有机物对PAFC去除PE微塑料的影响较为有限,如HA为50 mg·L−1时,PAFC对PE微塑料的去除率仅由78.4%略微下降至73.1%,即吸附架桥作用可能不是PAFC对微塑料的主要混凝机理. 因此,在湖水环境中,PAFC对PE微塑料的去除效果出现略微上升现象. 与之相反,PAFC-LA体系在湖水中的混凝效率(92.2%)略低于纯水环境(95.2%). 这可能由于湖水中存在多种有机物,会阻碍了LA与PAFC水解产物之间的吸附架桥作用[32],如图7c也可看出,天然有机物对PAFC-LA的混凝性能影响较大,如HA为50 mg·L−1时,PAFC-LA混凝体系对PE微塑料的去除率由95.2%下降至73.6%. 同样,Gong等[34]研究也发现,在实际地表水中加入PS—COOH,由于地表水中存在NOMs,导致其去除效率降低. 因此,在吸附架桥作用受到较大抑制及絮体质量变大两种因素影响下,导致PAFC-LA在湖水环境的混凝效果出现略微下降趋势. 而对于自来水环境,PAFC及PAFC-LA混凝体系对PE的去除效果均出现了下降现象,这可能是由于自来水中存在阴离子,其会减少水中带正电荷羟基金属离子等水解物种的含量,造成混凝体系对微塑料的去除率出现下降趋势,与共存离子的实验结果一致. 但与Huang等[12]采用PAC-CTS去除PET微塑料的研究成果较不一致,这可能与微塑料及混凝剂的种类不同有关. 值得关注的是,不同环境下,PAFC-LA对PE的去除效果均优于单一PAFC,表明PAFC-LA复配体系能更好的适应水体中复杂的环境条件,对微塑料的治理具有更广阔的应用前景.

    图 8  真实水环境中PE微塑料的去除效率
    Figure 8.  The removal efficiency of PE microplastics in actual water treatment

    本研究测试LA在PAFC去除PE微塑料时的强化混凝性能,添加适量的LA可提高PAFC对PE微塑料的混凝效率,当PAFC和LA的投加量分别为150 mg·L−1和20 mg·L−1时,单一PAFC和PAFC-LA对PE微塑料的的去除率分别达到78.4%和95.2%. PAFC和PAFC-LA体系对PE微塑料的混凝机理是一致的,昆布多糖结构中的负电荷基团的桥联作用使PAFC的电荷中和和吸附架桥的作用得到改善,从而对PE微塑料表现出更优异的混凝效果. 此外,LA在较宽的pH、粒径、离子和腐殖酸共存下均发挥了良好的助凝效果. 综上所述,在混凝工艺中,LA在去除PE微塑料方面表现出较优异的应用潜力.

