苯胺高效降解菌的筛选及共代谢机制

王镔, 蔡凯, 邵汝英, 赵振华, 王帅, 高峰, 蒋伟群. 苯胺高效降解菌的筛选及共代谢机制[J]. 环境保护科学, 2020, 46(4): 117-121. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.021
引用本文: 王镔, 蔡凯, 邵汝英, 赵振华, 王帅, 高峰, 蒋伟群. 苯胺高效降解菌的筛选及共代谢机制[J]. 环境保护科学, 2020, 46(4): 117-121. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.021
WANG Bin, CAI Kai, SHAO Ruying, ZHAO Zhenhua, WANG Shuai, GAO Feng, JIAGN Weiqun. Study on the Screening of Aniline-degrading Strain and Its Co-Metabolism Mechanism[J]. Environmental Protection Science, 2020, 46(4): 117-121. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.021
Citation: WANG Bin, CAI Kai, SHAO Ruying, ZHAO Zhenhua, WANG Shuai, GAO Feng, JIAGN Weiqun. Study on the Screening of Aniline-degrading Strain and Its Co-Metabolism Mechanism[J]. Environmental Protection Science, 2020, 46(4): 117-121. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.021

苯胺高效降解菌的筛选及共代谢机制

    作者简介: 王 镔(1995 − ),女,本科。研究方向:生物工程。E-mail:wangbin@china-lason.com
    通讯作者: 蔡 凯(1986 − ),男,博士。研究方向:微生物。E-mail:caikai@china-lason.com
  • 中图分类号: X172; X52

Study on the Screening of Aniline-degrading Strain and Its Co-Metabolism Mechanism

    Corresponding author: CAI Kai, caikai@china-lason.com
  • 摘要: 本实验从苯胺废水中分离筛选出一株苯胺高效降解菌,并将其命名为LS1。经过形态特征和序列相似性对比,确定LS1为粪产碱杆菌。苯胺降解能力实验结果显示,苯胺浓度为1 000 mg/L以下,停留时间延长至72 h时,菌株LS1对苯胺的降解率可达到95%以上。苯胺最佳共代谢碳源选择的实验结果显示,以1 000 mg/L为苯胺实验浓度时,抗坏血酸对菌株LS1的降解率提高最为明显,其次是甲醇、葡萄糖、淀粉、蔗糖。鉴于对方便保存和经济方面的考虑,选取葡萄糖为最佳共代谢碳源,并通过实验证明最佳投加比为苯胺与葡萄糖COD为2∶1时。
  • 近年来,袋式除尘器可实现对超细微颗粒的高效处理,且具有运行稳定、造价低廉等优点,已被广泛应用[1]。然而,袋式除尘器体积庞大,占用空间较大[2]。滤筒除尘器是袋式除尘器的一种,具有过滤比表面积更大、阻力低、占地空间更小、安装便捷、易于检修等优点。近年来,通过设计优化和过滤材料更新,滤筒除尘器的处理含尘气量有了巨幅提升,其应用更广泛,在经济性和过滤效率方面都超越了传统袋式除尘器。目前,大部分相关研究集中在立式滤筒除尘器和滤筒清灰方面,而对卧式滤筒除尘器的研究较少。胡家雷等[3]在对滤筒进行脉冲清灰时发现喷嘴长度和喷嘴收缩角对清灰均匀性有显著影响。郗元等[4]运用CFD软件模拟了不同结构滤筒对除尘器内部流场的分布影响,为提高除尘效率,建议选用矩形或圆柱滤筒作为滤芯。刘侹楠[5]模拟了不同进气方式的卧式滤筒除尘器,并添加不同形式导流板进行优化设计,最终使内部流场达到设计标准。袁娜等[6]探究了不同角度挡板对卧式滤筒除尘器内部流场的影响,发现挡板角度为165°~170°时,气流能达到均匀的标准。

    卧式滤筒除尘器为立式滤筒除尘器的改进设计,可应用于空间高度受限场所。当含尘气流从除尘器顶部入口进入后,较大粉尘颗粒在重力作用下顺沿气流方向或碰撞到壁面后沉降至灰斗,细微粉尘颗粒则随气流通过滤筒时被拦截在滤筒表面。在过滤过程中,除尘器内部结构对气流组织有着重要作用[5]。因为各除尘器结构不同,导致其内部流场也差别较大,而通过实验来优化除尘器设计不仅耗费时间,且效果不尽人意。运用相关软件进行数值模拟,可直观测得除尘器内部流场特征,且节省时间并降低投资成本[7]。因此,近年来该方法已得到广泛应用。

    本研究运用Fluent等软件对现有卧式滤筒除尘器进行数值模拟,探索在不同类型挡板和导流板下除尘器内部的气流组织情况,以期获得最优流场状态,进而为除尘器的结构优化提供参考。

