-
氨氮、硝酸盐氮和亚硝酸盐氮是地下水中无机氮的主要存在形态,近年来,氮污染屡见报道,已成为地下水环境保护的重大问题之一[1-4]。《2018中国生态环境状况公报》[5]显示,全国纳入监测的2 833个浅层地下水监测点中水质超过《地下水质量标准》(GB/T 14848-2017)Ⅲ类标准的点位占76.1%,超标因子除锰、铁、硫酸盐等受水文地质化学背景影响的因子外,氨氮是最为突出的人为污染指标之一。生活垃圾填埋场是地下水氮污染的主要来源之一[6-7],尤其是早期建成的非正规垃圾填埋场,缺乏正规的防渗和渗滤液收集设施,含高浓度氨氮的渗滤液可经土壤层渗入地下水中,造成地下水氮污染。笔者对山地区域某沟谷型非正规生活垃圾填埋场开展的地下水污染调查结果显示,填埋区下游地下水中除氨氮存在一定程度超标外,未见硝酸盐氮和亚硝酸盐氮出现明显累积或超标现象,说明渗滤液中的氨氮在包气带-地下水间的迁移转化以迁移为主。
包气带不仅是地下水的天然屏障,也是地表输入的污染物与同地下水发生联系的重要地带,氨氮经过包气带向地下水迁移转化的过程中,会经过一系列的物理、化学及生物作用,其中,土壤吸附和解吸附是影响铵态氮在包气带中分布的重要环境行为[8-9]。本研究以非正规生活垃圾填埋场所在区域包气带土壤为研究对象,聚焦土壤对铵态氮的吸附解吸附行为,以水、中性盐、酸3类浸提剂将铵态氮区分为水溶态、可交换态和固定态3种赋存形态[10],分别探讨其吸附特征,揭示环境温度、pH、阳离子等要素对其吸附过程的影响,结合解吸附实验量化包气带土壤对铵态氮的固定能力,旨在深化对铵态氮在包气带土壤-地下水迁移规律的认识,为地下水氮污染控制提供参考。
非正规生活垃圾填埋场周边黄壤对铵态氮的吸附特征及其影响因素
Adsorption characteristics and influencing factors of ammonium nitrogen on yellow soil around informal landfill
-
摘要: 为探明某非正规垃圾填埋场周边包气带土壤对铵态氮向地下水迁移的影响,以包气带土壤为对象,通过批平衡实验研究了水溶态铵、可交换态铵、固定态铵和铵态氮总量在黄壤中的吸附动力学、热力学以及温度、pH、阳离子对吸附过程的影响,结合解吸附实验,探索了黄壤对铵态氮的固定能力。结果显示:不同形态铵吸附动力学特征相似,但吸附过程存在差异,达到吸附平衡的先后顺序依次为水溶态铵、固定态铵、可交换态铵;吸附热力学过程更符合Langmuir等温式,25 ℃时铵态氮理论最大吸附量为696.49 mg·kg−1,水溶态铵、可交换态铵、固定态铵最大吸附量分别为363.50、245.64、112.50 mg·kg−1;温度升高可加速吸附进程,抑制吸附量的增加;pH对吸附总量的影响不显著,可通过影响水溶态铵和可交换态铵吸附改变土壤中铵态氮的组成;阳离子存在可抑制水溶态铵和可交换态铵吸附,促进其解吸附。研究结果还表明,供试黄壤对铵态氮具有一定的固定作用,可有效阻止低浓度
${ {\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ 向地下水迁移,温度越低、pH越高、阳离子浓度越低,越有利于增强包气带对${ {\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ 的防护作用。Abstract: To investigate the influence of soil in vadose zone around an informal landfill on the migration of ammonium nitrogen from soil to groundwater, batch experiments were employed to characterize the adsorption thermodynamics and kinetics of water-soluble ammonium, exchangeable ammonium, fixed ammonium and total ammonium, as well as the influences of temperature, pH and coexisting cations. In combination with the desorption tests, the fix ability of yellow soil to ammonium was also determined. The results showed that adsorption kinetics properties of different forms of ammonium were similar, but the adsorption process was different, the order of adsorption rate and the time reaching adsorption equilibrium was following: water-soluble ammonium, fixed ammonium and the exchangeable ammonium. The thermodynamic process of ammonium adsorption conformed to the Langmuir model, and the maximum adsorption capacities of total ammonium, water soluble ammonium, exchangeable ammonium and fixed ammonium were 696.49 mg·kg−1, 363.50 mg·kg−1, 245.64 mg·kg−1 and 112.50 mg·kg−1 at 25 ℃, respectively. The increase of temperature could accelerate the adsorption process and inhibit the increase of adsorption capacity, lower temperature was favorable to the adsorption and fixation of ammonium nitrogen. pH showed no significant effect on the total amount of ammonium adsorption by yellow soil, which could change the composition of ammonium nitrogen in soil by affecting the adsorption of water-soluble ammonium and exchangeable