  • 图 1  场地异位热脱附修复技术路线

    表 1  本工程各施工环节环境监理工作要点

    施工环节环境监理工作要点
    施工准备参加环境监理工作交底会,向建设单位、施工单位明确环境监理要求,建立沟通机制。督促施工单位设置必要的施工安全措施及安全标志,如围挡和项目信息告知牌等
    挖掘根据修复方案确认清挖位置,监督测量放线工作。清挖时旁站,核查清挖范围与深度,监督二次污染防治措施落实情况,如洒水抑尘、裸土苫盖等。基坑清挖完成后协助验收取样,并跟踪检测结果,将超标点位告知建设单位和施工单位,督促开展扩挖工作。直至基坑取样检测合格
    运输向装载污染土壤的运输车辆签发运输五联单,沿途确保运输车辆将污染土壤运至修复方案指定的暂存与处理区域。核查运输车次和运输量。运输过程中检查是否有污染土壤遗撒或扬尘,如有则通知施工单位及时清理
    暂存检查污染土壤暂存区的密闭情况及地面防渗情况,防止污染物挥发至空气中或下渗至土壤中
    热脱附处理检查热脱附及尾气处理设备是否符合修复方案要求,监督处理过程,督促施工单位及时对处置后土壤进行取样检测,并对检测合格的土壤进行抽检,发现超标则通知施工单位对该样品代表的土壤批次进行再次处理,直至检测合格
    原址回填督促施工单位对验收合格的修复后土壤及时原址回填,检查回填过程的二次污染防治措施,如洒水抑尘和密闭运输等。检查回填土壤是否满足修复方案的相关要求
    施工环节环境监理工作要点
    施工准备参加环境监理工作交底会,向建设单位、施工单位明确环境监理要求,建立沟通机制。督促施工单位设置必要的施工安全措施及安全标志,如围挡和项目信息告知牌等
    挖掘根据修复方案确认清挖位置,监督测量放线工作。清挖时旁站,核查清挖范围与深度,监督二次污染防治措施落实情况,如洒水抑尘、裸土苫盖等。基坑清挖完成后协助验收取样,并跟踪检测结果,将超标点位告知建设单位和施工单位,督促开展扩挖工作。直至基坑取样检测合格
    运输向装载污染土壤的运输车辆签发运输五联单,沿途确保运输车辆将污染土壤运至修复方案指定的暂存与处理区域。核查运输车次和运输量。运输过程中检查是否有污染土壤遗撒或扬尘,如有则通知施工单位及时清理
    暂存检查污染土壤暂存区的密闭情况及地面防渗情况,防止污染物挥发至空气中或下渗至土壤中
    热脱附处理检查热脱附及尾气处理设备是否符合修复方案要求,监督处理过程,督促施工单位及时对处置后土壤进行取样检测,并对检测合格的土壤进行抽检,发现超标则通知施工单位对该样品代表的土壤批次进行再次处理,直至检测合格
    原址回填督促施工单位对验收合格的修复后土壤及时原址回填,检查回填过程的二次污染防治措施,如洒水抑尘和密闭运输等。检查回填土壤是否满足修复方案的相关要求
    下载: 导出CSV