    本研究采用的卧式滤筒除尘器由箱体、脉冲清灰系统和滤筒组成。在不影响模拟结果准确性的前提下,取消清灰系统并将滤筒简化为圆柱形[8]。运用ANSYS进行建模,建立如图1所示的4个侧进气卧式滤筒除尘器模型。这4个模型主体尺寸相同,长1 687 mm,宽2 000 mm,高3 330 mm。除尘器内有6个滤筒,其规格为φ360 mm×1 000 mm。滤筒间距为260 mm,两侧距壁面200 mm,上下2层滤筒间隔332 mm。除尘器A为常规卧式滤筒除尘器。除尘器B、C、D在入口处添加了导流板和各类型挡板。其中,3种除尘器的导流板相同,各挡板位于滤筒正上方相同位置,在y方向上投影面积相同。

    图 1  除尘器几何模型
    Figure 1.  Geometric model of dust collector

    图2(a)为导流板形状。除尘器中的挡板尺寸如图2(b)~(d)所示。挡板α尺寸为700 mm×1 700 mm;挡板β的夹角为140°,单块的尺寸为700 mm×980 mm;挡板γ由6块小挡板组成,各夹角为140°,单块尺寸为700 mm×210 mm,挡板间距为225 mm。使用Gambit划分网格,采用结构化与非结构化相结合的形式进行网格划分。为提高模拟结果的合理性,对进出口、导流板、挡板、滤筒区域网格进行了加密,并对网格独立性进行了验证,最终选取网格数约381×104的模型进行模拟。

    图 2  导流板与挡板
    Figure 2.  Deflector and baffle

    利用Fluent 18.0软件模拟卧式滤筒除尘器内部流场。入口设为velocity-inlet,速度10 m·s−1;出口设为outflow,滤料厚度为2 mm。滤筒模型边界设为porous-jump,渗透率为6.418×10−12 m2,压力跃阶系数C2取0。其余边界条件如导流板、挡板、净气室、进出口壁面均设置为壁面。气体设为常温常压不可压缩流体[9]。使用压力基稳态求解、湍流模型为k-ε 双方程模型,压力-速度耦合方式为SIMPLE。数值模拟中的连续性方程与动量守恒方程为式(1)和式(2)[10]

    (ui)xi=0 (1)
    xi(ρuiuj)=pxi+xj(μeff(uixj+ujxi))+ρgi (2)

    式中:p为静压;μeff为有效粘度系数;gi为重力加速度分量。

    湍流模型采用标准 k—ε模型。湍动能方程与湍动耗散率方程见式(3)~(4)。

    (ρkui)xi=[(μ+μσk)kxj]xj+Gkρε (3)
    (ρεui)xi=[(μ+μtσε)εxj]xj+C1εεkGkC2ερε2k (4)

    式中:C1εC2ε为常量;Gk是由于平均速度梯度引起的湍动能k的产生项;σkσεk方程和ε方程的湍流Prandtl数。

    滤筒为多孔介质阶跃模型(porous-jump model),压降方程见式(5)。

    Δp=(μαv+12C2ρv2)Δm (5)

    式中:α为渗透率;C2为内部阻力系数;Δm 为滤筒厚度。由于过滤风速低,滤筒厚度为2 mm,故忽略第二项内部阻力[10]

    图3为常规滤筒除尘器入口处气流速度矢量俯视图,以及添加导流板、挡板后的局部气流速度矢量图。由于该卧式滤筒除尘器滤筒放置位置较为特殊,特选取如图4(a)~(d)所示x=1 236 mm处平面,以及与图5(a)~(d)所示垂直滤筒上方100 mm处截面速度云图来分析其内部流场情况。从图3(a)中气流速度矢量图可观察到,当入射气流进入除尘器A中,因无导流板作用直接撞击内部墙体,导致气流方向改变,部分气流在除尘器顶部形成涡流使除尘器四周壁面流速较快,平均速度为7.25 m·s−1(见图4(a))。图5(a)中除尘器A壁面流速同样过高,与图4(a)情况相符,滤筒顶部气流达8.60 m·s−1。这是由于另一部分入射气流方向改变后,直接顺沿壁面向下运动抵达滤筒顶部,动能较高。综合图3(a)、图4(a)、图5(a)可发现,除尘器A中内部流场较为紊乱,上层滤筒间隙风速过快,平均风速为5.63 m·s−1。风速过快会导致二次扬尘,且滤筒局部风速不均。长期在此条件下运行,部分滤筒会率先破损和堵塞,从而影响除尘效果。

    图 3  除尘器入口处速度矢量图
    Figure 3.  Vector diagram of velocity at the entrance of dust collector
    图 4  x=1 236 mm处平面速度云图
    Figure 4.  Plane velocity cloud at x=1 236 mm
    图 5  滤筒上方100 mm处截面速度云图
    Figure 5.  Cloud map of cross-sectional velocity at 100 mm above the filter cartridge

