-
斑石鲷(Oplegnathus punctatus)为石鲷科石鲷属的一种鱼类,具有重要的实用价值和市场前景[1]。我国在斑石鲷养殖方面起步较晚,目前,主要采用工厂化流水养殖,而采用循环水系统养殖斑石鲷的技术尚未被大规模推广。同时,对于斑石鲷循环水养殖系统中的各级生物滤池的水处理效果以及微生物群落对养殖过程中水质的动态响应的研究尚鲜见报道。生物滤池的水处理效果与微生物群落结构变化密切相关,当群落结构变化时,养殖环境水质会产生相应的变化[2]。在研究微生物群落结构的方法中,高通量测序技术近年来应用较为广泛,其测序手段更为先进,能够同时对几百万条核酸分子进行测序,可全面精准地分析不同领域中的细菌[3]。吴越等[4]运用16S rRNA高通量测序手段研究石斑鱼循环水养殖系统水体中微生物种群结构,发现从养殖塘到补氧池细菌多样性指数先降低后升高, 在生物滤池中达到最高值。张海耿等[3]运用高通量测序技术研究了生物流化床挂膜期和稳定期的细菌群落,发现流化床的硝化作用主要发生于床层下部。
为了解各级生物滤池的净水机制,得到优化生物滤池运行参数的基础数据,为斑石鲷循环水养殖系统的高效运作提供一定的技术支持,本研究运用高通量测序技术考察了斑石鲷循环水养殖系统生物滤池内部微生物群落结构的变化及其与水质变化的关系,结合水质指标检测,得到生物群落变化对水质的动态响应规律,为斑石鲷及其他同类海水名贵鱼循环水养殖污水处理提供参考。
斑石鲷循环水养殖系统生物滤池微生物群落对水质变化的动态响应
Dynamic response of microbial community to water quality change in biofilter for recirculating aquaculture system of Oplegnathus punctatus
-
摘要: 为了解斑石鲷循环水养殖系统生物滤池内部细菌群落组成及其净水机制,通过高通量测序方法,研究了不同时期各级生物滤池的细菌群落结构,分析了各级生物滤池的水质参数及水处理效果。结果表明:实验筛选出37 个门和513个细菌属,第3级生物滤池整体微生物群落丰富度和多样性均高于第1级和第2级生物滤池,第2级和第3级生物滤池微生物群落相似性最高。在门水平上,优势菌为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes);在属水平上,发现了起硝化作用的亚硝化单胞菌属Nitrosomonas和硝化螺菌属Nitrospira;实验还发现该系统生物滤池可能存在功能上的浪费现象。该系统的细菌群落结构有稳定的演替模式,生物膜微生物群落变化对水质有一定程度的动态响应,Muricauda、Maribacter等反硝化细菌对硝态氮浓度的变化作用不明显。
-
关键词:
- 高通量测序 /
- 生物滤池 /
- 微生物群落 /
- 动态响应 /
- 循环水养殖(RAS)
Abstract: In order to learn the bacterial community composition and water purification mechanism in biofilter for recirculating aquaculture system of Oplegnathus punctatus, the high-throughput sequencing method was used to study the evolution of bacterial community structure in the biofilters at different stages, and the water quality parameters and water treatment effects of these biofilters were also analyzed. The results showed that bacterial 37 phyla and 513 genera were screened out by the experiment. The overall microbial community richness and diversity of the third-stage biofilter were higher than those of the first- stage and second-stage biofilters. The microbial communities in the second-stage and third-stage biofilters had the highest similarity. At the phylum level, the dominant bacteria were Proteobacteria, Chloroflexi, Bacteroidetes. At the genus level, Nitrosomonas and Nitrospira were found to perform nitrifying. Morover, some functional waste phenonmena occurred in the biofilter of the system. The analysis indicated that a stable succession pattern existed in the bacterial community structure of this system, and a certain degree of dynamic response of the change of biofilm microbial community to water quality also happened. Denitrifying bacteria such as Muricauda and Maribacter had no obvious effect on the change of nitrate nitrogen concentration. -
表 1 生物滤池进出水水质参数
Table 1. Water qualities of inlet and outlet of biofilter
水样 温度/℃ 溶解氧/(mg·L−1) pH 总氨氮/(mg·L−1) 亚硝态氮/(mg·L−1) 硝态氮/(mg·L−1) 化学需氧量/(mg·L−1) 生物滤池进水 24.3±0.8 6.6±0.3 6.8±0.1 0.200±0.033 0.013±0.004 8.31±3.38 2.53±0.31 生物滤池出水 24.5±0.9 3.9±0.4 6.7±0.1 0.062±0.025 0.006±0.003 9.23±4.86 2.13±0.29 表 2 生物滤池平均水质参数的变化
Table 2. Variation of average water quality parameters in biological filter
运行时间/d 水温/℃ 溶解氧/(mg·L-1) pH 1 25.2±0.04c 5.48±0.3c 6.98±0.09b 16 24.3±0.05b 5.16±0.5b 6.78±0.01a 31 23±0.05a 4.76±0.3a 6.695±0.03a 46 25.0±0.07c 5.39±0.2c 6.925±0.03b 61 25.5±0.05c 5.51±0.5c 6.945±0.02b 注:同一行数据中上标小写字母不同表示差异有统计学意义(P<0.05)。 表 3 不同样品细菌群落的多样性
Table 3. Microbial community diversities of different samples