    表 2  本工程二次污染防治工作要点

    施工环节环境影响污染源环境监理工作要点
    清挖大气环境影响开挖时产生扬尘、重金属及VOCs/SVOCs等污染物挥发,挖掘机、铲车和运输车辆等运行产生尾气,表土临时堆放产生扬尘核查施工时是否尽可能减小开挖面,是否洒水抑尘,是否有刺鼻气味,裸土是否及时苫盖
    水环境影响污染土壤堆存期间的雨水淋滤,污染土壤清挖后遇雨天坑内积水,工作人员生活污水核查是否尽量避免污染土壤堆存,基坑是否有排水沟,生活污水是否统一排放
    土壤环境影响污染土壤及废物堆存期间经雨水淋滤产生下渗核查是否尽量避免污染土壤堆存,如有堆存,是否有防渗措施
    固体废弃物污油及废油,报废的一般设施、设备、工具及器具,一般生活及餐厨垃圾核查是否将固废统一收集处理
    噪声清挖过程中挖掘机、铲车、运输车辆等运行产生噪声核查机械车辆是否状况良好,是否严格控制作业范围,是否避免夜间施工,是否采取其他降噪措施
    运输大气环境影响土方运输产生扬尘,车辆运输时排放尾气车辆是否密闭运输,是否满载超载,运输道路是否及时洒水抑尘
    水环境影响污染土壤运输过程中发生遗撒经雨水冲刷,设施、设备、工具及器具清洗产生废水核查运输过程是否有遗撒,如有是否立即采取清洁措施,机械设备清洗废水是否统一收集处理
    土壤环境影响污染土壤运输过程中遗撒污染土壤装车后是否对车轮及车身进行清扫,运输车轮是否密闭,是否满载超载,是否减速慢行
    噪声车辆运输时产生噪声运输时是否避开环境敏感区,是否尽可能减少鸣笛,是否减速慢行
    热脱附处理大气环境影响热脱附尾气,污染土壤临时堆存产生扬尘核查热脱附设备的尾气处理装置是否运行良好,活性炭是否及时更换,污染土壤临时堆存区域是否密闭
    水环境影响热脱附产生的冷却水、含酸废水是否统一收集处理后达标排放
    土壤环境影响污染土壤临时堆存期间雨水淋滤,污染治理所用化学品渗漏遗洒污染土壤临时堆存区域是否有防渗措施,
    固体废弃物热脱附过程收集的除尘灰,尾气处理装置更换下来的活性炭,经过处理后的土壤或废物是否统一收集后送有资质的单位处理
    噪声施工过程机械噪声是否尽量选用低噪声设备,是否采取有效的降噪措施
    原址回填大气环境影响扬尘,推土机、铲车、车辆等运行时排放尾气是否洒水抑尘,裸土是否及时苫盖,回填后是否及时压实
    水环境影响设施、设备、工具及器具清洗排放废水,工作人员生活污水废水是否统一收集处理后达标排放
    固体废弃物污油及废油,报废的一般设施、设备、工具及器具,一般生活及餐厨垃圾核查是否将固废统一收集处理
    噪声推土机、运输车辆等运行产生噪声核查机械车辆是否状况良好,是否严格控制作业范围,是否避免夜间施工,是否采取其他降噪措施
    施工环节环境影响污染源环境监理工作要点
    清挖大气环境影响开挖时产生扬尘、重金属及VOCs/SVOCs等污染物挥发,挖掘机、铲车和运输车辆等运行产生尾气,表土临时堆放产生扬尘核查施工时是否尽可能减小开挖面,是否洒水抑尘,是否有刺鼻气味,裸土是否及时苫盖
    水环境影响污染土壤堆存期间的雨水淋滤,污染土壤清挖后遇雨天坑内积水,工作人员生活污水核查是否尽量避免污染土壤堆存,基坑是否有排水沟,生活污水是否统一排放
    土壤环境影响污染土壤及废物堆存期间经雨水淋滤产生下渗核查是否尽量避免污染土壤堆存,如有堆存,是否有防渗措施
    固体废弃物污油及废油,报废的一般设施、设备、工具及器具,一般生活及餐厨垃圾核查是否将固废统一收集处理
    噪声清挖过程中挖掘机、铲车、运输车辆等运行产生噪声核查机械车辆是否状况良好,是否严格控制作业范围,是否避免夜间施工,是否采取其他降噪措施
    运输大气环境影响土方运输产生扬尘,车辆运输时排放尾气车辆是否密闭运输,是否满载超载,运输道路是否及时洒水抑尘
    水环境影响污染土壤运输过程中发生遗撒经雨水冲刷,设施、设备、工具及器具清洗产生废水核查运输过程是否有遗撒,如有是否立即采取清洁措施,机械设备清洗废水是否统一收集处理
    土壤环境影响污染土壤运输过程中遗撒污染土壤装车后是否对车轮及车身进行清扫,运输车轮是否密闭,是否满载超载,是否减速慢行
    噪声车辆运输时产生噪声运输时是否避开环境敏感区,是否尽可能减少鸣笛,是否减速慢行
    热脱附处理大气环境影响热脱附尾气,污染土壤临时堆存产生扬尘核查热脱附设备的尾气处理装置是否运行良好,活性炭是否及时更换,污染土壤临时堆存区域是否密闭
    水环境影响热脱附产生的冷却水、含酸废水是否统一收集处理后达标排放
    土壤环境影响污染土壤临时堆存期间雨水淋滤,污染治理所用化学品渗漏遗洒污染土壤临时堆存区域是否有防渗措施,
    固体废弃物热脱附过程收集的除尘灰,尾气处理装置更换下来的活性炭,经过处理后的土壤或废物是否统一收集后送有资质的单位处理
    噪声施工过程机械噪声是否尽量选用低噪声设备,是否采取有效的降噪措施
    原址回填大气环境影响扬尘,推土机、铲车、车辆等运行时排放尾气是否洒水抑尘,裸土是否及时苫盖,回填后是否及时压实
    水环境影响设施、设备、工具及器具清洗排放废水,工作人员生活污水废水是否统一收集处理后达标排放
    固体废弃物污油及废油,报废的一般设施、设备、工具及器具,一般生活及餐厨垃圾核查是否将固废统一收集处理
    噪声推土机、运输车辆等运行产生噪声核查机械车辆是否状况良好,是否严格控制作业范围,是否避免夜间施工,是否采取其他降噪措施
    下载: 导出CSV

