-
我国城市环境充斥着各种各样的恶臭气体,其中有部分气体是由随处可见的污水暂存空间中释放而来。污水暂存空间是指为污水提供短期存储的有限空间,比如露天厕所及城市地下轨道交通附属厕所的化粪坑、污水池,压力流排水管道提升泵站的污水池,以及各种用途的污水暂存池等。暂存空间污水中的微生物群落,将复杂有机物水解转化为小分子有机物(主要为VFA),并在产氢产乙酸菌的作用下转化为氢和乙酸,进一步在甲烷菌(MA)的作用下产生甲烷和二氧化碳[1]。此外,在硫酸盐存在的条件下,生物膜或沉积物中的硫酸盐还原菌(SRB)可将硫酸盐还原为硫化氢气体[2]。因此,生活污水成分比例较高的密闭空间会产生H2S、CH4、CO等有害气体[3-4]。目前,控制硫化氢释放的方法主要有投加铁盐[5]、氧化剂[6]和杀菌剂[7],还有利用“烟囱效应”的自然通风法。但是,由于经济成本及季节性因素的限制,这些控制措施并未被广泛采用。
标准大气压下,在30 ℃时,H2S在水中的饱和浓度大约3 580 mg·L−1;在20 ℃时,H2S在水中的饱和溶解度大约为5 000 mg·L−1。虽然H2S在水中的饱和溶解度较大,但经常检测到污水上方气相中有较高浓度的H2S,而此时污水中的H2S并未达到饱和溶解度。因此,可在污水表面覆盖一种物质使H2S传质阻力增加,从而充分利用饱和溶解度让H2S尽可能溶解,进而无法进入气相,称这种物质为掩蔽剂。此种做法的重要意义在于:对数量较多、面积较小的污水池,控制H2S的产生与释放措施成本较高;对环境要求较高但又不具备处理条件的污水池,可以使其中的硫化物流至集中处理处或适宜排放处。关于这方面的研究在石油开采领域较多。JACOBSON等[8]和KIM等[9]的研究表明,使用大豆油和精油可以使H2S处在油层下面,能显著降低排放到周围环境中的H2S。相比之下,菜籽油无效,但产生这种不同效果的原因目前尚不清楚[10-11]。
同时,污水中的H2S浓度到达一定值时,可以抑制相关微生物。REIS等[12]的研究表明:在低pH下,SRB生长期间会受到产生的未离解的乙酸的抑制作用;在较高的pH下,H2S的抑制作用占主导地位;在接近中性pH下,发酵主要受所产生的H2S的影响,并且在较小程度上受乙酸浓度的影响。REIS等[12]还发现,硫酸盐还原产生的H2S对SRB的毒性作用具有直接性和可逆性,当硫化氢浓度为547 mg·L−1时,可完全抑制SRB的生长。ABRAM等[13]的研究表明,H2S对未经驯化的产甲烷菌致害浓度为50 mg·L−1。抑制作用是由于H2S进入微生物细胞内,与细胞内色素中的铁和含铁物质结合,导致电子传递系统失活,进而破坏其中的蛋白质[14]。因此,当硫酸盐浓度过高时,硫酸盐还原菌和产甲烷菌均受到了抑制,但溶解性硫化物对硫酸盐还原菌的毒性阈值比产甲烷菌更高[15]。
由于大豆油和精油在水中会扩散和挥发,故有必要寻找一种更实用的掩蔽剂。本研究通过实验筛选出合适的H2S掩蔽剂,并探究了掩蔽剂成分的组成比例和平铺厚度对掩蔽效果的影响。此外,还考察了掩蔽剂对下部水体水质的影响情况,讨论了掩蔽剂下部水体中高浓度溶解态H2S对相关微生物的抑制作用。研究结果可为控制恶臭气体释放对所处环境的危害提供参考。
以液体硅胶与聚苯乙烯塑料泡沫小球为主体的掩蔽剂对污水暂存空间中恶臭气体的控制
Control of malodorous gases in the temporary storage space of sewage by the masking agent of liquid silicone and polystyrene plastic foam beads
-
摘要: 为控制污水暂存空间产生的恶臭气体对周围环境造成的不利影响,在污水表面覆盖以液体硅胶(LSR)与聚苯乙烯塑料泡沫小球(EPS)为主体的掩蔽剂,通过增加污水中H2S向气相扩散的传质阻力来控制恶臭气体从污水中的释放。分别探究了掩蔽剂的成分组成、配比和平铺厚度对掩蔽效果的影响,以及掩蔽剂对下部水体水质的影响。结果表明:以LSR+EPS为载体的掩蔽剂可以阻断H2S的释放,其中以半透明LSR+EPS为载体的掩蔽剂效果最好;当半透明LSR与EPS载体的质量比为15~40,平铺厚度为0.1~0.5 cm时,其使用效果最好;掩蔽剂下部水体硫化物的浓度随污水停留时间的增加而增大;若利用SRB产物(高浓度H2S)抑制微生物,尚需较长时间达到毒性阈值。该掩蔽剂增加了H2S的传质阻力,有助于控制恶臭气体释放对所处环境的危害。Abstract: In order to control the adverse effect on the surrounding environment and people from the malodorous gas generated in the temporary storage space of sewage, a masking agent mainly composed of liquid silicone (LSR) and polystyrene plastic foam beads (EPS) was used to cover the surface of the sewage. This could increase the mass transfer resistance of H2S in sewage to the gas phase and control the release of malodorous gas from sewage. In this study, the effects of the composition of the masking agent, the requirements for the ratio and the thickness of the layup, as well as the effect on the water quality of the lower water body, were determined. The results showed that a masking agent with the LSR + EPS carrier could prevent H2S release, and the best effect occurred for the masking agent with translucent LSR + EPS carrier. When the mass ratio of translucent LSR and EPS carriers was 15~40, the tiling thickness was 0.1~0.5 cm, the best prevention effect was observed. The concentration of sulfide in the lower part of waterbody below the masking agent increased with the extension of residence time of the sewage. It will take a long time to reach the toxicity threshold if the SRB product (high H2S concentration) was used to inhibit the microbes. The masking agent increases the mass transfer resistance of H2S and helps to control the harm to the environment caused by the release of malodorous gases.