    改善除尘器内部流场均匀性的方法主要是增加功能各异的挡板与导流板,并通过阻挡、分流等功能,使气体的流动规律被强制改变[11]图3(b)为除尘器安装导流板与挡板后的局部速度矢量图。由图3(b)可知,气流从入口进入除尘器经导流板与挡板作用后,方向发生了改变,并观测到无高速气流直接冲刷除尘器的主体结构。由于导流板的存在,除尘器B、C、D顶部当涡流消失。除尘器B、C、D在x=1 236 mm处平面的速度云图见图4(b)~(d)。由图5可知,加入各类型挡板后,壁面风速有所降低。挡板下方的气流速度存在明显的跳跃边界,滤筒间隙风速较除尘器A降低,内部流场在挡板作用下更加均匀。

    图4(b)与图5(b)所示,除尘器B在挡板α作用下,仅1号、3号滤筒两外侧附近流速较高。这是因入口气流撞击挡板后沿四周扩散导致,平均速度约为6.80 m·s−1,剩余区域滤筒间隙风速约为3.50 m·s−1图4(c)与图5(c)为除尘器C在挡板β作用下的速度云图,整体效果与挡板α相似,但1号、3号滤筒外侧附近流速较高部分减少,滤筒底部出现较大范围的流速过快区域。其原因是:挡板β存在一定的倾斜角度,当入射气流经过导流板抵达挡板β,动能损失较挡板α小,部分气流沿倾斜角度运动导致滤筒底部风速较快,平均风速约为6.50 m·s−1,其余部分滤筒间隙风速约为3.20 m·s−1。除尘器D在分离式挡板γ作用下的速度云图如图4(d)与图5(d)所示。因为挡板γ由6块小挡板组成,流速较快区域出现在中间挡板两侧,除尘器壁面风速过高情况消失。由图5(d)可知,除尘器D内部的流场气流组织较为均匀,整体变化幅度不大,滤筒间隙平均风速约为3.40 m·s−1。对于滤筒除尘器而言,在合理范围内提高流场速度有利于提高除尘器的工作效率。

    滤筒是除尘器工作的最核心部件。由于无法直接测出过滤风速,在其他条件不变的情况下,滤筒表面风速与过滤速度呈线性相关,通过Fluent软件观测各部位流速特征,可分析滤筒内的过滤情况。在本除尘器中,到达滤筒区域的速度方向主要为竖直方向。滤筒磨损程度主要与该方向速度有关,速度越大,滤筒正面受冲击就越严重[12]。根据能量守恒原理,滤筒表面速度分布不均,会导致滤筒各部位内外压差偏大。另外,在实际运行中,速度较快部位的粉尘层会越积越密,使得滤筒内外压差进一步变大,进而造成粉尘颗粒被挤压至滤筒中,导致颗粒逃逸,分离效率下降,最终出现破洞。图6(a)~(d)分别为卧式滤筒除尘器A、B、C、D滤筒部分的表面风速云图。

    图 6  各滤筒表面风速云图
    Figure 6.  Cloud picture of surface velocity of each filter cartridge

    图6(a)可发现,除尘器A为常规卧式滤筒除尘器,无导流、阻流措施,气体进入除尘器撞击墙体后四处逸散,导致上层滤筒表面风速较为紊乱。2号滤筒表面风速较快,大部分区域在3.10 m·s−1。1号、2号、3号滤筒首尾两端最高速度达6.30 m·s−1。由于气流进入除尘器后,气体方向改变,部分气流顺沿壁面到达滤筒顶部,使得气流速度较高。然而,入口喇叭管存在一个向下倾斜的角度,气流沿管道向下运动以较高的速度冲击滤筒末端,导致流速过快。除尘器A中,上层滤筒首尾两端和2号滤筒受冲击程度严重,压力分布不均,长期如此会导致这些部位破损[13]图6(b)表明,在除尘器B入口设置导流板和挡板α后,射流现象消失,气流经导流板撞击挡板后向四周扩散,导致上层滤筒外侧与末端风速较高,约为4.50 m·s−1。其余区域速度为1.28 ~2.80 m·s−1,较除尘器A的情况有所优化。如图6(c)所示,除尘器C在添加导流板和挡板β后,上层滤筒底部表面风速过高,最高流速达7.50 m·s−1,效果较差。这与较大挡板夹角在165°~170°时,能更好地使除尘器内部气流组织达到均匀相符[6]图6(d)表示除尘器D在导流板和分离式挡板γ综合作用下的滤筒表面风速情况,其整体均匀,1号、3号滤筒顶部内侧风速为2.40 m·s−1,底部风速约为3.10 m·s−1,其他滤筒区域表面速度为1.13~2.26 m·s−1。综合除尘器A、B、C、D平面速度云图与滤筒表面速度可知,分离式挡板γ能较好地优化侧进气卧式滤筒除尘器内部气流组织。

    利用Fluent设置监控面,对滤筒流量进行了统计。除尘器滤筒流量分配不均匀,会使滤筒处理气量达不到设计值。因此,研究除尘器各滤筒流量均匀性对除尘器高效运行具有重要意义[14]。为更好地定量分析除尘器流场分布状态,引入流量分配系数Ki、流量分配差值ΔK、综合流量不均幅值ΔKζ,分别对应方程式(6)~(8)。

