磁性纳米Fe3O4活化过硫酸盐降解水中磺胺甲恶唑

刘一清, 苏冰琴, 陶艳, 宋秀兰, 林昱廷, 芮创学. 磁性纳米Fe3O4活化过硫酸盐降解水中磺胺甲恶唑[J]. 环境工程学报, 2020, 14(9): 2515-2526. doi: 10.12030/j.cjee.201912023
引用本文: 刘一清, 苏冰琴, 陶艳, 宋秀兰, 林昱廷, 芮创学. 磁性纳米Fe3O4活化过硫酸盐降解水中磺胺甲恶唑[J]. 环境工程学报, 2020, 14(9): 2515-2526. doi: 10.12030/j.cjee.201912023
LIU Yiqing, SU Bingqin, TAO Yan, SONG Xiulan, LIN Yuting, RUI Chuangxue. Degradation of sulfamethoxazole in water by magnetic nano-Fe3O4 activated persulfate[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2515-2526. doi: 10.12030/j.cjee.201912023
Citation: LIU Yiqing, SU Bingqin, TAO Yan, SONG Xiulan, LIN Yuting, RUI Chuangxue. Degradation of sulfamethoxazole in water by magnetic nano-Fe3O4 activated persulfate[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2515-2526. doi: 10.12030/j.cjee.201912023

磁性纳米Fe3O4活化过硫酸盐降解水中磺胺甲恶唑

    作者简介: 刘一清(1995—),男,硕士研究生。研究方向:水污染控制。E-mail:1578844231@qq.com
    通讯作者: 苏冰琴(1972—),女,博士,副教授。研究方向:水污染控制等。E-mail:1251345607@qq.com
  • 基金项目:
    山西省自然科学基金资助项目(201801D121274,201601D102056)
  • 中图分类号: X703

Degradation of sulfamethoxazole in water by magnetic nano-Fe3O4 activated persulfate

    Corresponding author: SU Bingqin, 1251345607@qq.com
  • 摘要: 采用共沉淀法制备了具有较高催化活性的磁性纳米Fe3O4,并对其催化活化过硫酸盐(PS)降解磺胺甲恶唑(SMX)的性能进行了探究,考察了PS浓度、Fe3O4投加量、初始pH、共存阴离子(Cl-CO23NO3)以及腐殖酸(HA)对SMX降解效果的影响。SEM、EDS、FT-IR、XRD和BET表征结果表明,实验制备了较高纯度的Fe3O4纳米颗粒;重复性实验结果表明,Fe3O4具有良好的稳定性;催化降解SMX的实验结果表明,提高PS的浓度、增加Fe3O4的投加量均可提高SMX的降解率,且SMX的降解反应符合拟一级动力学。当PS浓度为0.5 mmol·L−1、Fe3O4投加量为1.2 g·L−1、初始pH=7.0时,Fe3O4活化PS降解SMX的效果最佳,在反应180 min后,SMX降解率达到93.3%。XPS光谱分析结果表明,反应过程中Fe2+主要参与了活化PS降解SMX的过程。乙醇(EtOH)和叔丁醇(TBA)自由基淬灭实验结果证明,在Fe3O4/PS体系中同时存在SO4和·OH,SO4对SMX的降解发挥了主导作用。以上结果为含磺胺甲恶唑废水的处理提供了催化剂选择,也可为过硫酸盐高级氧化体系中阴离子和腐殖酸对反应的影响效果提供参考。
  • 在众多的污水处理方法中,活性污泥法受到人们的广泛关注,活性污泥法作为重要的处理污水方法之一,具有很多优势. 但是随着国内外对污水治理的日益重视和城市污水处理厂的不断建设,大量的剩余污泥作为活性污泥法处理污水的副产物排出[1]. 污泥因其含水率高、含有大量病原体和微生物等有害生物、重金属及有机物含量高等特点,容易对环境造成二次污染[2],污泥的有效处理处置是亟待解决的重要问题. 污泥脱水是常规的污泥处理方法,在污泥脱水之前需要经过一定的调理使其满足后续脱水要求,所以,选择合适的污泥调理方法对改善污泥脱水性能尤为重要.

