-
挥发性有机化合物(volatile organic compounds,VOCs)包括苯系物、烷烃、醇类、醛类、酮类和酯类等,主要来源于包装印刷、喷漆、橡胶、制鞋和石油化工等行业的废气排放以及汽车尾气和室内装修挥发等,VOCs对大气造成污染的同时也危害人类健康[1]。当前我国VOCs废气处置主要集中在末端治理,治理方法包括吸收法[2]、吸附法[3]、蓄热式热力氧化(RTO)[4]和催化燃烧(RCO)[5]等。吸收法与吸附法仅是物理转移了VOCs,还需要对吸收液和吸附剂进行二次处理;RTO技术因污染物被彻底氧化而具有高净化效率,但一次性成本投入大且运作费用高;催化燃烧技术因设备简单易控、燃烧温度低和二次污染少等优点而适合于小气量、中高浓度且无回收利用价值的VOCs废气处理[6-7],在工业VOCs废气治理中具有明显的竞争优势[8]。传统催化燃烧装置多采用电加热或添加燃料来维持催化剂床层温度,但电加热存在升降温缓慢、加热不均匀及加热棒易腐蚀等缺点。微波加热则无需加热棒类材料,它通过独立隔绝的微波装置将微波能直接传送至催化剂,在其表面实现电磁能向热能的转换,具有靶向加热、升降温迅速和加热均匀等特点;而且微波装置自动化控制程度高,微波功率连续可调[9]。因此,利用微波加热代替电加热应用于VOCs的催化燃烧引起了众多学者的关注。许多研究[10-13]证实了微波催化燃烧VOCs时具有热点效应、能耗低、功率可控和矿化率高等特点。与传统电加热相比,微波加热所需的床层温度更低[14],能耗仅为电加热的1/2[15]。
在微波催化燃烧技术中,由非贵金属(Cu、Mn、Co等)和稀土元素(Ce、La等)复合而成的金属氧化物不仅价格低廉、抗中毒能力强,而且具有良好的吸波性能,可形成高温热点,从而有助于污染物的氧化降解[16]。因此,该类催化活性组分的研究更受关注并具有良好的应用前景[17-18]。本课题组将Cu-Mn-Ce复合金属氧化物负载于颗粒态分子筛[19]和蜂窝状堇青石[15]上开展微波催化燃烧甲苯的特性研究,验证了Cu-Mn-Ce复合氧化物对甲苯具有良好的催化氧化活性。与粉末、颗粒态催化剂相比,蜂窝状催化剂因床层阻力小、机械强度高、耐高温以及不易变形等优点而适用于工业VOCs废气的治理。目前,市场上应用广泛的是蜂窝状堇青石载体,然而堇青石载体较差的吸附性和极差的吸波性限制着高活性吸波型催化剂的制备。因此,有必要对蜂窝状催化剂载体进行比选研究,以此推动微波催化燃烧技术的向前发展和早日市场应用,目前关于这方面的研究还鲜有报道。
本研究选取蜂窝状堇青石(MgO·2Al2O3·5SiO2)、莫来石(3Al2O3·2SiO2)和碳纤维锆铬刚玉(3%碳) 3种载体为研究对象,采用等体积浸渍法负载Cu-Mn-Ce活性组分制备催化剂;选取典型VOCs——甲苯为目标污染物,开展催化剂制备条件优化及微波催化燃烧甲苯的稳定性实验研究,并在催化剂表征及物性的测试基础上,对载体及催化剂进行综合评价,以期为高性能吸波型催化剂的制备提供参考。
催化剂载体的优化及微波催化燃烧甲苯特性
Catalyst carriers optimization and characteristics of microwave catalytic combustion of toluene
-
摘要: 为提高催化剂活性、增强催化剂稳定性,以蜂窝状堇青石、莫来石和碳纤维锆铬刚玉3种载体为研究对象,采用浸渍法制备了Cu-Mn-Ce负载型催化剂;在微波催化燃烧甲苯性能测试和催化剂表征的基础上,对载体及其负载催化剂进行了综合评价,以期为微波催化燃烧VOCs技术的应用寻找性能良好的催化剂载体。结果表明:Cu-Mn-Ce/碳纤维锆铬刚玉的催化活性与稳定性最好,Cu-Mn-Ce/莫来石次之,Cu-Mn-Ce/堇青石最差;在微波功率50 W、床层高度100 mm、进气量为0.12 m3·h−1和进气浓度为1 000 mg·m−3的参数条件下,3种优化制备的催化剂对甲苯的降解率分别为98%、98%和90%。Cu-Mn-Ce/碳纤维锆铬刚玉的优化制备条件为质量分数4.50%活性组分负载量、450 ℃焙烧温度和4~5 h焙烧时间,良好的吸波性能、一定的吸附能力、最多尖晶石活性组分的存在、碳纤维的协同作用以及刚玉载体良好的耐高温性是其高催化活性的保障。高温对催化剂的孔隙结构有显著影响;减小其比表面积和孔容,可导致活性组分颗粒在催化剂表面团聚,但却有利于活性组分晶体的生成,从而有助于污染物降解。Cu-Mn-Ce/堇青石的催化活性受活性组分负载量和焙烧时间的影响显著,虽然其对甲苯的降解效果较差,但低廉的价格使其具有一定的市场应用潜力。3种催化剂最佳制备条件的研究可为高性能吸波型催化剂的制备提供参考。