    Ki=QiQm(i=1,2,3,,n) (6)
    ΔK=KimaxKimin (7)
    ΔKζ=(|Ki1|N) (8)

    式中:Qi 为单滤筒实际处理气量,m3·s−1Qm 为滤筒平均处理气量,m3·s−1n是模型中所选取的滤筒总数[15]Ki maxKi min 分别为单滤筒最大及最小流量分配系数。其中,Ki 一般在1.0左右浮动;在实际工况中ΔK ≠0,一般ΔK 为±15%之内。ΔK 越趋向0,代表各滤筒过滤越平均效果越好,可默认各滤筒气量均匀分配[16]。而综合流量不均幅值ΔKζ 是指实际流量分配系数与理想流量分配系数的平均值。此参数综合考虑了各个滤筒的流量偏差[15],评价比较全面。综上所述,对于滤筒处理气量,要使Ki趋向1.0,ΔK趋向0。

    图7为除尘器A、B、C、D各滤筒的流量分配系数Ki图7表明,除尘器D各滤筒流量分配最为均匀,上下滤筒处理风量差异较小,流量分配系数Ki 基本在1.0附近波动。由表1可知,除尘器D滤筒在导流板和分离式挡板γ作用下,流量分配差值ΔK 仅为18.5%,综合流量不均幅值ΔKζ 为7.7%,最大正负偏差变化也最小,故可默认在该模型下滤筒气流分配均匀。除尘器A与除尘器C的流量分配系数Ki 总体趋势是一致的,但上层滤筒处理风量明显高于下层滤筒,流量分配差值ΔK均超过±15%,分别为32.7%与33.3%。由此可知,在除尘器A、C中,各滤筒并未充分发挥作用,这不符合滤筒气量均匀分配的标准。此外,上层滤筒流量较大,会加大滤筒的负荷,影响除尘器使用寿命。图7还表明,除尘器B中2号滤筒处理气量明显小于1号、3号滤筒。这是由于受挡板α的影响,气流冲击挡板后方向发生改变,导致1号、3号滤筒外侧气流速度较高,而2号滤筒处于挡板正下方,处理气量明显偏少。综合分析滤筒表面速度云图和各滤筒流量分配情况后发现,滤筒表面风速对其流量分配系数影响较大[6]。在合理条件下,通常滤筒表面风速越低、变化越小,则各滤筒间流量越均匀,更有利于发挥滤筒的过滤功能。

    图 7  除尘器滤筒流量分配系数
    Figure 7.  Flow distribution coefficients of filter cartridge of dust collector
    表 1  除尘器流量分配结果
    Table 1.  Flow distributions of the dust collector
    除尘器种类流量分配差值最大正偏差最大负偏差综合流量不均幅值
    除尘器A32.7%16.5%−14.2%13.3%
    除尘器B30.0%18.5%−11.5%10.6%
    除尘器C33.3%16.5%−14.8%14.2%
    除尘器D18.5%9.9%−8.6%7.7%
     | Show Table
    DownLoad: CSV

    除尘器的压降由多种因素导致,而压力损失是衡量除尘器运行成本的关键因素。压力损失大表明除尘器运行成本高,且影响除尘器的清灰周期及设备寿命。在入口管道处添加导流板和挡板后会使除尘器内部结构发生改变,相应的局部阻力也发生变化。这是因为边界改变区域会出现漩涡区和速度重新分布,使得局部阻力增大。同时,这些结构会加大流体之间,以及流体与除尘器之间的接触,使得摩擦阻力增加[17]。通常情况下,局部阻力影响较大。

    当风速一定时,除尘器的静压主要由其内部结构决定[18-20],可分析静压以较好地说明压降的状况。本除尘器为负压系统。以除尘器B为例,在入口、进风管道、导流板、挡板、滤筒、出口等位置设置12个有代表性的静压测点(见图8(a))。图8(b)为除尘器A、B、C、D分别在这些监测点的压力变化趋势。由图8(b)可知,4种除尘器压降变化趋势一致。除尘器A作为常规卧式滤筒除尘器,其压降变化最小;除尘器B、C、D在加入导流板和各种挡板后运行阻力增加,但变化幅度都较小。这说明添加导流板与挡板α、β、γ后,除尘器静压损失方面控制较好,并未使运行成本大幅增加,符合节能环保的要求。其中,安装了分离式挡板γ的除尘器D压力损失表现最好。

    图 8  除尘器B中不同监测点的静压变化
    Figure 8.  Changes of static pressure at different monitoring points in dust collector B

    1)运用Fluent等软件对常见的侧进气卧式滤筒除尘器进行CFD模拟,发现传统的卧式滤筒除尘器内部流场较为紊乱,易造成二次扬尘问题,滤筒气量分配不均,局部滤筒过早出现破损,可导致除尘器寿命衰减。

