-
由于人口增长、经济发展和产业结构的调整,我国不断增加的工农业、生活用水需求与严重的水污染之间的矛盾日益突出[1]。城镇生活污水处理与回用是缓解水资源短缺的重要手段之一[2]。研发出水水质优、运行成本低、二次污染小的新型污水处理技术,实现城镇生活污水的再生回用具有重要的现实意义。
膜生物反应器(membrane bioreactor, MBR)因其良好的出水水质、较低的污泥产量和紧凑的装置结构等优势成为污水处理及回用领域中最具发展潜力的技术之一[3]。MBR中的膜组件可截留悬浮物、细菌、大分子有机物和胶体等污染物,一方面,反应器内可以长时间保持较高的活性污泥浓度,有效去除水中的有机污染物;另一方面,与传统的活性污泥法相比,大分子有机物的停留时间延长,降解效果得到提高。膜对微生物的高效截留作用使污泥停留时间(sludge retention time, SRT)延长,较长的SRT会导致部分微生物进入内源呼吸,降低污泥活性,从而影响污染物去除效果[4]。适宜的电场强度有利于促进微生物新陈代谢,增强污泥活性,提高污染物去除率[5]。在实际应用中,对MBR施加适宜强度的电场会产生额外的能耗,增加运行成本。微生物燃料电池(microbial fuel cell, MFC)中的微生物可氧化污水中有机物(电子供体)来释放电子,进而产生电能,同时达到电能回收、污染物去除的目的[6],且其产生的微电场满足提高微生物活性的需求,可用于强化污染物去除。MA等[7]构建MFC耦合MBR装置处理生活污水,结果表明,反应器连续运行270 d,电流密度为84.2~568.4 mA·m−2,微生物群落更加多样化,COD去除率提高了35.3%。此外,在MFC的阴极处氧气会发生2电子还原反应产生H2O2,进一步提高有机物的去除率[8]。已有研究[8]表明,H2O2浓度与电场强度呈正相关关系,一般而言,电场强度越高,H2O2浓度也越高,越有利于污染物的降解。
在实际应用中,用作分隔MFC厌氧室和好氧室的离子交换膜成本较高[9],不利于放大运行。本研究采用折流板代替离子交换膜,将反应器分隔为厌氧池与好氧池,形成相对独立的厌氧和好氧环境,以自制的铜纳米线(Cu-nanowires, Cu-NWs)导电微滤膜[10]作为MBR的膜分离介质兼阴极材料,构建了自生电场膜生物反应器(spontaneous electric field MBR, SEF-MBR),以处理模拟废水。在电化学系统中,电极间距是影响电场强度的的重要因素之一。研究电场间距对系统出水COD、氮、磷浓度的影响,分析电场强化去除COD和脱氮除磷的机理,可降低MBR运行成本,推进MFC的实际应用。该技术可为低能耗污水处理MBR系统的进一步推广与应用提供参考。
电极间距对自生电场MBR去除污染物的影响
Effect of electrode distance on pollutant removal by the spontaneous electric field MBR
-
摘要: 膜生物反应器(MBR)已在污水处理领域得到广泛的应用,然而氮、磷难以达到排放要求。为了强化污染物去除效果,可将MBR与其他新型污水处理技术耦合,进一步降低出水污染物浓度。使用折流板将反应器分隔为厌氧池和好氧池,以石墨毡为阳极材料,以自制铜纳米线(Cu-NWs)导电微滤膜为阴极材料,构建自生电场膜生物反应器(SEF-MBR),用来处理模拟废水,研究了不同电极间距下自生电场强度的变化及污染物去除效果对自生电场强度变化的响应规律。结果表明:当电极间距从4 cm减小到2 cm时,自生电场强度提高了41.7%,出水化学需氧量(chemical oxygen demand, COD)、总氮(total nitrogen, TN)和总磷(total phosphorus, TP)的浓度分别降低了31.3%、24.2%和37.5%;电极间距对SEF-MRBs污泥的活性影响不大,但均高于对对照-MBR的影响;随电极间距减小,好氧池H2O2浓度提高了80.9%,从而促进了COD和
${{\rm{NH}}_4^ +}$ -N的降解,提高了微生物对正磷的吸收,从而降低了TP的含量。三维激发发射矩阵(EEM)结果显示,污水中类色氨酸的特征峰荧光强度降低了5.3%。而膜过滤作用去除有机物的贡献随自生电场强度的提高而降低。自生电场作用与膜过滤互补协同,可为优化出水水质提供双重保障。该技术可降低MBR运行成本,丰富MBR技术的理论成果,为城镇生活污水的回用提供参考。Abstract: Membrane bioreactor (MBR) has been widely used in the field of sewage treatment. However, nitrogen and phosphorus were difficult to comply with the criterion of Integrated Wastewater Discharge Standard. In order to enhance the pollutant removal effect, MBR could be coupled with other novel sewage treatment technologies to further reduce the pollutant concentration in the effluent. The reactor was separated into anaerobic and aerobic tanks by baffles. A novel spontaneous electric field membrane bioreactor (SEF-MBR) was established to treat synthetic wastewater by using graphite felt as anode and prepared Cu-nanowires (Cu-NWs) conductive