Abstract: The selection of catalyst carriers is critical to improve the activity and stability of catalyst. In this study, three carriers of honeycomb cordierite, mullite, and carbon fiber zirconium chromium corundum were taken as research targets to prepare Cu-Mn-Ce supported catalysts by impregnation method. The carriers and catalysts were evaluated completely based on relative characterizations and microwave catalytic combustion of toluene in order to look for the carrier with good performance in the application of microwave catalytic combustion of volatile organic compounds (VOCs). The study showed that Cu-Mn-Ce/carbon fiber zirconium chromium corundum had the best catalytic activity and stability, then Cu-Mn-Ce/mullite followed and Cu-Mn-Ce/cordierite was the poorest one. At microwave power of 50 W, 100 mm catalyst height, airflow of 0.12 m3·h−1 and initial concentration of 1 000 mg·m−3, the degradation efficiencies of toluene by three catalysts that prepared under optimal parameters were 98%, 98% and 90%, respectively. The optimal preparation parameters of Cu-Mn-Ce/carbon fiber zirconium chromium corundum were following: active components loading amounts of 4.50%, calcination temperature of 450 ℃ and calcination time of 4~5 h, and its excellent catalytic capacity was due to good microwave-absorbing property, some adsorption capacity, most spinel active components, synergistic effect of carbon fiber and super thermal resistance ability of the carrier. High temperature had a great effect on the mesopore structure of the catalyst, the reduction of the specific surface area and pore volume could lead to the agglomeration of active particles on the surface of the catalyst, but it was conducive to new crystal yield of active components and the degradation of the pollutants. Loaded amounts of active components and calcination time had obvious effect on catalytic activity of Cu-Mn-Ce/cordierite, this catalyst had the poorest activity for toluene degradation, while its lowest preparation cost could imply a potential of market application. The study on the optimal preparation conditions of three catalysts provides reference for the preparation of high-performance catalyst with strong microwave-absorbing capacity in the future.