    过氧化钙(CaO2)作为一种热稳定性好的环境友好型材料,被广泛应用于农业种植、水产养殖、食品保存、医疗以及环境领域[3]. CaO2具有高能的过氧化物共价键,当CaO2与水接触时,能够缓慢释放过氧化氢(H2O2),同时还会生成羟基自由基、过氧化氢自由基等具有强氧化性的自由基(反应式见式(1—5))[4]. 近年来,因其具有稳定的氧化性,CaO2在污泥处理方面的应用成为一个新的研究热点. Wang 等研究发现,通过CaO2预处理污泥后,难降解有机物可以转化为可生物降解,促进污泥中可生物降解基质的水解和分解代谢,进而增强污泥厌氧消化效果[5]. 有研究表明,CaO2可以破解污泥EPS结构,释放污泥中的束缚水[6]. Wang等的研究表明,通过联合CaO2和微波预处理污泥,预处理后污泥的CST值相较于原泥下降52% [7]. 通过热处理与CaO2联合调理,可以提升污泥脱水性能[8].

    stringUtils.convertMath(!{formula.content}) (1)
    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)

    除了直接使用CaO2对目标物进行氧化,对CaO2进行活化也是一种常用的技术[8]. 有研究认为,通过微波活化CaO2,能促进CaO2产生更多的HO·和·O2-[7]. 通过过渡金属(Fe2+/Fe3+和Ag+)活化CaO2分解是常用的活化方法[9]. 利用Fe2+活化CaO2可以形成类芬顿反应,但如果不进行pH调节, Fe2+易于被氧化成Fe3+,限制了芬顿反应的效率. 有研究指出,利用含铁矿物对H2O2进行活化可以克服这一缺陷[10]. 黄铁矿(FeS2)是一种常见的脉石矿物,与矿床中的有价矿物伴生,可通过常规浮选方法轻松处理[11]. 最近有研究发现,利用黄铁矿活化CaO2降解磺胺,相比常规的芬顿反应,磺胺的氧化效率从30%提升至80%,(主要反应见式(6—9))[12]. Zhou等研究表明利用黄铁矿活化CaO2处理邻苯二甲酸二乙酯(DEP),78%的DEP在24 h内被降解[13]. 这些结果说明,通过黄铁矿活化CaO2能有效促进HO·产生,但目前尚未发现关于利用黄铁矿活化过氧化钙调理污泥的研究,其对污泥脱水性能的影响及机理尚未清晰,因此本研究利用黄铁矿-CaO2作为一种新型的芬顿法对污泥进行调理,以期达到破解EPS从而释放结合水的效果,并通过EPS性质及污泥絮体性质变化探究其对污泥脱水性能的影响机理.

    stringUtils.convertMath(!{formula.content}) (6)
    stringUtils.convertMath(!{formula.content}) (7)
    stringUtils.convertMath(!{formula.content}) (8)
    stringUtils.convertMath(!{formula.content}) (9)

    本研究对不同污泥样品进行EPS的提取,并对提取出来的EPS样品进行含量测定、三维荧光光谱检测,以表征调理前后污泥EPS性质变化. 同时对不同污泥样品的粒径分布进行检测,探究调理方法对污泥絮体团聚性能变化的影响.

    本研究中污泥取自于广州市某污水处理厂二沉池,污泥取至实验室后,先过20目筛,去除大颗粒杂质和毛发,之后置于冰箱在4 ℃下保存. CaO2采购于上海麦克林生化科技有限公司. 黄铁矿采购于佛山市大昌顺材料科技有限公司,黄铁矿在使用之前对其进行研磨,并过100目筛,利用0.1 mol·L−1HNO3 洗去表面杂质及氧化层,干燥后备用[14].

    为了探究不同调理条件对污泥脱水性能的影响,本研究对黄铁矿单独调理、CaO2单独调理以及两者复合调理污泥进行实验室规模的污泥脱水性能实验,250 mL的烧杯作为污泥调理容器,在调理容器中加入100 mL污泥样品进行实验. 利用重量法对污泥总固体(TS)进行测定[15]. 在黄铁矿单独调理实验中,设置6组不同黄铁矿调理剂量实验组,各组黄铁矿投加量分别为0、1、2、4、6 g·L−1. CaO2单独调理实验中,设置6组不同CaO2调理剂量实验组,各组CaO2投加量分别为10、30、50、80、100 mg·g−1 TS. 为了研究单独调理与复合调理以及不同复合调理方法之间的污泥脱水性能变化,设置了两组复合调理实验,第一组:CaO2投加量30 mg·g−1 TS,黄铁矿投加剂量1 g·L−1,第二组:CaO2投加量100 mg·g−1 TS,黄铁矿投加剂量1 g·L−1. 将单独调理和复合调理的实验组分别设置为A30、A100和B30、B100. 其中,A30为30 mg·g−1 TS CaO2单独调理,B30为30 mg·g−1 TS CaO2 +1 g·L−1黄铁矿复合调理,A100为100 mg·g−1 TS CaO2单独调理,B100为100 mg·g−1 TS CaO2 +1 g·L−1黄铁矿复合调理.