microfiltration membrane as cathode. The variation of the spontaneous electric field intensity under different electrode distances and the response of pollutant removal effect to the change of the spontaneous electric field intensity were studied. The results showed that when the electrode distances decreased from 4 cm to 2 cm, the electric field intensity increased by 41.7%, and the chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) concentrations in the effluent decreases by 31.3%, 24.2% and 37.5%, respectively. The influences of electrode distance on the sludge activity of SEF-MBR sludge were negligible, but both higher than that of the Control MBR. With the decrease of electrode distance, the H2O2 concentration in aerobic tank increased by 80.9%, which promoted the degradation of COD and${\rm{NH}}_4^ + $ -N, and the uptake of orthophosphate by microorganisms, the TP content decreased accordingly. Three-dimensional excitation emission matrix (EEM) indicated that the characteristic peak fluorescence intensity of tryptophan in wastewater decreased by 5.3%. The contribution of membrane filtration to organic removal decreased with the increase of electric field intensity. The spontaneous electric field and membrane filtration were complementary and synergistic, which provided double guarantee for optimizing effluent quality. This technology can reduce the operating cost of MBR and enrich the theoretical achievements of MBR technology. -
表 1 不同电极间距下COD的去除效果
Table 1. COD removal effects at different electrode distances
反应器 进水及各工艺出水COD/(mg·L−1) 总去除率/% 进水 厌氧池出水 好氧池上清液 好氧池出水 SEF-MBR2 328.1±9.2 133.8±7.5 25.9±4.8 21.7±3.6 93.4±1.2 SEF-MBR4 328.1±9.2 135.3±16.2 39.2±3.0 31.6±2.4 90.4±0.7 对照-MBR 328.1±9.2 146.8±4.5 54.7±2.6 42.2±5.2 87.2±1.3 表 2 SEF-MBRs和对照-MBR中COD衡算及去除机理分析
Table 2. COD balance calculation and removal mechanism analysis in SEF-MBRs and Control-MBR
mg·d−1 反应器 厌氧池 好氧池 膜过滤消耗 系统总消耗 传统生物消耗 产电消耗 高活性消耗 传统生物消耗 电场消耗 SEF-MBR2 2 936.9 7.2 203.4 1 491.9 256.0 95.0 4 963.4 SEF-MBR4 2 936.9 3.7 182.6 1 491.9 64.8 150.1 4 803.0 对照-MBR 2 936.9 — — 1 491.9 — 202.5 4 631.3 注:—为无产电消耗和高活性消耗。 表 3 不同电极间距下
${{\bf{NH}}_4^ +} $ -N的去除效果Table 3.
${{\rm{NH}}_4^ +} $ -N removal effect at different electrode distances反应器 进水及各工艺出水COD/(mg·L−1) 总去除率/% 进水 厌氧池出水 好氧池上清液 好氧池出水 SEF-MBR2 35.4±2.3 17.8±1.9 0.1±0.1 — 100 SEF-MBR4 35.4±2.3 18.6±1.0 0.8±0.2 0.2±0.1 99.4±0.5 对照-MBR 35.4±2.3 21.4±1.8 1.1±0.4 0.6±0.2 98.3±0.4 注:—为SEF-MBR2出水未检测到 ${\rm{NH} }_4^ +$ -N浓度。表 4 不同电极间距下
${{\bf{NO}}_2^ - } $ -N和${{\bf{NO}}_3^ -} $ -N的去除效果Table 4.