-
表 1 掩蔽剂的性质
Table 1. Properties of the selected masking agent
名称 20 ℃密度/
(g·cm−3)闪点/℃ 基本性质 IPM 0.850 152 几乎不溶于水 芝麻油 0.919 255 不溶于水 乳白色LSR 1.020 无资料 强度较大 半透明LSR 无资料 抗撕拉 二甲基硅油 0.970~0.980 155 最高使用温度
不能超过250 ℃MSDS 0.835~0.855 300 不溶于水 -
[1] 邓丰, 王镇鑫, 许伟聪, 等. 城市生活污水排水管道内硫化氢和甲烷产生机制综述[J]. 广东化工, 2012, 39(16): 104-105. doi: 10.3969/j.issn.1007-1865.2012.16.056 [2] SUN J, HU S, SHARMA K R, et al. Impact of reduced water consumption on sulfide and methane production in rising main sewers[J]. Journal of Environmental Management, 2015, 154(4): 307-315. [3] 许小冰, 王怡, 王社平, 等. 城市排水管道中有害气体控制的国内外研究现状[J]. 中国给水排水, 2012, 28(14): 9-12. doi: 10.3969/j.issn.1000-4602.2012.14.003 [4] 王洪臣, 汪俊妍, 刘秀红, 等. 排水管道中硫酸盐还原菌与产甲烷菌的竞争与调控[J]. 环境工程学报, 2018, 12(7): 1853-1864. doi: 10.12030/j.cjee.201712184 [5] ZHANG L S, KELLER J, YUAN Z G, et al. Ferous salt demand for sulfide control in rising main sewers: Tests on a laboratory scale sewer system[J]. Journal of Environmental Engineering, 2010, 136(10): 1180-1187. doi: 10.1061/(ASCE)EE.1943-7870.0000258 [6] 周新云, 黄建洪, 宁平, 等. 城市污水排水系统中H2S控制措施的研究现状[J]. 环境科学与技术, 2013, 36(1): 74-78. doi: 10.3969/j.issn.1003-6504.2013.01.017 [7] OCHI T, KITAGAWA M, TANAKA S, et al. Controlling sulfide generation in force mains by air injection[J]. Water Science & Technology, 1998, 37(1): 87-95. [8] JACOBSON L D, JANNI K A, JOHNSTON L J, et al. Odor and gas reduction from sprinkling soybean oil in a pig nursery[C]//American Society of Agricultural and Biological Engineers. American Society of Agricultural and Biological Engineers Annual International Meeting, Orlando, Florida, 1998: 1-9. [9] KIM K Y, KO H J, KIM H T, et al. Odor reduction rate in the confinement pig building by spraying various pit additives[J]. Bioresource Technology, 2008, 99(17): 8464-8469. doi: 10.1016/j.biortech.2007.12.082 [10] GODBOUT S, LEMAY S P, JONCAS R, et al. Oil sprinkling and dietary manipulation to reduce odour and gas emissions from swine buildings-laboratory scale experiment[C]//American Society of Agricultural and Biological Engineers. Livestock Environment VI: Proceedings of the 6th International Symposium, Louisville, Kentucky, USA, 2001: 1-12. [11] OUELLETTE C, LEMAY S, GODBOUT S, et al. Oil application to reduce dust and odour emissions from swine buildings[C]//The Canadian Society for Bioengineering/La Société Canadienne de Génie Agroalimentaire et de Bioingénierie, Annual Conference, Edmonton, Alberta, 2006: 1-23. [12] REIS M A M, ALMEIDA J S, LEMOS P C, et al. Effect of hydrogen sulfide on growth of sulfate reducing bacteria[J]. Biotechnology and Bioengineering, 1992, 40(5): 593-600. doi: 10.1002/bit.260400506 [13] ABRAM J W, NEDWELL D B. Inhibition of methanogenesis by sulfate reducing bacteria competing for transferred hydrogen[J]. Archives of Microbiology, 1978, 117(1): 89-92. doi: 10.1007/BF00689356 [14] 任南琪, 王爱杰, 甄卫东. 厌氧处理构筑物中SRB的生态学[J]. 哈尔滨建筑大学学报, 2001, 34(1): 39-44. [15] KHANAL S K, HUANG J C. Effect of high influent sulfate on anaerobic wastewater treatment[J]. Water Environment Research, 2005, 77(7): 3037-3046. doi: 10.2175/106143005X73929