    表 3  本工程环境监理监督性监测

    施工环节监测对象监测位置监测方式监测频次
    清挖现场VOCs/SVOCs清挖作业现场手持PID每天2次
    环境空气根据修复方案在场地四周环境敏感点及场界布设监测点位大气综合采样仪器每2周1次,每次1天
    场界噪声根据修复方案在场地四周环境敏感点及场界布设监测点位积分平均声级计每天2次
    热脱附处理现场VOCs/SVOCs清挖作业现场手持PID每天2次
    热脱附尾气 /烟气在线监测系统每天检查汇总自动监测数据
    环境空气根据修复方案在场地四周环境敏感点布设监测点位大气综合采样仪器每2周1次,每次1天
    场界噪声根据修复方案在场地四周环境敏感点及场界布设监测点位积分平均声级计每天2次
    施工环节监测对象监测位置监测方式监测频次
    清挖现场VOCs/SVOCs清挖作业现场手持PID每天2次
    环境空气根据修复方案在场地四周环境敏感点及场界布设监测点位大气综合采样仪器每2周1次,每次1天
    场界噪声根据修复方案在场地四周环境敏感点及场界布设监测点位积分平均声级计每天2次
    热脱附处理现场VOCs/SVOCs清挖作业现场手持PID每天2次
    热脱附尾气 /烟气在线监测系统每天检查汇总自动监测数据
    环境空气根据修复方案在场地四周环境敏感点布设监测点位大气综合采样仪器每2周1次,每次1天
    场界噪声根据修复方案在场地四周环境敏感点及场界布设监测点位积分平均声级计每天2次
    下载: 导出CSV
  • [1] 沈宗泽, 陈有鑑, 李书鹏, 等. 异位热脱附技术与设备在我国污染场地修复工程中的应用[J]. 环境工程学报, 2019, 13(9): 2060 − 2073. doi: 10.12030/j.cjee.201905144
    [2] 王水, 丁亮, 李冰, 等. 污染场地修复工程环境监理研究[J]. 生态经济, 2015, 31(10): 146 − 149. doi: 10.3969/j.issn.1671-4407.2015.10.031
    [3] 裴亮, 孙莉英, 龚学刚, 等. 北京某焦化厂污染修复工程环境监理初探[J]. 科技与创新, 2019(11): 1 − 4.
    [4] 北京市人民政府. 北京城市总体规划(2004-2020年)[J]. 北京规划建设, 2005(2): 5 − 51.
    [5] 北京市质量监督局. 污染场地修复工程环境监理技术导则: DB11/T 1279-2015[S/OL]. (2016-05-26)[2020-01-20]. http://www.beijing.gov.cn/so/view.
    [6] 许石豪, 胡林潮, 陈晶. 污染场地修复工程环境监理现状研究[J]. 环境与发展, 2017, 29(7): 39 − 41.
    [7] 丁亮, 王水, 曲常胜, 等. 污染场地修复工程二次污染防治研究[J]. 生态经济, 2016, 32(10): 189 − 192. doi: 10.3969/j.issn.1671-4407.2016.10.040
    [8] 骆永明. 中国土壤污染与修复研究二十年[M]. 北京: 科学出版社, 2017.
    [9] 蒋鹏, 刘宇, 钱程远. 污染场地修复工程环境监理存在的问题及对策分析[J]. 科技创新导报, 2018(13): 143 − 144.
    [10] 许伟. 污染场地修复工程环境监理存在的问题及对策[J]. 广州化工, 2016, 44(9): 147 − 148. doi: 10.3969/j.issn.1001-9677.2016.09.052
    [11] 邹星星. 场地修复工程环境监理案例探讨[J]. 江西化工, 2017(5): 25 − 28. doi: 10.3969/j.issn.1008-3103.2017.05.009
    [12] 张权, 姚飞. 蓄电池厂退役场地土壤修复及环境监理技术探讨[C]//第四届重金属污染防治及风险评价研讨会暨重金属污染防治专业委员会2014年学术年会论文集, 北京: 2014: 222-226.
    [13] 卢欢亮. 铅锌矿尾矿库重金属污染生态修复工程环境监理方法探索[J]. 环境与可持续发展, 2016, 41(3): 41 − 44. doi: 10.3969/j.issn.1673-288X.2016.03.011
    [14] 郜学军. 公路施工环境监理量化指标体系研究[D]. 西安: 长安大学, 2007.
    [15] 张兰, 毛鸿浩. 石化项目地下水和土壤污染防治措施及环境监理对策[J]. 中国自由综合利用, 2020, 38(2): 168 − 169.
    [16] 许伟, 沈桢, 陈晓雪, 等. 水泥窑协同处置污染土壤修复项目环境监理实践研究——以苏州市某化工厂为例[J]. 环保科技, 2016, 22(3): 39 − 42. doi: 10.3969/j.issn.1674-0254.2016.03.010
    [17] 叶兴凯, 范正杰, 侯玭, 等. 污染场地修复工程全过程环境监理要点研究[J/OL]. 环境工程: 1-4[2020-07-06]. http://kns.cnki.net/kcms/detail/11.2097.X.20180614.1109.004.html.
    [18] 邓劲蕾, 肖入峰, 张晟, 等. 独立式环境监理运行机制优化的实践与探讨[J]. 环境影响评价, 2018, 40(2): 74 − 76.
    [19] 刘庆辉, 徐铁兵, 田楠, 等. 污染土修复工程环境监理常见问题及思考[J]. 化工管理, 2015(15): 200 − 202. doi: 10.3969/j.issn.1008-4800.2015.15.159
    [20] 吴晓煦, 胡玲. 污染场地修复工程环境监理模式研究[C]//中国环境科学学会学术年会论文集, 厦门: 2017: 406-409.
  • 期刊类型引用(1)