${{\rm{NO}}_2^ - }$ -N and${{\rm{NO}}_3^ - } $ -N removal effects at different electrode distances污染物 反应器 进水及各工艺出水COD/(mg·L−1) 总去除率/% 进水 厌氧池出水 好氧池上清液 好氧池出水 ${\rm{NO}}_2^ - $ -NSEF-MBR2 0.02±0.01 0.11±0.03 0.01±0.01 — 100 SEF-MBR4 0.02±0.01 0.11±0.05 0.01 — 100 对照-MBR 0.02±0.01 0.21±0.16 0.01±0.01 — 100 ${\rm{NO}}_3^ - $ -NSEF-MBR2 1.23±0.40 1.29±0.64 7.18±1.24 5.74±1.47 — SEF-MBR4 1.23±0.40 1.58±0.44 9.85±0.88 7.65±1.22 — 对照-MBR 1.23±0.40 2.02±1.27 12.04±1.62 9.22±2.19 — 表 5 不同电极间距下TN的去除效果
Table 5. TN removal effect at different electrode distances
反应器 进水及各工艺出水COD/(mg·L−1) 总去除率/% 进水 厌氧池出水 好氧池上清液 好氧池出水 SEF-MBR2 39.3±3.1 26.2±2.5 8.7±1.3 7.5±0.9 81.0±1.6 SEF-MBR4 39.3±3.1 26.9±1.5 12.0±0.6 9.9±0.7 75.5±2.0 对照-MBR 39.3±3.1 28.2±2.9 14.7±2.2 12.0±3.0 69.6±5.6 表 6 不同电极间距下特征峰的荧光强度
Table 6. Intensities of the characteristic peaks at different electrode distances
水样 反应器 类色氨酸 类酪氨酸 (Ex/Em)/nm 强度 (Ex/Em)/nm 强度 进水 — 230.0/340.0 55.46 280.0/310.0 37.17 厌氧池出水 SEF-MBR2 230.0/340.0 36.02 280.0/310.0 29.57 SEF-MBR4 230.0/330.0 36.11 280.0/310.0 29.4 对照-MBR 230.0/340.0 40.84 280.0/310.0 32.14 好氧池上清液 SEF-MBR2 230.0/330.0 18.45 290.0/320.0 25.93 SEF-MBR4 230.0/340.0 20.41 280.0/310.0 22.84 对照-MBR 230.0/330.0 30.92 280.0/310.0 26.6 膜出水 SEF-MBR2 230.0/330.0 14.15 280.0/310.0 19.43 SEF-MBR4 230.0/340.0 15.76 290.0/320.0 22.64 对照-MBR 230.0/330.0 18.95 280.0/310.0 21.86 表 7 不同电极间距下TP的去除效果
Table 7. TP removal effect at different electrode distances
反应器 进水及各工艺出水COD/(mg·L−1) 总去除率/% 进水 厌氧池出水 好氧池上清液 好氧池出水 SEF-MBR2 3.0±0.3 2.2±0.3 0.7±0.1 0.5±0.04 80.8±0.9 SEF-MBR4 3.0±0.3 2.3±0.2 0.9±0.1 0.8±0.1 76.6±1.2 对照-MBR 3.0±0.3 2.5±0.3 1.3±0.1 1.1±0.1 67.2±6.3 表 8 好氧池中磷的形态及含量
Table 8. Species and content of phosphorus in the aerobic tank
mg·g−1 反应器 胞内 EPS 上清液 TP 正磷 TP 正磷 TP 正磷 SEF-MBR2 32.3±5.0 4.1±0.4 44.0±26.0 6.0±4.4 0.7±0.1 0.2±0.1 SEF-MBR4 22.3±9.1 2.7±1.6 25.7±0.1 3.9 0.9±0.1 0.3±0.2 对照-MBR 17.6±2.5 2.3±1.1 25.4±3.5 4.5±2.2 1.3±0.1 0.5±0.2 -
[1] UNESCO. Launch of united nations world water development report[R]. France: United Nations Educational, Scientific and Cultural Organization, UN, 2018. [2] ZHANG J, SATTI A, CHEN X, et al. Low-voltage electric field applied into MBR for fouling suppression: Performance and mechanisms[J]. Chemical Engineering Journal, 2015, 273: 223-230. doi: 10.1016/j.cej.2015.03.044 [3] VANYSACKER L, DECLERCK P, BILAD M R, et al. Biofouling on microfiltration membranes in MBRs: Role of membrane type and microbial community[J]. Journal of Membrane Science, 2014, 453(3): 394-401. [4] BROECK V D, DIERDONCK V, NIJSKENS P, et al. The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR)[J]. Journal of Membrane Science, 2012, 401-402(10): 48-55. [5] ASAI Y, MIYAHARA M, KOUZUMA A, et al. Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation[J]. Bioresources & Bioprocessing, 2017, 4(1): 30. [6] LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental Science & Technology, 2006, 38(7): 2281-2285. [7] MA J X, WANG Z W, HE D, et al. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment[J]. Water Research, 2015, 78: 98-110. doi: 10.1016/j.watres.2015.03.033 [8] WANG Y K, LI W W, SHENG G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. doi: 10.1016/j.watres.2013.06.058 [9] IEROPOULOS I, GREENMAN J, MELHUISH C. Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability[J]. International Journal of Energy Research, 2008, 32(13): 1228-1240. doi: 10.1002/er.1419 [10] YIN X F, LI X F, WANG X H, et al. A spontaneous electric field membrane bioreactor with the innovative Cu-nanowires conductive microfiltration membrane for membrane fouling mitigation and pollutant removal[J]. Water Environment Research, 2019, 1: 1-8. [11] HUANG L H, LI X F, REN Y P, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell[J]. RSC Advances, 2017, 34(7): 20824-20832. doi: 10.1039/C7RA01014A [12] LIU J D, LIU L F, GAO B, et al. Integration of microbial fuel cell with independent membrane cathode bioreactor for power generation, membrane fouling mitigation and wastewater treatment[J]. International Journal of Hydrogen Energy, 2014, 39(31): 17865-17872. doi: 10.1016/j.ijhydene.2014.08.123 [13] 国家环境保护总局. 水和废水检测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] VIANT M R, PINCETICH C A, HINTON D E, et al. Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics[J]. Aquatic Toxicology, 2006, 76(3/4): 329-342. doi: 10.1016/j.aquatox.2005.10.007 [15] LIU J M, WANG X H, WANG Z W, et al. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater[J]. Water Research, 2017, 110: 74-82. doi: 10.1016/j.watres.2016.12.012 [16] YANG S S, GUO W Q, CHEN Y D, et al. Simultaneous in-situ sludge reduction and nutrient removal in an A2MO-M system: Performances, mechanisms, and modeling with an extended ASM2d model[J]. Water Research, 2016, 88: 524-537. doi: 10.1016/j.watres.2015.09.046 [17] TAN X P, LIU Y J, YAN K H, et al. Differences in the response of soil dehydrogenase activity to Cd contamination are determined by the different substrates used for its determination[J]. Chemosphere, 2017, 169: 324-332. doi: 10.1016/j.chemosphere.2016.11.076 [18] WANG J, BI F H, NGO H H, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200: 420-425. doi: 10.1016/j.biortech.2015.10.042 [19] 吴金坤. PVDF的特性及其生产现状[J]. 化工新型材料, 1998(12): 10-13. [20] WANG L, WEI J F, ZHAO K Y, et al. Preparation and characterization of high-hydrophilic polyhydroxy functional PP hollow fiber membrane[J]. Materials Letters, 2015, 159: 189-192. doi: 10.1016/j.matlet.2015.06.089 [21] LIU J D, LIU L F, GAO B, et al. Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation[J]. Journal of Membrane Science, 2013, 430: 196-202. doi: 10.1016/j.memsci.2012.11.046 [22] WANG Y P, LIU X W, LI W W, et al. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment[J]. Applied Energy, 2012, 98: 230-235. doi: 10.1016/j.apenergy.2012.03.029 [23] ZHOU G W, ZHOU Y H, ZHOU G Q, et al. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation[J]. Bioresource Technology, 2015, 196: 648-655. doi: 10.1016/j.biortech.2015.08.032 [24] ZHANG G, ZHANG H, MA Y, et al. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation[J]. Enzyme and Microbial Technology, 2014, 60: 56-63. doi: 10.1016/j.enzmictec.2014.04.005 [25] SU X, TIAN Y, SUN Z, et al. Performance of a combined system of microbial fuel cell and membrane bioreactor: Wastewater treatment, sludge reduction, energy recovery and membrane fouling[J]. Biosensors & Bioelectronics, 2013, 49(22): 92-98. [26] LI H, TIAN Y, ZUO W, et al. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell[J]. Bioresource Technology, 2016, 205: 104-110. doi: 10.1016/j.biortech.2016.01.042 [27] YAO S, HE Y L, LI Y S, et al. Effect of the membrane electrode assemble design on the performance of single chamber microbial fuel cells[J]. Energy Procedia, 2014, 61: 1947-1951. doi: 10.1016/j.egypro.2014.12.249 [28] MALAMIS S, KATSOU E, TAKOPOULOS K, et al. Assessment of metal removal, biomass activity and RO concentrate treatment in an MBR-RO system[J]. Journal of Hazardous Materials, 2012, 38(1): 23-31. [29] THRASH J C, COATES J