样品 原始序列数 优质序列数 有效OTUs/个 Chao1指数 Shannon指数 a1 56 748 51 424 1 158 1 587 6.73 a2 30 940 27 612 1 420 1 824 7.89 a3 62 697 57 086 1 177 1 639 5.90 a4 137 049 125 005 947 1 334 6.64 a5 144 151 128 486 1 023 1 540 6.91 b1 45 900 41 546 1 475 2 087 7.56 b2 59 097 56 324 1 015 1 458 5.13 b3 40 465 37 684 1 122 1 750 5.33 b4 95 513 87 816 1 254 1 647 7.31 b5 105 876 95 291 1 385 1 946 7.96 c1 75 758 67 721 1 749 2 282 8.44 c2 88 549 84 932 1 134 1 680 6.38 c3 92 781 84 490 1 293 1 831 6.82 c4 146 800 134 564 1 452 2 051 7.72 c5 164 541 151 549 1 528 1 983 7.92 -
[1] 王雨福. 斑石鲷(Oplegnathus punctatus)早期生长特征及消化系统发育的研究[D]. 北京: 中国科学院大学, 2015. [2] SUGITA H, NAKAMURA H, SHIMADA T. Microbial communities associated with filter materials in recirculating aquaculture systems of freshwater fish[J]. Aquaculture, 2005, 243(1/2/3/4): 403-409. [3] 张海耿, 宋红桥, 顾川川, 等. 基于高通量测序的流化床生物滤器细菌群落结构分析[J]. 环境科学, 2017, 38(8): 3330-3338. [4] 吴越, 马建忠, 郑伊诺, 等. 石斑鱼循环水养殖系统微生物群落结构[J]. 中国水产科学, 2017, 24(5): 1045-1054. [5] EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461. doi: 10.1093/bioinformatics/btq461 [6] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996. doi: 10.1038/nmeth.2604 [7] WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied Environmental Microbiology, 2007, 73(16): 5261-5267. doi: 10.1128/AEM.00062-07 [8] AMATO K R, YEOMAN C J, KENT A, et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes[J]. ISME Journal, 2013, 7(7): 1344-1353. doi: 10.1038/ismej.2013.16 [9] MAUGHAN H, WANG P W, DIAZ C J, et al. Analysis of the cystic fibrosis fung microbiota via serial illumina sequencing of bacterial 16S rRNA hypervariable regions[J]. Plos One, 2012, 7(10): e45791. doi: 10.1371/journal.pone.0045791 [10] FOUTS D E, SZPAKOWSKI S, PURUSHE J, et al. Next generation sequencing to define prokaryotic and fungaldiversity in the bovine rumen[J]. Plos One, 2012, 7(11): e48289. doi: 10.1371/journal.pone.0048289 [11] 王煜恒, 李庆, 陈军, 等. 不同溶氧浓度下非离子氨和亚硝酸盐对中华绒螯蟹的急性毒性[J]. 水产学杂志, 2019, 32(4): 38-44. doi: 10.3969/j.issn.1005-3832.2019.04.006 [12] 魏晓安, 陈丽, 陆少鸣, 等. 曝气生物滤池去除水中氨氮的实验研究[J]. 给水排水, 2007, 33(3): 25-27. [13] 张晓莹, 么宗利, 来琦芳, 等. 亚硝酸盐胁迫下异育银鲫呼吸代谢生理响应[J]. 海洋渔业, 2018, 40(2): 189-196. doi: 10.3969/j.issn.1004-2490.2018.02.008 [14] 钟惠舟, 申露威, 巢猛, 等. 滤料中微生物活性控制氨氮和亚硝酸盐氮的研究[J]. 城镇供水, 2018(3): 9-13. doi: 10.3969/j.issn.1002-8420.2018.03.005 [15] BOUWER H. Ground water recharge with sewage effluent[J]. Water Science & Technology, 1991, 23(10/11/12): 2099-2108. [16] 曹文平. 水力负荷对内环流蜂窝陶瓷生物反应器去除COD和氨氮的影响[J]. 徐州工程学院学报(自然科学版), 2012, 27(3): 73-77. [17] 秦宇, 郭劲松, 方芳, 等. 溶解氧及曝停比对单级自养脱氮系统微生物群落结构的影响[J]. 环境科学, 2009, 30(2): 183-188. [18] 王新为, 孔庆鑫, 金敏, 等. pH值与曝气对硝化细菌硝化作用的影响[J]. 解放军预防医学杂志, 2003, 21(5): 319-322. doi: 10.3969/j.issn.1001-5248.2003.05.003 [19] 钦颖英, 李道棠, 杨虹. 给水生物预处理反应器的细菌种群多样性和群落结构[J]. 应用与环境生物学报, 2007, 13(1): 104-107. doi: 10.3321/j.issn:1006-687X.2007.01.023 [20] 池振明. 微生物生态学[M]. 济南: 山东大学出版社, 1999. [21] 方精云, 沈泽昊, 唐志尧, 等. “中国山地植物物种多样性调查计划”及若干技术规范[J]. 生物多样性, 2004, 12(1): 5-9. doi: 10.3321/j.issn:1005-0094.2004.01.002 [22] 邓德波. 鳗鲡养殖循环水处理系统中细菌群落结构及动态变化[D]. 厦门: 集美大学, 2010. [23] ZHAN P, LIU W. Use of fluidized bed biofilter and immobilized Rhodopseudomonas palustris for ammonia removal and fish health maintenance in a recirculation aquaculture system[J]. Aquaculture Research, 2013, 44: 327-334. doi: 10.1111/j.1365-2109.2011.03038.x [24] RIJN J V, TAL Y, SCHREIER H J. Denitrification in recirculating systems: Theory and applications[J]. Aquacultural Engineering, 2006, 34(3): 364-376. doi: 10.1016/j.aquaeng.2005.04.004 [25] 邓征宇. 升流式两阶段曝气生物滤池处理性能的研究[D]. 长沙: 湖南大学, 2009.