    本研究中利用毛细吸水时间(CST)作为评价污泥脱水性能的指标. CST利用CST测定仪进行测定(HDFC-10A),利用测定后CST数据进行标准化CST(SCST)计算[16],计算公式如下:

    stringUtils.convertMath(!{formula.content})

    其中,CSTa为调理后污泥样品的CST值,CST0为原泥的CST值.

    在本研究中,EPS根据其存在形态分类为溶解性EPS(S-EPS)、松散束缚EPS(LB-EPS)和紧密束缚EPS(TB-EPS)[17],本研究采用一种改进的热提取方式对EPS进行提取,具体方法参照文献[18]. EPS中的多糖含量利用硫酸-蒽酮法测定,蛋白质含量利用福林酚法进行测定[19].

    本研究中利用荧光光谱仪(Hitachi F-4600)对提取出的EPS进行3D-EEM的测定,光谱数据的发射波长(Em)以及激发波长(Ex)范围从220 nm到450 nm,采集间隔为10 nm. 光谱数据的利用5 nm的发射和激发狭缝带宽以及1500 nm·min−1的扫描速度进行收集.

    本研究利用激光粒度仪(Mastersize 3000)对污泥絮体粒径分布及絮体粒径D50D90值的测定. 其中,D50D90分别定义为颗粒直径的第50和第90百分位数[20].

    图1可见,单独投加CaO2之后,污泥SCST值随着CaO2的投加量的增加呈现先下降再上升的趋势,单独投加CaO2,投加量为30 mg·g−1 TS的实验组SCST值最低为0.61. 在投加剂量不高于80 mg·g−1 TS时,CaO2单独调理有利于提升脱水性能,但当CaO2投加量增加至100 mg·g−1 TS时,SCST值增加至1.39,说明过量的CaO2不仅不会提升污泥脱水性能,反而会使得原污泥脱水性能下降. 随着黄铁矿投加量增加,黄铁矿单独调理的SCST值也表现出先下降再上升的,最优黄铁矿单独调理剂量为1 g·L−1,SCST值为0.70. 但当投加量继续增加时,黄铁矿单独调理对污泥脱水性能的提升效果变弱,在投加量为6 g·L−1的单独调理下,SCST值为0.92,污泥脱水性能提升不明显. 这说明过量的过氧化钙投加,带来过强的氧化性能,会使得污泥的脱水性能下降,这一趋势与Chen等的研究结果相似,过强的氧化性可能会导致过量的EPS释放,降低污泥脱水性能[6]. 但在CaO2投加量为30 mg·g−1 TS复合调理时,虽然氧化性能更强,但污泥有更佳的脱水性能,SCST值下降至0.55,这说明利用黄铁矿活化过氧化钙对污泥进行复合调理能有效提升污泥的脱水性能.

    图 1  过氧化钙(a)、黄铁矿(b) 单独调理和复合调理(c)污泥样品的SCST值
    Figure 1.  SCST values of calcium peroxide (a), pyrite (b) single conditioning and composite conditioning (c) sludge samples

    不同结构的EPS对剩余污泥的脱水性能影响程度可能不同,Dai等认为S-EPS中有机物含量较高或LB-EPS中有机物含量较低,具有较好的脱水性能[21]. He等指出污泥脱水性与S-EPS中有机物浓度呈正相关,而与LB-EPS中生物聚合物含量呈负相关[22]. 剩余污泥脱水性能除了和EPS的组成结构有关,还与EPS的组成成分相关,Wei等研究发现,污泥脱水性能与EPS中蛋白质含量呈负相关性[23],而且蛋白质含量是决定污泥脱水性能的关键因素[24],为了进一步探究污泥调理过程中污泥性质的变化,本研究对提取出的EPS样品进行蛋白质和多糖含量的测定. CaO2调理后污泥EPS结构发生明显的变化(图2a),在30 mg·g−1 TS的CaO2投加量下,S-EPS蛋白质含量略有下降,而内层EPS(LB-EPS、TB-EPS)蛋白质含量增加,相较于单独调理,CaO2/黄铁矿复合调理由于其更强的氧化性能,在CaO2投加量为30 mg·g−1 TS时的复合调理污泥样品中,内层EPS蛋白质含量增加幅度更大. 当CaO2投加量增加至100 mg·g−1 TS后,所有层EPS中蛋白质含量均增加,与低CaO2投加量相似,复合调理因其更强的氧化性,内部EPS含量较单独调理增加更多. 调理后污泥的总EPS(T-EPS)蛋白质含量均增加,高剂量CaO2导致更多的蛋白质释放,而复合调理对蛋白质含量的提升高于单独调理.