-
Key words:
- microwave catalytic combustion /
- toluene /
- carrier selection /
- catalytic activity /
- characterization
-
表 1 催化剂制备条件
Table 1. Variable of conditions in the process of catalyst preparation
m(Cu)∶m(Mn)∶m(Ce) Cu负载量/% 焙烧温度/℃ 焙烧时间/h 3∶3∶1 1.25 400 3 3∶3∶1 2.50 450 4 3∶3∶1 3.25 500 5 3∶3∶1 4.50 550 6 3∶3∶1 5.00 - - 表 2 3种催化剂比表面积和孔参数的变化
Table 2. Variation of specific surface area and pore parameters of three catalysts
催化剂 比表面积/(m2·g−1) 孔容/(cm3·g−1) 平均孔径/nm 新Cu-Mn-Ce/堇青石 2.799 0.004 5.076 使用后Cu-Mn-Ce/堇青石 0.369 0.001 5.462 新Cu-Mn-Ce/莫来石 5.036 0.011 8.646 使用后Cu-Mn-Ce/莫来石 0.483 0.001 10.780 新Cu-Mn-Ce/碳纤维锆铬刚玉 27.200 0.076 11.120 使用后Cu-Mn-Ce/碳纤维锆铬刚玉 9.602 0.020 8.235 表 3 载体及催化剂综合性能表
Table 3. Comprehensive characteristics of the carriers and catalysts
催化剂 吸水
率/%耐受
温度/℃价格/
(元·块−1)吸波性 吸附性 最佳负
载量/%最佳焙烧
温度/℃最佳焙烧
时间/h质量损
失率/%堇青石 24~29 1 250 30 极差 - - - - - 莫来石 17~19 1 350 50 极差 - - - - - 碳纤维锆铬刚玉 18~21 1 550 50 差 - - - - - Cu-Mn-Ce/堇青石 - - - 中 极差 3.25 450 4~5 4.11 Cu-Mn-Ce/莫来石 - - - 良 差 4.5 400 4~6 4.42 Cu-Mn-Ce/碳纤维锆铬刚玉 - - - 优 中 4.5 450 4~5 1.63 -
[1] 孔文杰, 凌志斌. 沸石转轮吸附-热空气脱附催化燃烧在VOCs治理方面的应用[J]. 绿色环保建材, 2019(1): 34. [2] QI M, WU X, ZHANG F, et al. Paraffin oil emulsions for the absorption of toluene gas[J]. Chemical Engineering & Technology, 2016, 39(8): 1438-1444. [3] ZHANG X, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338(15): 102-123. [4] 马元想, 陈年连. 利用蓄热式燃烧炉处理焦油加工废气[J]. 燃料与化工, 2018, 49(2): 51-53. [5] KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs): A review[J]. Atmospheric Environment, 2016, 140: 117-134. doi: 10.1016/j.atmosenv.2016.05.031 [6] 李援. 石化行业挥发性有机物污染治理技术探讨[J]. 炼油技术与工程, 2018, 48(7): 1-4. doi: 10.3969/j.issn.1002-106X.2018.07.001 [7] LIU X L, WANG J, ZENG J L, et al. Catalytic oxidation of toluene over a porous Co3O4-supported ruthenium catalyst[J]. RSC Advances, 2015, 5(64): 52066-52071. doi: 10.1039/C5RA07072D [8] 单文澜. 负载型金属氧化物催化剂上甲苯和二氯甲烷的催化氧化性能[D]. 长春: 吉林大学, 2017. [9] 杨子鸣, 王伯林, 沈平, 等. 微波空气加热技术在化工催化剂活化中的应用[J]. 电力需求侧管理, 2007, 9(4): 37-38. doi: 10.3969/j.issn.1009-1831.2007.04.015 [10] YI H, YANG Z, TANG X, et al. Promotion of low temperature oxidation of toluene vapor derived from the combination of microwave radiation and nano-size Co3O4[J]. Chemical Engineering Journal, 2018, 333: 554-563. doi: 10.1016/j.cej.2017.09.178 [11] 姚泽. 微波加热α-MnO2催化去除甲苯和臭氧的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [12] 吕丽, 庞杰, 宋华, 等. 