    1. 王斌,李文嘉,王涛,李江,许晓毅,张林,侯立安. 河湖水体新污染物赋存特征、去除技术及防控对策. 科技导报. 2024(11): 6-17 . 百度学术

    其他类型引用(1)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.6 %DOWNLOAD: 5.6 %HTML全文: 94.4 %HTML全文: 94.4 %DOWNLOADHTML全文Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.3 %其他: 99.3 %XX: 0.5 %XX: 0.5 %运城: 0.2 %运城: 0.2 %其他XX运城Highcharts.com
图( 1) 表( 3)
计量
  • 文章访问数:  2701
  • HTML全文浏览数:  2701
  • PDF下载数:  47
  • 施引文献:  2
出版历程
  • 收稿日期:  2020-01-24
  • 刊出日期:  2020-08-20
张笑然, 熊樱, 孟祥帅, 岳希. 污染场地异位热脱附修复工程环境监理案例研究[J]. 环境保护科学, 2020, 46(4): 122-127. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.022
引用本文: 张笑然, 熊樱, 孟祥帅, 岳希. 污染场地异位热脱附修复工程环境监理案例研究[J]. 环境保护科学, 2020, 46(4): 122-127. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.022
ZHANG Xiaoran, XIONG Ying, MENG Xiangshuai, YUE Xi. A Case Study of Environmental Supervision of Ex-situ Thermal Desorption in Contaminated Site[J]. Environmental Protection Science, 2020, 46(4): 122-127. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.022
Citation: ZHANG Xiaoran, XIONG Ying, MENG Xiangshuai, YUE Xi. A Case Study of Environmental Supervision of Ex-situ Thermal Desorption in Contaminated Site[J]. Environmental Protection Science, 2020, 46(4): 122-127. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.022

污染场地异位热脱附修复工程环境监理案例研究

    作者简介: 张笑然(1991 − ),女,博士、工程师。研究方向:土壤污染防治与修复。E-mail:zhang_xr@163.com
  • 1. 生态环境部土壤与农业农村生态环境监管技术中心,北京 100012
  • 2. 北京京诚嘉宇环境科技有限公司,北京 100053
  • 3. 中国地质大学(北京),北京 100083

摘要: 文章通过对北京某污染场地异位热脱附修复工程环境监理工作要点进行全过程剖析,明确了在异位热脱附修复工程设计阶段、设施建设阶段、工程实施阶段和工程验收阶段等各环节中环境监理人员需重点关注的事项,并通过案例分析,提出了类似工程在实际工作中存在的问题,旨在为污染场地异位热脱附修复工程环境监理工作提供借鉴,为相关研究及管理制度制定提供案例参考。

English Abstract

  • 热脱附修复技术对于多环芳烃、石油烃等有机污染物的去除具有良好的效果。异位热脱附技术更是具有修复周期短、普适性强的显著优势,在目前有机污染场地修复中应用较为广泛[1]。然而,由于异位热脱附修复工程涉及污染土壤的清挖和转运,施工过程中极易产生有机污染物挥发,造成二次污染,对施工区域及运输路线周边环境产生不良的影响。因此,为了保障修复效果、尽可能地避免二次污染,对污染场地异位热脱附修复工程的全过程环境监理尤为重要。