    图 2  原泥以及调理后污泥EPS中蛋白质含量(a),多糖(b)蛋白质-多糖含量比率(c)变化
    Figure 2.  The concentration of protein (a), polysaccharide (b) and the ratio of protein to polysaccharide (c) in EPS of raw sludge and conditioned sludge

    调理前后EPS多糖含量的变化见图2b,随着CaO2投加量增加,内外层EPS多糖含量均增加. 值得注意的是,高CaO2投加剂量的复合调理样品中,S-EPS和LB-EPS的多糖含量较单独调理均下降. T-EPS中多糖的变化趋势与蛋白质不同,T-EPS中多糖含量随着氧化性能的增强表现出先增加后下降的趋势,这可能是低CaO2剂量调理下,EPS结构被破解,内层EPS释放至外层. 但在高剂量CaO2的复合调理下,多糖类物质可能被分解为更小的有机分子或直接被矿化,导致T-EPS中多糖含量下降.

    有研究认为,LB-EPS中蛋白质/多糖比率(PN/PS)与脱水性有负相关性[25]. 本实验中,B30样品LB-EPS的PN/PS最小(图2c),且无论高剂量或低剂量,在同一剂量下复合调理得到的LB-EPS样品,其PN/PS值均小于单独调理. 但当用高剂量过氧化钙对污泥进行调理后,LB-EPS中的PN/PS上升,污泥脱水性能下降. 但本实验发现,高剂量的过氧化钙调理后虽然PN/PS上升,但仍然低于原泥,这与脱水性能变化不一致,这是因为污泥脱水性能的变化影响十分复杂,并不能只靠EPS中的PN/PS进行指示.

    从EPS含量变化可以看出,使用CaO2单独调理以及CaO2/黄铁矿复合调理都可以改变EPS原有结构,破解EPS结构. 在同一CaO2投加量下,复合调理得到的EPS破解效果更加明显. 结合污泥脱水结果分析,污泥调理方法在一定范围内对EPS结构进行破解,可能有利于污泥脱水性能的提升,但对EPS结构的过度破解可能会使得大量有机质的释放,进而使得污泥脱水性能下降.

    为了更深入地了解调理前后以及各调理方法对各层EPS的性质以及其含量的影响,本研究利用三维荧光光谱对各层EPS的有机成分进行表征,各样品EPS的三维荧光光谱见图3. 本研究中EPS的荧光光谱峰主要有两个,分别为A峰(Em/Ex:340 nm/225 nm)和B峰(Em/Ex:350 nm/280 nm). 根据Wen等提出的三维荧光光谱分区方法,A峰位于区域Ⅱ,归类为芳香类蛋白物质,B峰位于区域Ⅳ,归类为色氨酸和类蛋白物质[26].

    图 3  原泥(a)、A30(b)、B30(c)、A100(d)、B100(e)EPS样品三维荧光光谱图
    Figure 3.  3D-EEM spectra of EPS samples of raw sludge(a); A30(b); B30(c); A100(d); B100(e)

    A峰在原泥S-EPS中强度较低,但经过调理后,A峰强度上升,芳香类蛋白含量增加. 在A100中,S-EPS中的A峰出现最强的荧光强度,说明在此调理方法下内层EPS和胞内的芳香类蛋白向外释放,聚集在外层EPS中. 但经过氧化性更强的B100调理后,A峰强度下降,这可能是由于芳香类蛋白的分解导致含量下降. S-EPS中B峰的荧光强度在A30和B30调理下均下降,当CaO2投加量增加后,S-EPS的B峰强度增加,S-EPS中B峰最强峰强度出现在B100调理下. 原泥中LB-EPS中A峰和B峰强度稍强于S-EPS,经过预处理后污泥LB-EPS中A、B峰强度增加,且两峰强度的增加幅度明显大于S-EPS. 不同调理方法对LB-EPS的荧光光谱图影响与S-EPS相似,A、B峰在B100调理下均出现最强荧光强度. 原泥TB-EPS中的芳香类蛋白和色氨酸含量明显高于S-EPS和LB-EPS,这一结果与EPS含量一致. 不同调理手段下B峰强度在TB-EPS中的变化与在S-EPS、LB-EPS中的变化相似,B峰在A100调理下出现最大荧光强度,随后下降. 但与 S-EPS、LB-EPS 变化趋势不一致的是,TB-EPS 中 A 峰的最大荧光强度出现在 B30 调理下, 这一结果说明,芳香类蛋白比色氨酸更易于从胞内和内层 EPS 释放至胞外和外层 EPS.