微波协同霍加拉特剂催化氧化苯的影响因素[J]. 环境工程学报, 2014, 8(6): 2492-2496. [13] 修艺. 大型娱乐项目建设阶段挥发性有机物排放特征及控制研究[D]. 上海: 华东理工大学, 2016. [14] DOBOSZ J, ZAWADZKI M. Total oxidation of lean propane over α-Fe2O3 using microwaves as an energy source[J]. Reaction Kinetics Mechanisms & Catalysis, 2015, 114(1): 157-172. [15] BO L L, SUN S Y. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst[J]. Frontiers of Chemical Science and Engineering volume, 2019, 13(2): 385-392. doi: 10.1007/s11705-018-1738-3 [16] 吴波. 铜锰铈氧化物VOCs催化燃烧催化剂的制备与性能研究[D]. 成都: 西南交通大学, 2017. [17] 赵福真, 曾鹏晖, 张广宏, 等. Cu-Co/SBA-15催化剂的结构特征及其催化甲苯燃烧性能[J]. 催化学报, 2010, 31(3): 335-342. [18] FERRETTI F, RIBEIRO A P, ALEGRIA E C B D A, et al. Synergistic catalytic action of vanadia-titania composites towards the microwave-assisted benzoin oxidation[J]. Dalton Transactions, 2019, 48(10): 3198-3203. doi: 10.1039/C8DT04274H [19] 虎雪姣, 卜龙利, 梁欣欣, 等. Cu-Mn-Ce/分子筛催化剂吸附甲苯后的微波原位再生及床层温度分布探究[J]. 环境科学, 2015, 36(8): 3086-3093. [20] 李海英, 周勇, 王学海, 等. 酸处理条件对蜂窝状堇青石性能的影响[J]. 材料导报, 2013, 27(14): 137-140. [21] 刘艳春, 王兆春, 曾令可, 等. 堇青石蜂窝陶瓷的表面改性[J]. 分析测试学报, 2014, 33(9): 1044-1049. doi: 10.3969/j.issn.1004-4957.2014.09.010 [22] 王宽岭, 王学海, 刘忠生. Mn-Fe-Ce/Al2O3/堇青石催化剂低温NH3-SCR脱硝性能研究[J]. 当代化工, 2015, 44(9): 2057-2060. doi: 10.3969/j.issn.1671-0460.2015.09.001 [23] 张钰彩, 卜龙利, 王晓晖, 等. 微波加热下苯的催化氧化性能研究[J]. 环境科学, 2012, 33(8): 229-235. [24] 贺利娜, 卜龙利, 都琳, 等. 微波催化燃烧气态甲苯特性及床层温度分布[J]. 中国环境科学, 2019, 39(8): 3242-3248. doi: 10.3969/j.issn.1000-6923.2019.08.014 [25] HE C, YU Y, SHI J, et al. Mesostructured Cu-Mn-Ce-O composites with homogeneous bulk composition for chlorobenzene removal: Catalytic performance and microactivation course[J]. Materials Chemistry & Physics, 2015, 157: 87-100. [26] 李玮, 黄丽丽, 翟友存, 等. 新型Cu-Mn/TiO2和Cu-Mn/γ-Al2O3甲醛催化氧化催化剂的研制及活性[J]. 化工进展, 2015, 34(1): 127-132. [27] 肖瑞, 秦瑞香, 刘世成, 等. 整体式蜂窝陶瓷负载Cu-Mn尖晶石催化VOCs反应研究[J]. 山东化工, 2019, 48(15): 12-14. doi: 10.3969/j.issn.1008-021X.2019.15.006 [28] 朱海瀛. 催化剂成分对低温等离子体降解吸附态甲苯的影响[D]. 西安: 西安建筑科技大学, 2015. [29] 胡旭睿, 郭斌, 王欣. 碳化硅负载Cu-Mn-CeOx催化剂的制备及其微波场中诱导甲苯氧化分解[J]. 现代化工, 2018, 38(3): 133-137. [30] 雷娟, 王爽, 李晋平. 甲苯催化氧化催化剂的研究进展[J]. 太原理工大学学报, 2019, 50(4): 430-436. [31] 凌海志. CuMnOx/TiO2-Al2O3催化剂对VOCs催化燃烧性能的影响[D]. 西安: 西安建筑科技大学, 2010. [32] 张云, 郑化安, 苏艳敏, 等. 蜂窝陶瓷蓄热材料的研究现状[J]. 广州化工, 2014, 42(21): 15-17. doi: 10.3969/j.issn.1001-9677.2014.21.006