    2)对卧式滤筒除尘器内部进行优化,在入口添加导流板及不同类型的挡板,综合分析内部流场、滤筒表面风速、除尘器压降、滤筒流量分配均匀性等因素后可看出,添加了导流板与分离式挡板γ的除尘器D的除尘效果最优。

    3)除尘器内部结构对其流场状态起决定性作用。预先对除尘器进行气流组织模拟,得到最优的结构参数,可指导现实的工程设计。后续研究可重点关注模拟和实验测试的过滤效率及能耗等。

  • 图 1  菌株的形态特征(左)及显微镜下革兰氏染色照片(右)

    图 2  菌株LS1的16S rRNA系统发育树

    图 3  菌株LS1对不同浓度苯胺的降解情况

    图 4  不同外加碳源对苯胺降解的影响

    图 5  不同投加比例葡萄糖对苯胺降解的影响

  • [1] KEARMEY P C, KAUFMAN D D. Herbicides: chemisery, degradation and mode of action(2nd)[M]. New York: Mareel Dekker, 1975.
    [2] EMTIAZI G, SATARⅡ M, MAZAHERION F. The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water[J]. Water Research, 2001, 35(3): 1219 − 1224.
    [3] 陈家琦, 王浩. 水资源学概论[M]. 北京: 中国水利水电出版社, 1996: 12-28.
    [4] 张浩. 苯胺降解菌的筛选鉴定、降解特性以及共代谢研究[D].太原: 太原理工大学, 2012.
    [5] 康永. 废水中苯胺的降解处理技术进展[J]. 现代农药, 2010, 9(1): 15 − 17. doi: 10.3969/j.issn.1671-5284.2010.01.004
    [6] 顾锡慧. 大孔树脂吸附-生物再生法处理高盐苯胺/苯酚废水的研究[D]. 大连: 大连理工大学, 2008.
    [7] 金琼. 耐盐苯胺降解菌的分离及其苯胺降解特性研究[D]. 杭州: 浙江工业大学, 2012.
    [8] 曹向禹, 黄君礼, 刘金泉.二氧化氯氧化去除水中联苯胺类化合物的研究[C]//全国化工标准物质委员会二氧化氯专业委员会第一届学术研讨会论文集. 哈尔滨: 全国化工标准物质委员会, 2005.
    [9] 胡军, 周集体, 张爱丽, 等. 光催化-臭氧联用技术降解苯胺研究[J]. 大连理工大学学报, 2005, 45(1): 26 − 31. doi: 10.3321/j.issn:1000-8608.2005.01.007
    [10] 韩瑜. 低温苯胺降解菌的特性及生物强化作用[D]. 哈尔滨: 哈尔滨工业大学, 2007.
    [11] 韦朝海, 任源, 吴超飞. Ochrobactrum anthropi对苯胺的降解特性[J]. 环境科学, 1998, 19(5): 22 − 24. doi: 10.3321/j.issn:0250-3301.1998.05.006
    [12] 谢青, 董迎松, 易薇, 等. 一株苯胺降解菌的分离及其苯胺降解特性的研究[J]. 生物技术, 2009, 19(1): 55 − 58.
    [13] 王薇, 张逸飞, 顾挺, 等. 苯胺降解菌的分离鉴定及其降解特性研究[J]. 农业环境科学学报, 2008, 27(3): 964 − 969. doi: 10.3321/j.issn:1672-2043.2008.03.024
    [14] KAHUNG H Y, KUKOR J J, OH K H. Characterization of strain HY99, a novel microorganism capable of aerobie and anaerobic degradation of aniline[J]. FEMS Mierobiology Letters, 2000, 190(2): 215 − 221. doi: 10.1111/j.1574-6968.2000.tb09289.x
    [15] WANG D Z, ZHENG G Y, WANG S M, et al. Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge[J]. Journal of Environmental Sciences, 2011, 23(12): 2063 − 2068. doi: 10.1016/S1001-0742(10)60501-3
    [16] 吴守江, 刘姝, 张晓晖. 共代谢机制处理苯胺废水的研究[J]. 辽宁化工, 2012, 41(7): 675 − 677. doi: 10.3969/j.issn.1004-0935.2012.07.014
    [17] 李剑, 谢春娟. 废水中苯胺的好氧共代谢降解实验研究[J]. 环境工程学报, 2007, 1(6): 51 − 55. doi: 10.3969/j.issn.1673-9108.2007.06.012
    [18] 魏巍. 微生物水源扬水曝气强化原位生物脱氮特性与试验研究[D]. 西安: 西安建筑科技大学, 2011.
    [19] 国家环境保护总局. 水质苯胺类化合物的测定N-(1-萘基)乙二胺偶氮分光光度法: GB 11889—89[S].北京: 中国环境科学出版社, 1989.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 19.7 %DOWNLOAD: 19.7 %HTML全文: 64.1 %HTML全文: 64.1 %摘要: 16.2 %摘要: 16.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.7 %其他: 99.7 %北京: 0.3 %北京: 0.3 %其他北京Highcharts.com
图( 5)
计量
  • 文章访问数:  3216
  • HTML全文浏览数:  3216
  • PDF下载数:  24
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-11
  • 刊出日期:  2020-08-20
王镔, 蔡凯, 邵汝英, 赵振华, 王帅, 高峰, 蒋伟群. 苯胺高效降解菌的筛选及共代谢机制[J]. 环境保护科学, 2020, 46(4): 117-121. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.021
引用本文: 王镔, 蔡凯, 邵汝英, 赵振华, 王帅, 高峰, 蒋伟群. 苯胺高效降解菌的筛选及共代谢机制[J]. 环境保护科学, 2020, 46(4): 117-121. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.021
WANG Bin, CAI Kai, SHAO Ruying, ZHAO Zhenhua, WANG Shuai, GAO Feng, JIAGN Weiqun. Study on the Screening of Aniline-degrading Strain and Its Co-Metabolism Mechanism[J]. Environmental Protection Science, 2020, 46(4): 117-121. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.021
Citation: WANG Bin, CAI Kai, SHAO Ruying, ZHAO Zhenhua, WANG Shuai, GAO Feng, JIAGN Weiqun. Study on the Screening of Aniline-degrading Strain and Its Co-Metabolism Mechanism[J]. Environmental Protection Science, 2020, 46(4): 117-121. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.021