    荧光峰强度变化趋势可以说明,在一定条件下,随着调理方法的氧化性的增强,EPS中物质被分解,EPS结构破解程度增加,胞内物质向TB-EPS转移,同时TB-EPS中的物质向外层的LB-EPS和S-EPS转移. 当调理方法氧化性能过强,各层EPS中物质被分解甚至矿化,导致各层EPS中荧光峰强度下降,同时还发现,各层EPS中不同物质对于不同调理方法的变化趋势并不完全相同.

    图4a可以看出,经过调理后的污泥絮体粒径分布曲线均向左移动,同时图4b中看到原泥有最大的D90以及D50值,调理后污泥的D50以及D90均有明显的下降,说明调理后污泥的絮体粒径下降. 这是由于强氧化性的调理方法将EPS结构破解后,会使得污泥絮体分解,形成尺寸更小的絮体[27]. 随着调理方法的氧化性能增强,污泥的粒径分布曲线左移程度越大,且有更小的D50D90值,可以认为氧化性能越强的调理方法能够更高效、更彻底地破坏原有污泥絮体结构,使得原有稳定的大颗粒絮体失稳进而形成众多小尺寸的絮体. 这一现象与Ling等研究结果一致,通过对污泥絮体的破解,可以有效地释放束缚水,提升污泥脱水性能[28]. 在本研究中,在同一CaO2投加量下,复合调理后的污泥样品相较于单独调理后的污泥样品有更小的粒径,这也再次说明本研究中复合调理有更高效的EPS破解性能,但高剂量的过氧化钙投加量可能会过度破解絮体结构,过度破解絮体使得絮体粒径下降可能会增加小颗粒污泥对过滤介质的堵塞作用,降低污泥的脱水性能[29].

    图 4  原泥以及调理后污泥样品的絮体粒径分布(a)和粒径 D50、D90 变化(b)
    Figure 4.  Floc particle size change distribution (a) and particle size D50, D90 change (b) of raw sludge and conditioned sludge samples

    本研究提出一种利用黄铁矿活化CaO2的污泥调理技术,结果表明,单独利用CaO2或者黄铁矿对污泥进行调理,随着CaO2或黄铁矿投加量的增加,污泥脱水性能呈现先上升后下降的趋势,在30 mg·g−1 TS CaO2和1 g·L−1黄铁矿的投加量下分别得到过氧化钙和黄铁矿的最优单独调理效果,同时发现,当CaO2和黄铁矿投加量为30 mg·g−1 TS和1g L−1时,复合调理后的污泥样品脱水性能优于单独调理. 但实现污泥脱水性能的提升需要对调理药剂投加量进行控制,过多的药剂投加可能会带来污泥脱水性能的下降.