    污染场地修复工程的处理处置对象多为可能危害人体健康的污染物,修复过程具有专业性强、技术复杂及风险高等特点,由此对相应的环境监理工作提出了更高的要求[2]。2014年2月19日,国家环境保护主管部门批准了《场地环境调查技术导则》,并于7月1日起正式实施,首次将环境监理纳入我国污染场地修复工作范畴,标志着污染场地修复工程环境监理开始规范化、系统化和法律化。一些开展污染场地修复相关工作较早的省市(如北京、上海和广东等)积累了若干项目经验,参考国际相关程序和方法,编制了污染场地修复工程环境监理地方性规范。但目前关于环境污染修复工程环境监理方面的研究和案例仍相对匮乏[3]

    本研究以北京某污染场地异位热脱附修复工程为例,结合实际情况对其环境监理工作要点进行了研究,并分析了本案例的典型意义,对环境监理过程中存在的问题进行梳理,提出了若干建议,为污染场地修复工程环境监理研究与实践、为相关管理制度制定都提供了案例参考。

  • 场地原为钢铁企业辅助设施(如运输、料仓、旧货场等)所在地,已有30年生产经营历史。根据场地环境调查与风险评估结果,场内零散分布29个多环芳烃污染地块,最大污染深度4.5 m,污染面积3.1万m2,污染土方量3.9万m3。土壤中16种多环芳烃均超标,超标率范围0.43%~34.89%,超标率最大的是苯并(a)芘。根据《北京城市总体规划(2004年−2020年)》[4],场地所在区域规划为生态友好型产业集聚地,该场地未来为居住用地、商业用地及公共设施用地。

    根据项目实施方案及相关批复文件,该场地采用异位热脱附技术修复。对场地内污染土壤进行清挖后,用密闭式专用运输车运往热脱附设施,经筛分、破碎等预处理后,送入回转窑加热至500 ℃并停留20 min。污染土壤热脱附处理后达到《污染场地修复后土壤再利用环境评估导则(DB11/T 1281—2015)》[5]的一级再利用筛选值,达标后的土壤可用于原址回填。污染地块清挖后基坑内各目标污染物的检测结果须满足场地管控值方为合格。总体修复技术路线见图1

    修复过程涉及污染土壤的清挖、运输及热脱附处理等阶段,极易产生废气、噪声、废水和固体废物,对场地及其周边环境造成不良影响。因此,需开展严格的环境监理工作,对可能产生二次污染的各环节进行监管,尽可能地降低施工对周边环境带来的负面影响。

  • 污染场地修复工程环境监理工作一般包括3个阶段:修复工程设计阶段环境监理、修复设施建设阶段环境监理和修复工程实施阶段环境监理[5]。本工程环境监理工作除了上述3个阶段外,还包括在修复工程验收阶段的协助工作。

  • 工程设计阶段环境监理工作的目的在于“事前控制”和“主动控制”[6],需熟悉修复工程环评报告与设计文件,审查施工单位的施工方案并提出审查意见和修改要求,同时编写环境监理方案等用于指导本工程环境监理工作的技术文件。

  • 通过资料梳理、现场踏勘和人员访谈等方式,在熟悉本项目场地污染调查评估状况、场地及周边环境状况、环保主管部门相关批复情况、场地修复工程施工条件等的基础上,对修复技术方案和施工方案进行审核。

    核查施工方案是否满足污染场地修复技术方案的要求,如污染场地清挖位置、运输路线、暂存场地、热脱附场所和回填去向等。核查修复方案、施工方案及其中的污染防治措施是否符合相关法律法规与技术规范、环保主管部门批复文件的要求,如产尘点抑尘、污染土遗撒处理和施工期雨废水收集等。经核查,本工程施工方案中缺少针对装载污染土车辆的清洁措施,向建设单位反馈后,要求施工方补充完善,并在后续施工阶段督促该措施的落实。