苯胺高效降解菌的筛选及共代谢机制

    通讯作者: 蔡 凯(1986 − ),男,博士。研究方向:微生物。E-mail:caikai@china-lason.com
    作者简介: 王 镔(1995 − ),女,本科。研究方向:生物工程。E-mail:wangbin@china-lason.com
  • 江苏蓝必盛化工环保股份有限公司,江苏 宜兴 214200

摘要: 本实验从苯胺废水中分离筛选出一株苯胺高效降解菌,并将其命名为LS1。经过形态特征和序列相似性对比,确定LS1为粪产碱杆菌。苯胺降解能力实验结果显示,苯胺浓度为1 000 mg/L以下,停留时间延长至72 h时,菌株LS1对苯胺的降解率可达到95%以上。苯胺最佳共代谢碳源选择的实验结果显示,以1 000 mg/L为苯胺实验浓度时,抗坏血酸对菌株LS1的降解率提高最为明显,其次是甲醇、葡萄糖、淀粉、蔗糖。鉴于对方便保存和经济方面的考虑,选取葡萄糖为最佳共代谢碳源,并通过实验证明最佳投加比为苯胺与葡萄糖COD为2∶1时。

English Abstract

  • 苯胺是一种具有强烈气味的微黄色或无色油状液体,主要用于制造药物、树脂、染料和橡胶硫化促进剂等[1],在印染、橡胶和农药等行业的废水中广泛存在,其浓度有时甚至高达上千毫克每升。然而废水中苯胺浓度高于100 mg/L时,对水生生物和人体健康就会造成严重威胁[2],所以苯胺或其衍生物等已被EPA和中国环保部门列入“优先污染物黑名单”[3-4],是如今环保行业水污染治理的重中之重[5]

    苯胺是一类难降解的有机物,现处理该物质的方法一般分为化学法、物理法和生物法。常用的物理处理方法有吸附法、萃取法和膜分离法。吸附法和膜分离法需经常更换吸附物质或膜,两者均成本较高[6];单用萃取法很难使苯胺与需处理的污水完全分离[7]。化学法包括氧化还原法、二氧化氯氧化法和臭氧氧化法等。曹向禹等[8]发现二氧化氯氧化法可去除90%以上的苯胺;胡军等[9]研究表明臭氧氧化法对苯胺的去除率达到96%,且苯胺浓度越高去除效果越显著。

    与上述方法相比,生物法操作简单、处理效率高、出水稳定并且处理费用低,也常被应用于处理苯胺[10]。以生物法处理苯胺的首要目标是筛选出苯胺的高效产酶菌。目前已有报道的苯胺高效降解菌有Ochrobactrum anthropic(人苍白杆菌)、Rhodococcuspyridinivorans(食吡啶红球菌)、Bacillus(杆菌)、Delfitiaacidovorans(食酸戴尔福特菌)、Pseudomonassp.(假单胞菌属)和Candida tropicalis(热带假丝酵母)等。Ochrobactrum anthropic在35 ℃、pH=6.5时可完全降解200~800 mg/L苯胺,降解速率为10 mg/(L·h)−1[11]Rhodococcuspyridinivorans最高可耐受5 g/L的苯胺,其降解苯胺的最适温度为30 ℃[12]Bacillus可在60 h内将1.5 g/L的苯胺降解完毕[13]Delfitiaacidovorans为兼性菌,在好氧条件下,30 h内可完全降解100 mg/L苯胺,在厌氧条件下需要7 d才可完全降解[14];当苯胺浓度为400 mg/L时,18 h后Candida tropicalis的降解率可达93%[15]