  • 图 1  SEM和EDS表征

    Figure 1.  Characterization by SEM and EDS

    图 2  Fe3O4的FT-IR图谱

    Figure 2.  FT-IR spectra of Fe3O4

    图 3  Fe3O4的XRD图

    Figure 3.  XRD patterns of Fe3O4

    图 4  Fe3O4的吸附-脱附等温曲线

    Figure 4.  Adsorption-desorption isotherm curve of Fe3O4

    图 5  PS浓度对SMX降解率的影响

    Figure 5.  Effects of PS concentration on SMX degradation

    图 6  Fe3O4投加量对SMX降解率的影响

    Figure 6.  Effect of Fe3O4 dosage on SMX degradation

    图 7  初始pH对SMX降解率的影响

    Figure 7.  Effect of initial pH value on SMX degradation

    图 8  反应过程中pH随时间的变化

    Figure 8.  Changes of pH with time during the reaction

    图 9  Cl-对SMX降解率的影响

    Figure 9.  Effect of Cl- on SMX degradation

    图 10  CO23对SMX降解率的影响

    Figure 10.  Effect of CO23 on SMX degradation

    图 11  NO3对SMX降解的影响

    Figure 11.  Effect of NO3 on SMX degradation

    图 12  HA浓度对SMX降解率的影响

    Figure 12.  Effect of concentration of HA on SMX degradation

    图 13  不同体系下TOC的降解率

    Figure 13.  TOC removal rate of different systems

    图 14  TBA和EtOH对SMX降解的影响

    Figure 14.  Effect of TBA and EtOH on degradation of SMX

    图 15  可能发生的SMX降解路径

    Figure 15.  Possible pathways for SMX degradation

    图 16  反应前后Fe3O4的XPS光谱

    Figure 16.  XPS spectra of the fresh and reacted Fe3O4

    图 17  Fe3O4的稳定性和重复利用性

    Figure 17.  Stability and reusability of Fe3O4

  • [1] 司晓薇. 环境中磺胺类药物的残留、形态转化及生态毒性研究[D]. 新乡: 河南师范大学, 2016.
    [2] 李珂, 刘振鸿, 钱雅洁, 等. 基于硫酸根自由基的高级氧化对头孢氨苄的降解特性[J]. 环境工程学报, 2019, 13(1): 40-48. doi: 10.12030/j.cjee.201808012
    [3] 周明毅, 魏琛, 盛贵尚, 等. 紫外活化过硫酸钠降解水中三唑酮的效能[J]. 环境工程学报, 2019, 13(4): 810-817. doi: 10.12030/j.cjee.201810017
    [4] 闻长虹, 毛顺, 郑丽英, 等. 抗生素磺胺甲恶唑在模拟太阳光下的光解[J]. 湖南文理学院学报(自然科学版), 2015, 27(2): 47-50.
    [5] 钟振兴, 张远, 徐建, 等. 磺胺甲恶唑在沉积物中的降解行为研究[J]. 农业环境科学学报, 2012, 31(4): 819-825.
    [6] PADHYE L P, YAO H, KUNG'U F T, et al. Year-long evaluation on the occurrence and fate of pharmaceuticals personal care products, andendocrine disrupting chemicals in an urban drinking water treatment plant[J]. Water Research, 2014, 51(6): 266-276.
    [7] YU H, GE P, CHEN J W, et al. The degradation mechanism of sulfamethoxazole under ozonation: A DFT study[J]. Environmental Science-Processes & Impacts, 2017, 19(3): 379-387.
    [8] 银仁莉. 超声联合臭氧技术降解磺胺甲恶唑的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [9] 苏荣军, 韩思宇. Fenton试剂处理磺胺甲恶唑制药废水的研究[J]. 哈尔滨商业大学学报(自然科学版), 2015, 31(2): 183-186.
    [10] 赵天亮, 吴文卫, 游俏, 等. 磺胺甲恶唑光降解影响因素研究[J]. 环境科学导刊, 2016, 35(6): 78-83. doi: 10.3969/j.issn.1673-9655.2016.06.018
    [11] 安继斌, 夏春秋, 陈红宇, 等. UVA/Fe3O4活化过硫酸盐降解阿特拉津[J]. 环境科学研究, 2018, 31(1): 130-135.
    [12] 杨焱明, 冷艳秋, 林欣, 等. Fe3O4/石墨烯活化过硫酸盐降解罗丹明B废水的研究[J]. 环境科学与管理, 2014, 39(4): 80-84. doi: 10.3969/j.issn.1673-1212.2014.04.020
    [13] 许志至, 徐岗, 蒋素英, 等. 过硫酸钠与双氧水催化降解印染废水的实验研究[J]. 工业水处理, 2016, 36(5): 32-35. doi: 10.11894/1005-829x.2016.36(5).032
    [14] 李峰, 刘桂芳, 梁涛, 等. Fe2+/NH2OH联合活化过硫酸盐降解水中磺胺甲恶唑[J]. 高校化学工程学报, 2017, 31(5): 1210-1216.
    [15] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
    [16] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
    [17] LIANG C, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543. doi: 10.1016/j.chemosphere.2008.08.043
    [18] MOUSSAVI G, MOMENNEJAD H, SHEKOOHIYAN S, et al. Oxidation of acetaminophen in the contaminated water using UVC/ S2O28 process in a cylindrical photoreactor: Efficiency and kinetics of degradation and mineralization[J]. Separation and Purification Technology, 2017, 181: 132-138. doi: 10.1016/j.seppur.2017.03.022
    [19] LU X, SHAO Y S, GAO N Y, et al. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments[J]. Ecotoxicology and Environmental Safety, 2017, 141: 139-147. doi: 10.1016/j.ecoenv.2017.03.022