  • 编制环境监理方案的目的在于指导环境监理工作。根据场地污染情况、场地环境调查与评估报告、修复技术方案和施工方案及修复目标,结合现场踏勘情况编制环境监理方案。在环境监理方案中明确工作目标与范围、工作程序与方法以及各施工环节注意事项,并针对工程实际情况提出可能出现的问题,做好预防措施。

  • 规范环境监理工作是设施建设阶段环境监理的主要目的。在本工程环境监理工作中,该阶段工作要点如下:一是建立环境监理体系和制度,督促建设单位针对修复工程产生的废水、废气、噪声、固废等污染物建立相应的污染防治措施和操作规程;督促建设单位落实各类环保协议、相关环保手续的办理工作;督促建设单位建立完善有效的环保责任体系,明确分工、责任到人。二是核查污染防治措施落实情况:核实配套环保设施是否与主体修复设施同时建设,其主要技术指标是否满足修复工程实施方案的要求;核查试运行期间的排放指标是否符合相关标准要求;未达到相关要求的,及时反馈建设单位并监督其整改。

  • 工程实施阶段环境监理工作是对修复工程的“事中控制”,其重点工作是监督施工全过程、督促污染防治措施落实,并记录日常工作事项与编制环境监理报告。具体体现在检查施工情况是否符合修复方案要求、环境保护措施是否落实到位,对施工过程进行监督性环境监测,同时参与修复工程管理,对不符合环保要求及修复方案的环节提出整改要求[6]

  • 监督施工全过程是环境监理工作的重点之一。对于异位热脱附修复工程而言,主要包括挖掘、运输、暂存、处理、回填/外运等环节,需按照修复方案和施工方案核实工程位置、挖掘工程量、运输路线、运输量、暂存场地、修复设施以及修复后土壤去向等的达标性。本工程各施工环节环境监理工作要点见表1

  • 与一般建设项目相比,污染场地修复工程的施工对象为污染土壤,施工过程中现场及周边环境易受到污染,因此施工期废气、废水、固废和噪声的二次污染防治是环境监理工作的重中之重[7]。本工程针对二次污染防治的环境监理工作要点见表2

  • 对修复工程污染物排放和环境影响进行监督性监测是修复工程环境监理工作的重要组成部分,主要包括大气环境监测、水污染排放监测以及场界环境噪声监测等。通过监测判断修复工程污染物排放是否满足修复方案及其他相关规定的要求,如有不达标情况,督促施工单位整改。

    本工程环境监理在污染土壤清挖及热脱附处理环节针对大气环境与场界噪声均开展了监督性监测(无废水排放),及时掌握工程的污染物排放情况,尽可能确保对周边环境的不良影响最小化。具体监测情况见表3

  • 在修复工程启动后,环境监理员对每天的工作情况进行记录,包括:环境监理日志、现场巡视和旁站记录、监理会议记录和监测记录等,记录方法采用文字、数据、图表和影像等多种方式。

    当修复工程出现实施与设计不符、环保措施落实不到位或其他重大环保问题时,环境监理员根据问题的严重程度,及时下达一般联系单、整改通知单或停/复工指令单,将问题反馈至建设单位,督促施工单位及时处理。

    当修复工程进行到一定阶段时,环境监理根据现场工作日常记录编写总结材料,包括环境监理定期报告(月报、季报、年报)、阶段报告和总结报告,作为修复工程竣工验收与效果评估的技术材料之一。

  • 工程验收阶段环境监理工作主要集中在2个方面:一是在开展工程效果评估前,环境监理对施工单位提交的施工过程资料进行完整性和准确性检查,如工程量出错或资料中出现与实际施工不符的内容,及时查清原因,督促施工单位修改完善。二是在开展效果评估期间,协助效果评估单位进行基坑土壤样品采集和热脱附后土壤样品采集,跟踪样品检测结果,如有不合格情况,督促施工单位及时采取处理措施,直至样品检测结果满足修复方案中的相关要求。同时,要协助开展效果评估阶段的其他相关工作。

  • 异位热脱附是一种较为成熟的土壤修复技术,目前已广泛应用于国内外有机污染场地修复实践中。我国自2009年首次引进异位热脱附设备[1],此后异位热脱附修复技术在国内得到快速发展,截至2017年已开展23例污染场地异位热脱附修复项目,同时,将以其修复工期短、修复效率高的显著优势在现阶段土壤修复中逐渐占据更大比例[8]。保障异位热脱附技术的修复效果对于有机污染土壤修复意义重大。本研究通过案例分析,明确了在异位热脱附修复工程环境监理实际工作中应重点关注的事项,对于开展类似工程的环境监理工作、加强异位热脱附修复工程的环境监管具有一定的指导意义。