    在难降解物质的降解过程中,共代谢作用可使微生物酶活性增强,提高降解效率。共代谢是指微生物通过生长基质提供的碳源或氮源等营养,利用菌体内高效酶降解非生长基质(难降解物质)。吴守江等[16]通过实验发现当维生素C的含量与苯胺含量为1∶6时,苯胺降解速率最高,24 h内可将100 mg/L的苯胺降至0.05 mg/L。李剑等[17]研究了以苯胺为唯一碳源或氮源时,共代谢底物对苯胺降解的影响。结果表明,共代谢对苯胺的降解率有显著提高效果。在仅以苯胺为底物时,降解率低于10%,添加葡萄糖或蛋白胨进行共代谢后,菌株对苯胺的降解率提升至70%左右。

    文章从某化工厂的苯胺废水中筛选分离到一株苯胺高效降解菌,并对其最佳共代谢碳源及投加比例进行研究。

  • 无机盐培养基:NaCl 1 g/L,K2HPO4 1 g/L,KH2PO4 1 g/L,微量元素液 10 mL,pH=7.0~7.2;

    微量元素液:MgSO4 0.5 g/L,MnSO4 0.17 g/L,H3BO3 0.12 g/L,ZnSO4·7H2O 0.12 g/L,FeSO4·7H2O 0.3 g/L,自然pH;

    富集培养基:牛肉膏3 g/L,蛋白胨10 g/L,NaCl5 g/L,自然pH;

    筛选培养基:在无机盐培养基中添加不同浓度的苯胺作为唯一碳源和氮源;

    固体筛选培养基:在筛选培养基中加入1.5%~2%的琼脂,121 ℃灭菌30 min。

  • 向装有190 mL富集培养基的三角瓶中投加10 mL苯胺废水,并将置于150 r/min,30 ℃摇床中培养3 d。培养结束后,将10 mL富集菌液接种于90 mL的苯胺浓度为200 mg/L无机盐培养基中,并将其置于150 r/min,30 °C摇床中培养3 d。最后取1 mL驯化后的菌悬液于灭菌后的EP管中,用梯度稀释法将其分别稀释至10−1、10−2······10−8梯度,取10−2~10−8稀释液涂布在以苯胺为唯一碳源和氮源(苯胺浓度为200 mg/L)的无机盐培养基平板上后,置入30 ℃恒温培养箱中倒置过夜培养。

  • 取适当稀释的富集菌液涂布在富集培养基平板上,置入30 ℃恒温培养箱培养倒置过夜培养,72 h后观察菌落的大小、形状和颜色等特征,并对其进行革兰氏染色[18]

  • 委托上海生工生物工程有限公司使用16S rRNA序列测定分析法对菌株进行鉴定。

  • 以5%的接种量向苯胺浓度分别为200、400、600、800和1 000 mg/L的无机盐培养基中投加富集菌液,在150 r/min、30 ℃的摇床中振荡培养,每24 h测定无机盐培养基中的苯胺剩余浓度。

  • 以接种量5%向苯胺浓度为1 000 mg/L的无机盐培养基中接种富集后的菌液,同时向其中分别投加甲醇、抗坏血酸、葡萄糖、淀粉和蔗糖作为外加碳源(苯胺与外加碳源COD比为10∶1),最后将其置于150 r/min、30 ℃的摇床中振荡培养,每24 h测定无机盐培养基中的苯胺剩余浓度。

  • 以接种量5%向苯胺浓度为1 000 mg/L的无机盐培养基中接种富集后的菌液,同时向其中分别投加苯胺与共代谢碳源COD比为10∶1、5∶1、2∶1、1∶1和1∶2的外加碳源,将其置于150 r/min、30 ℃的摇床中振荡培养,每24 h测定无机盐培养基中的苯胺剩余浓度。

  • 苯胺的浓度测定方法参照《水质 苯胺类化合物的测定N-(1-萘基)乙二胺偶氮分光光度法(GB 11889—89)》[19]。苯胺的去除率按照公式(1)计算。

    式(1)中:c0为苯胺初始浓度,mg/L;c1为苯胺剩余浓度,mg/L。

  • 从废水中共筛出3株菌,选择对苯胺降解效果最佳的一株作为实验菌株,将其命名为LS1。将其在富集培养基平板上划线,倒置于30 ℃恒温培养箱中过夜培养48 h,见图1。菌落呈圆形,无色透明,表面光滑,边缘整齐,为革兰氏阴性菌。

  • 菌株LS1的16S rRNA基因PCR扩增序列长度为1473 bp,将该序列在NCBI的数据库中进行相似性比较,其与粪产碱杆菌(Alcaligenesfaecalis)的序列相似性为99%,确定该菌株LS1为Alcaligenesfaecalis。进行多重序列比对,并构建系统发育树,见图2