    [20] LIANG C, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. doi: 10.1016/j.chemosphere.2006.05.026
    [21] 范聪剑, 刘石军, 刘哲, 等. 过硫酸盐技术去除水中有机污染物的研究进展[J]. 环境科学与技术, 2015, 38(6P): 136-141.
    [22] GONG H, CHU W. Photodegradation of sulfamethoxazole with a recyclable catalyst[J]. Industrial & Engineering Chemistry Research, 2015, 54: 12763-12769.
    [23] WANG S Z, WANG J L. Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions[J]. Chemical Engineering Journal, 2018, 351: 688-696. doi: 10.1016/j.cej.2018.06.137
    [24] SU R K, WEI Z S, LUO S, et al. Environmental aatrix effects on degradation kinetics of ibuprofen in a UV/persulfate system[J]. Journal of Advanced Oxidation Technologies, 2018, 21(1): 138-148. doi: 10.26802/jaots.2017.0067
    [25] MA X Y, CHENG Y Q, GE Y J, et al. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin[J]. Ultrasonics Sonochemistry, 2018, 40(Pt A): 763-772.
    [26] 王萍. 过硫酸盐高级氧化技术活化方法研究[D]. 青岛: 中国海洋大学, 2010.
    [27] YAN J C, LEI M, ZHU L H, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1398-1404.
    [28] QIN Q D, FU D F, GAO N Y, et al. Kinetic degradation of chloramphenicol in water by UV/persulfate system[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332: 406-412. doi: 10.1016/j.jphotochem.2016.09.021
    [29] GAO H P, CHEN J B, ZHANG Y L, et al. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system[J]. Chemical Engineering Journal, 2016, 306: 522-530. doi: 10.1016/j.cej.2016.07.080
    [30] 马烨姝, 陈菊香, 高乃云, 等. 无机阴离子对UV/PS降解水中2,4-DCP的影响[J]. 给水排水, 2017, 43(11): 19-24. doi: 10.3969/j.issn.1002-8471.2017.11.006
    [31] YANG Y, LU X L, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2, and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate[J]. Water Research, 2017, 118: 196-207. doi: 10.1016/j.watres.2017.03.054
    [32] TAN C Q, GAO N Y, DENG Y, et al. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate[J]. Journal of Hazardous Materials, 2014, 276: 452-460. doi: 10.1016/j.jhazmat.2014.05.068
    [33] CHENG F Y, SU C H, YANG Y S, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications[J]. Biomaterials, 2005, 26(7): 729-738. doi: 10.1016/j.biomaterials.2004.03.016
    [34] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002
    [35] 叶林静, 关卫省, 宋优男, 等. 磁性Fe3O4/ZnO核壳材料的制备及降解四环素类抗生素[J]. 应用化学, 2013, 30(9): 1023-1029.
    [36] GAO X J, FAN X J, CHEN X P, et al. Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation of β-lactam antibiotics in wastewater[J]. International Journal of Environmental Science and Technology, 2018, 15: 2203-2212. doi: 10.1007/s13762-017-1596-4
  • 加载中
图( 17)
计量
  • 文章访问数:  7234
  • HTML全文浏览数:  7234
  • PDF下载数:  116
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-04
  • 录用日期:  2020-02-28
  • 刊出日期:  2020-09-10
刘一清, 苏冰琴, 陶艳, 宋秀兰, 林昱廷, 芮创学. 磁性纳米Fe3O4活化过硫酸盐降解水中磺胺甲恶唑[J]. 环境工程学报, 2020, 14(9): 2515-2526. doi: 10.12030/j.cjee.201912023
引用本文: 刘一清, 苏冰琴, 陶艳, 宋秀兰, 林昱廷, 芮创学. 磁性纳米Fe3O4活化过硫酸盐降解水中磺胺甲恶唑[J]. 环境工程学报, 2020, 14(9): 2515-2526. doi: 10.12030/j.cjee.201912023
LIU Yiqing, SU Bingqin, TAO Yan, SONG Xiulan, LIN Yuting, RUI Chuangxue. Degradation of sulfamethoxazole in water by magnetic nano-Fe3O4 activated persulfate[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2515-2526. doi: 10.12030/j.cjee.201912023
Citation: LIU Yiqing, SU Bingqin, TAO Yan, SONG Xiulan, LIN Yuting, RUI Chuangxue. Degradation of sulfamethoxazole in water by magnetic nano-Fe3O4 activated persulfate[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2515-2526. doi: 10.12030/j.cjee.201912023