D. Review: Direct and indirect electrical stimulation of microbial metabolism[J]. Environmental Science & Technology, 2008, 42(11): 3921-3931. [30] SUNEETHI S, JOSEPH K. ANAMMOX process start up and stabilization with an anaerobic seed in anaerobic membrane bioreactor (AnMBR)[J]. Bioresource Technology, 2011, 102(19): 8860-8867. doi: 10.1016/j.biortech.2011.06.082 [31] EMMA F, SCALSCHI L, LLORENS E, et al. ${\rm{NH}}_4^ + $ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation[J]. Journal of Experimental Botany, 2015, 66(21): 6777-6790. doi: 10.1093/jxb/erv382[32] RODRIGUES C G. Influence of the concentration, temperature and electric field intensity on the electron mobility in n-doped zinc sulphide[J]. European Physical Journal B, 2009, 72(3): 405-408. doi: 10.1140/epjb/e2009-00372-3 [33] FLESZAR B, PO̵SZYŃSKA J. An attempt to define benzene and phenol electrochemical oxidation mechanism[J]. Electrochimica Acta, 1985, 30(1): 31-42. doi: 10.1016/0013-4686(85)80055-4 [34] BEMAN J M, POPP B N, FRANCIS C A. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California[J]. Isme Journal, 2008, 2(4): 429-441. doi: 10.1038/ismej.2007.118 [35] YANG S, YANG F, FU Z, et al. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal[J]. Bioresource Technology, 2009, 100(8): 2369-2374. doi: 10.1016/j.biortech.2008.11.022 [36] LI Y, HE Y, OHANDJA D, et al. Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR: Comparative study[J]. Bioresource Technology, 2008, 99(13): 5867-5872. doi: 10.1016/j.biortech.2007.10.001 [37] TANG B, SONG H, BIN L, et al. Determination of the profile of DO and its mass transferring coefficient in a biofilm reactor packed with semi-suspended bio-carriers[J]. Bioresource Technology, 2017, 241: 54-62. doi: 10.1016/j.biortech.2017.05.071 [38] XIONG J, FU D, SINGH R P, et al. Structural characteristics and development of the cake layer in a dynamic membrane bioreactor[J]. Separation and Purification Technology, 2016, 167: 88-96. doi: 10.1016/j.seppur.2016.04.040 [39] ROMERA-CASTILLO C, ÁLVAREZ-SALGADO X A, GALÍ M, et al. Combined effect of light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean)[J]. Marine Chemistry, 2013, 148: 44-51. doi: 10.1016/j.marchem.2012.10.004 [40] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3 [41] BURKE M, AUGENSTEIN L. A comparison of the effects of ultraviolet and ionizing radiations on trypsin activity and on its constituent amino acids[J]. Biochemical Journal, 1969, 114(3): 535-545. doi: 10.1042/bj1140535 [42] CORY R M, KAPLAN L A. Biological lability of streamwater fluorescent dissolved organic matter[J]. Limnology and Oceanography, 2012, 57(5): 1347-1360. doi: 10.4319/lo.2012.57.5.1347 [43] SWEENEY J A, ASHER S A. Tryptophan UV resonance Raman excitation profiles[J]. Journal of Physical Chemistry B, 1990, 94(12): 4784-4791. doi: 10.1021/j100375a009 [44] OBA T, MAENO Y, NAGAO M, et al. Cellular redox state protects acetaldehyde-induced alteration in cardiomyocyte function by modifying Ca2+ release from sarcoplasmic reticulum[J]. AJP Heart and Circulatory Physiology, 2008, 294(1): 121-133. doi: 10.1152/ajpheart.00520.2007 [45] ZHANG H L, FANG W, WANG Y P, et al. Phosphorus removal in an enhanced biological phosphorus removal process: Roles of extracellular polymeric substances[J]. Environmental Science & Technology, 2013, 47(20): 11482-11489. [46] WANG R D, PENG Y Z, CHENG Z L, et al. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system[J]. Bioresource Technology, 2014, 169: 307-312. doi: 10.1016/j.biortech.2014.06.040