  • 为研究菌株LS1对苯胺的降解能力,以5%的接种量向苯胺浓度分别为200、400、600、800和1 000 mg/L的无机盐培养基中接种处于对数期的菌液,在150 r/min、30 ℃的摇床中振荡培养,每24 h测定无机盐培养基中的苯胺剩余浓度。不同停留时间对苯胺的降解情况见图3

    图3可见,当停留时间延长至72 h时,菌株LS1对苯胺的降解率均达到95%以上,苯胺剩余浓度均低于50 mg/L。苯胺浓度为200 mg/L时,48 h内即可被菌株LS1完全降解;苯胺浓度高于200 mg/L时,菌株LS1将苯胺降解至50 mg/L以下需72 h。苯胺浓度800 mg/L时,降解速率为23.49 mg/(L·h)−1,为苯胺最大降解速率。

  • 苯胺是高毒有机物,为降低高浓度苯胺对菌株LS1的活性抑制,在无机盐培养基中外加碳源,以期提高菌株LS1对苯胺的降解速率。在苯胺浓度为1 000 mg/L的无机盐培养基中分别投加甲醇、抗坏血酸、葡萄糖、淀粉、蔗糖作为外加碳源(苯胺与外加碳源COD比为10∶1),并接种5%富集菌株LS1,将其置于150 r/min、30 ℃的摇床中振荡培养,每24 h测定无机盐培养基中的苯胺剩余浓度。不同碳源对苯胺降解影响(72 h苯胺出水浓度),见图4

    图4可见,苯胺为唯一氮源和碳源(即对照)时,72 h后剩余苯胺浓度为168.5 mg/L,降解率为83.1%;投加了蔗糖的装置72 h后剩余苯胺浓度为213.7 mg/L,差于以苯胺为唯一碳氮源的装置;其中效果最好的是抗坏血酸,出水浓度为59.6 mg/L,其次是甲醇、葡萄糖、淀粉和蔗糖,都对苯胺的降解有促进作用。

  • 虽然在苯胺无机盐溶液中外加碳源可提高菌株LS1对苯胺的降解速率,但投加量过高或过低都会导致降解速率不升反降。为最大程度提高菌株LS1对苯胺的降解速率,对其共代谢碳源的最佳投加比例进行研究。由于抗坏血酸价格昂贵,甲醇不易保存,故选择葡萄糖为共代谢碳源进行实验。向苯胺浓度为1 000 mg/L的无机盐培养基中分别投加与苯胺COD比为10∶1、5∶1、2∶1、1∶1和1∶2的葡萄糖,并接种5%的富集菌液,将其置于150 r/min、30 ℃的摇床中振荡培养,每24 h测定无机盐培养基中的苯胺剩余浓度。投加不同比例葡萄糖对苯胺降解影响(72 h苯胺出水浓度),见图5

    图5可见,苯胺与葡萄糖COD比为2∶1时,72 h后菌株LS1对苯胺的降解率达到91.1%,是葡萄糖最佳投加比例;其次是苯胺与葡萄糖COD比为1∶1时,效果较佳,降解率达到72.9%。当氮碳源投加比为10∶1时,停留时间为72 h时可能碳源供应不足,降解速率减缓;而当氮碳源投加比为5∶1和1∶2时,虽小幅提高了降解率,但葡萄糖仍存在过低或过高的状况,降解率不理想。因此,苯胺与葡萄糖的COD最佳比为2∶1。

  • 此次实验从苯胺废水中分离出3株高效产酶菌,从中择选效果最好的一株作为实验菌株,并对其进行16S rRNA分子学鉴定、苯胺降解能力、最佳共代谢碳源和其投加比例的研究,得出以下结论。

    1)以无机盐培养基分离筛选出一株高效产酶菌,经过其形态特征和序列相似性比较,确定该菌株为粪产碱杆菌,并将其命名为LS1;

    2)当苯胺浓度为1 000 mg/L以下时,停留时间延长至72 h时,菌株LS1对苯胺的降解率均达到95%以上,苯胺剩余浓度均低于50 mg/L;

    3)在外加碳源的情况下,对菌株LS1降解苯胺促进效果最好的是抗坏血酸,72 h出水中苯胺剩余浓度为59.3 mg/L,其次是甲醇、葡萄糖、淀粉和蔗糖;

    4)由于抗坏血酸价格昂贵,甲醇不易保存,故选取葡萄糖为最佳投加比实验对象,以1 000 mg/L为苯胺实验浓度。当苯胺与葡萄糖COD比为2∶1,停留时间为72 h时,菌株LS1可降解91.1%的苯胺;其次是投加比为1∶1时,菌株LS1对苯胺的降解率达到72.9%。

    文中实验仅以粪产碱杆菌作为实验菌株且并未进行实际废水实验研究,后续研究时可进行多种文献记载的苯胺高效产酶菌对苯胺的降解能力对比,并对其代谢途径进行探索,还应将共代谢实验结果投加至实际工程中进行尝试。

参考文献 (19)

返回顶部

目录

/

返回文章
返回