ammonium. Addition of Ca2+ could significantly decrease the adsorption amount of water-soluble ammonium and exchangeable ammonium by competing the adsorption points in the soil, and promote the desorption correspondingly. The results indicated that the soil around the informal landfill could effectively prevent the migration of low concentration ammonia nitrogen to groundwater, and lower temperature, higher pH, and lower concentration of cations were beneficial to enhance the protection performance of vadose zone on ammonia nitrogen.-
Key words:
- yellow soil /
- ammonium forms /
- adsorption characteristics
-
表 1 不同形态铵提取方法
Table 1. Extraction methods of different ammonium species
铵形态 提取剂 水土比 单次提取时间/h 提取次数 测定方法 水溶态铵 H2O 1∶20 2 3 纳氏试剂光度法 可交换态铵 0.5 mol·L−1 KCl 1∶20 2 2 纳氏试剂光度法 固定态铵 5 mol·L−1 HF 1∶20 24 1 蒸馏滴定法 固定态铵 1 mol·L−1 HCl 1∶20 24 1 蒸馏滴定法 表 2 吸附动力学过程拟合结果
Table 2. Fitting results of adsorption kinetics
铵形态 Elovich方程qt=a+blnt Lagergren准二级速率方程qt= $ ktq_m^2$ /(1+ktqm)抛物线方程qt=a+kt1/2 a b R2 qm k R2 a k R2 水溶态铵 115.06 3.64 0.995 132.16 0.033 0.994 93.10 3.691 0.258 可交换态铵 63.10 6.65 0.995 90.43 0.019 0.929 53.30 3.864 0.536 固定态铵 36.60 2.95 0.974 50.47 0.029 0.995 31.32 1.747 0.384 吸附总量 214.76 13.24 0.998 270.36 0.010 0.983 177.71 9.302 0.374 表 3 等温吸附模型拟合结果
Table 3. Fitting results of adsorption isothermal curves
铵形态 Langmuir模型 Freundlich模型 Qm KL R2 KF n R2 水溶态铵 363.50 0.003 3 0.986 9.04 0.51 0.960 可交换态铵 245.64 0.002 1 0.994 2.93 0.60 0.970 固定态铵 112.50 0.005 1 0.974 5.32 0.43 0.918 吸附总量 696.49 0.003 8 0.995 21.16 0.49 0.963 -
[1] 潘田, 张幼宽. 太湖流域长兴县浅层地下水氮污染特征及影响因素研究[J]. 水文地质工程地质, 2013, 40(4): 7-12. [2] 王佳音, 张世涛, 王明玉, 等. 滇池流域大河周边地下水氮污染的时空分布特征及影响因素分析[J]. 中国科学院研究生院学报, 2013, 30(3): 339-346. [3] 杜新强, 方敏, 冶雪艳. 地下水“三氮”污染来源及其识别方法研究进展[J]. 环境科学, 2018, 39(11): 5266-5275. [4] 吕晓立, 刘景涛, 朱亮, 等. 兰州市地下水中“三氮”污染特征及成因[J]. 干旱区资源与环境, 2019, 33(1): 95-100. [5] 生态环境部. 2018中国生态环境状况公报[R]. 北京, 2019. [6] KJELDSEN P, CHRISTOPHERSEN M. Composition of leachate from old landfills in Denmark[J]. Waste Management & Research, 2001, 19(3): 249-256. [7] ROBINSON H D. A review of the composition of leachates from domestic wastes in landfill sites[J]. Ocular Surgery News, 1996, 238(2): 109-133. [8] YU X F, ZHANG Y X, ZOU Y C, et al. Adsorption and desorption of ammonium in wetland soils subject to freeze-thaw cycles[J]. Pedosphere, 2011, 21(2): 251-258. doi: 10.1016/S1002-0160(11)60125-2 [9] PHILLIPS I R. Nitrogen availability and sorption under alternating waterlogged and drying conditions[J]. Communications in Soil Science and Plant Analysis, 1999, 30(2): 1-20. [10] KOWALENKO C G, YU S. Solution, exchangeable and clay-fixed ammonium in south coast British Columbia soils[J]. Canadian Journal of Soil Science, 1996, 76(4): 473-483. doi: 10.4141/cjss96-059 [11] SILVA J A, BREMNER J M. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. Fixed ammonium[J]. Soil Science Society of America Journal, 1966, 30(5): 587-594. doi: 10.2136/sssaj1966.03615995003000050017x [12] 孙大志, 李绪谦, 潘晓峰, 等. 