  • 环境监理工作的重点在于对修复工程过程的把控,只有对工程全过程进行有效监管,确保施工质量与二次污染防治措施落实到位,才能保障最终的修复效果。本案例的环境监理工作涵盖了污染土壤异位热脱附修复工程的全过程,即:自施工前的文件审核至污染土壤修复后的原址回填,在工作内容方面具有全面性,在工作流程上具有较好的衔接性,基本覆盖了此类工程环境监理工作的关键环节,可对类似工程提供良好的借鉴与参考。

  • 本工程环境监理工作中存在的主要问题如下:一是环境监理地位不明确,工作范围模糊,在实际工作中易与工程监理产生职责混淆或推诿等问题,造成工作不畅。二是缺乏专业的环境监理人员,环境监理人员应兼备工程管理与环境保护相关专业知识技能,任何一方面的缺失即有可能造成修复工程中的偏差,对修复效果产生负面影响。三是修复工程组织方式协调不足,修复工程一般由建设单位、施工单位、工程监理单位、验收单位等多家参与,在实际工作中由于缺乏有效的协调机制,导致施工受阻或沟通断层,从而降低了工作效率。

    上述问题也存在于多个案例中[9-11],通过案例分析,梳理问题、探索解决途径,对于改进污染场地异位热脱附修复环境监理工作具有一定的普适性。

  • 目前,有关污染场地修复工程环境监理的研究日益增多。从研究对象上看,主要涉及焦化厂[3]、蓄电池厂[12]、尾矿库[13]、公路项目[14]和石化项目[11, 15-16]等。然而,鲜有针对钢铁企业污染场地修复工程的案例研究。钢铁企业多为重污染企业,随着全国各地有关钢铁企业退城搬迁政策的出台,城市建成区内遗留大量钢铁企业污染场地。在对其实施污染修复时,须密切关注修复工程中的环保措施落实和二次污染防治情况,尽可能地削弱修复工程对周边人居环境的不良影响。本研究可为钢铁企业污染场地修复工程环境监理提供案例参考。

    从研究内容上看,主要集中在环境监理工作方式方法[17-18]和问题对策[10, 19]这2个方面。类似研究并未根据修复工程所采用的技术而进一步对环境监理内容加以区分。然而,目前污染场地修复常用技术种类较多,不同修复技术对应的环境监理工作要点存在一定差异。如“3.1修复技术代表性”中所述,异位热脱附修复技术在国内污染场地修复中应用普遍且发展迅速,但在目前能够检索到的中文文献中鲜有关于异位热脱附修复工程环境监理的研究。本研究则专门针对异位热脱附修复工程的各个环节,进行全过程的环境监理要点分析,对于实践工作有着较强的指导意义。

  • 根据本案例研究情况,针对目前环境监理工作存在的问题,提出以下建议。

    1)出台权威的环境监理工作指南。目前污染场地环境监理工作缺乏较为统一的标准,导致实际工作中工作范围不清晰等问题。因此,亟需根据实际情况建立一套科学合理的标准以指导实践;同时还需与地方环境政策相结合,最大限度地做到因地制宜。

    2)优化环境监理工作模式。在工程准备期做好组织体系构建工作,细化工作内容,明确各方职责,建立良好的沟通协调机制,保障污染场地修复工作的过程完整性和结果有效性。与工程监理充分合作,在施工期临时组建共同的领导部门,在统一领导下开展工作,权责分明,沟通顺畅,全方位保障修复工程质量[18, 20]

    3)组建环境监理人才队伍。环境监理人员需对相关环保的法律法规等相关规定要有较为全面的认知,掌握必要的环保知识,有针对性地将工程建设项目中的环境污染和生态保护的特点进行归类总结,准确分析施工环境影响、环保措施实施效果及环境监测结果。同时,需熟悉项目施工流程及其特点,尽可能全面地预防和控制可能造成的环境问题。

参考文献 (20)

返回顶部

目录

/

返回文章
返回