氨氮在土壤中的吸附/解吸动力学行为的研究[J]. 环境科学与技术, 2007, 30(8): 16-18. doi: 10.3969/j.issn.1003-6504.2007.08.006 [13] 张丽璇. 典型农业灌区土壤铵态氮吸附/解吸规律研究[D]. 郑州: 华北水利水电大学, 2019. [14] 李慧. 氨氮在黄土包气带中吸附解吸特征和影响因素探讨[D]. 西安: 长安大学, 2014. [15] 丛日环, 张丽, 鲁艳红, 等. 长期秸秆还田下土壤铵态氮的吸附解吸特征[J]. 植物营养与肥料学报, 2017, 23(2): 380-388. doi: 10.11674/zwyf.16307 [16] 温小乐, 夏立江, 徐亚萍, 等. 生活垃圾渗滤液对堆填区周边土壤铵态氮吸附能力的影响[J]. 农业环境科学学报, 2004, 23(3): 503-507. doi: 10.3321/j.issn:1672-2043.2004.03.021 [17] DAVARI M, RAHNEMAIE R, HOMAEE M. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils[J]. Environmental Science and Pollution Research, 2015, 22: 13-24. [18] ADEOGUN A I, BABU R B. One-step synthesized calcium phosphate-based material for the removal of alizarin S dye from aqueous solutions: Isothermal, dynamics, and thermodynamics studies[J]. Applied Nanoscience, 2015, 5: 1-13. doi: 10.1007/s13204-013-0286-x [19] LIU Z W, YANG X Y, HU F J, et al. Adsorption properties of rare earth soils on ammonium nitrogen[C]//Water Resource and Environment 2018 Organizing Committee. IOP Conference Series: Earth and Environmental Science, 2018: 012096. [20] 隋淑梅, 尹志刚, 姜利国, 等. 考虑地下水温度的土壤吸附氨氮动力学行为研究[J]. 水资源与水工程学报, 2016, 27(3): 217-220. doi: 10.11705/j.issn.1672-643X.2016.03.43 [21] 聂发辉, 李娟花, 刘占孟. 鄱阳湖湿地土壤中胡敏素对氨氮的吸附性能研究[J]. 环境工程, 2015, 33(10): 163-168. [22] OSBORNE G J. The extraction and definition of non-exchangeable or fixed ammonium in some soils from southern New South Wales[J]. Australian Journal of Soil Research, 1976, 14(3): 373-380. doi: 10.1071/SR9760373 [23] KITHOME M, PAUL J W, LAVKULICH L M, et al. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite[J]. Soil Science Society of America Journal, 1998, 62: 622-629. doi: 10.2136/sssaj1998.03615995006200030011x [24] 孙大志, 刘华中, 孟凡宇. 氨氮在土壤中吸附影响因素的研究[J]. 吉林化工学院学报, 2007, 24(4): 31-33. doi: 10.3969/j.issn.1007-2853.2007.04.011 [25] STEFFENS D, SPARKS D. Kinetics of nonexchangeable ammonium release from soils[J]. Soil Science Society of America Journal, 1997, 61(2): 455-462. doi: 10.2136/sssaj1997.03615995006100020012x [26] LUMBANRAJA J, EVANGELOU V P. Adsorption-desorption of potassium and ammonium at low cation concentrations in three Kentucky subsoils[J]. Soil Science, 1994, 157: 269-278. doi: 10.1097/00010694-199405000-00001 [27] 温东辉, 唐孝炎. 天然斜发沸石对溶液中 $ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ 的物化作用机理[J]. 中国环境科学, 2003, 23(5): 509-514. doi: 10.3321/j.issn:1000-6923.2003.05.014[28] BROWN J M, BARTHOLOMEW W V. Sorption of anhydrous ammonia by dry clay systems[J]. Soil Science Society of America Journal, 1962, 26: 258-262. doi: 10.2136/sssaj1962.03615995002600030020x [29] DONTSOVA K M, NORTON L D, JOHNSTON C T. Calcium and magnesium effects on ammonia adsorption by soil clays[J]. Soil Science Society of America Journal, 2005, 69: 1225-1232. doi: 10.2136/sssaj2004.0335 [30] 李学垣. 土壤化学[M]. 北京: 高等教育出版社, 2001. [31] NIGHTINGALE E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1958, 63(9): 566-567.