磁性纳米Fe3O4活化过硫酸盐降解水中磺胺甲恶唑

    通讯作者: 苏冰琴(1972—),女,博士,副教授。研究方向:水污染控制等。E-mail:1251345607@qq.com
    作者简介: 刘一清(1995—),男,硕士研究生。研究方向:水污染控制。E-mail:1578844231@qq.com
  • 1. 太原理工大学环境科学与工程学院,晋中 030600
  • 2. 山西省市政工程研究生教育创新中心,晋中 030600
  • 3. 太原科技大学环境与安全学院,太原 030024
  • 4. 山西嘉宝源科技有限公司,太原 030006
基金项目:
山西省自然科学基金资助项目(201801D121274,201601D102056)

摘要: 采用共沉淀法制备了具有较高催化活性的磁性纳米Fe3O4,并对其催化活化过硫酸盐(PS)降解磺胺甲恶唑(SMX)的性能进行了探究,考察了PS浓度、Fe3O4投加量、初始pH、共存阴离子(Cl-CO23NO3)以及腐殖酸(HA)对SMX降解效果的影响。SEM、EDS、FT-IR、XRD和BET表征结果表明,实验制备了较高纯度的Fe3O4纳米颗粒;重复性实验结果表明,Fe3O4具有良好的稳定性;催化降解SMX的实验结果表明,提高PS的浓度、增加Fe3O4的投加量均可提高SMX的降解率,且SMX的降解反应符合拟一级动力学。当PS浓度为0.5 mmol·L−1、Fe3O4投加量为1.2 g·L−1、初始pH=7.0时,Fe3O4活化PS降解SMX的效果最佳,在反应180 min后,SMX降解率达到93.3%。XPS光谱分析结果表明,反应过程中Fe2+主要参与了活化PS降解SMX的过程。乙醇(EtOH)和叔丁醇(TBA)自由基淬灭实验结果证明,在Fe3O4/PS体系中同时存在SO4和·OH,SO4对SMX的降解发挥了主导作用。以上结果为含磺胺甲恶唑废水的处理提供了催化剂选择,也可为过硫酸盐高级氧化体系中阴离子和腐殖酸对反应的影响效果提供参考。

English Abstract

  • 磺胺甲恶唑(sulfamethoxazole,SMX)作为磺胺类典型代表,因其具有抗菌谱广、使用方便、价格低廉等特点,被广泛用于水产养殖、畜牧业以及由各种微生物引起的人类疾病预防和治疗中[1-2]。经现有常规污水处理工艺处理后,尽管COD等指标都能达到排放标准,但仍有许多SMX及其中间代谢产物残留在出水中,经过长年的积累会对地表水以及地下水造成不可修复的损坏[3],继而影响整个生态系统的良性循环,最终危害人类健康[4-7]。因此,寻求高效经济的去除方法,控制SMX在水环境的含量对生态环境与生命安全均具有重要的现实意义[8]

    目前,SMX的降解方法主要有芬顿法、改良芬顿法、吸附法等。苏荣军等[9]利用Fenton氧化体系对SMX制药废水进行了研究,在最佳实验条件下,60 min内,SMX的降解率达到了88.9%;赵天亮等[10]利用光降解方法有效地去除了SMX,但少有研究较为系统地考察水中共存阴离子和腐殖酸对SMX降解的影响。近年来,基于硫酸根自由基(SO4)高级氧化技术被广泛应用于土壤和地下水原位修复和有毒有害难生化降解的有机废水实践中[11-13]。由于SO4(E0=2.5~3.1 V)有着比羟基自由基(·OH)(E0=1.8~2.7 V)更高的氧化还原电位,可以氧化水中绝大部分有机物,Fe2+作为被广泛使用的激活剂,其具有消耗速度快和形成Fe3+沉积并阻碍反应的明显缺点[14]。Fe3O4具有较高的催化活性,能够缓慢向溶液中释放Fe2+,且因其磁性也更易实现固液分离,在常温常压下反应就可以进行(式(1)),不产生二次污染的同时还可以重复利用多次,是真正的绿色催化剂。本研究采用共沉淀法制备了具有较高催化活性的磁性纳米Fe3O4,并对其物化性质进行了表征,分别考察了PS浓度、Fe3O4投加量、初始pH、共存阴离子(ClCO23NO3)以及腐殖酸(HA)对SMX降解效果的影响,同时考察了Fe3O4的性能和重复利用效果,进一步对降解SMX反应(式(1))的作用机理进行探讨。

  • 试剂:磺胺甲恶唑(>98%)、过硫酸钾(>99.5%)、六水合三氯化铁、硫酸亚铁、盐酸、硫酸、氨水、氢氧化钠、氯化钠、无水碳酸钠、碳酸氢钠、碘化钾、硝酸钠、腐殖酸、分析用甲醇、甲酸、乙醇、叔丁醇。实验用水均采用Milli-Q纯化系统(18.2 mΩ·cm)制备的超纯水。

    仪器:THZ-C型恒温振荡器,AUY120型分析天平,梅特勒-托利多pH计,超声波清洗机,DZF-6020真空干燥箱,安捷伦1260高效液相色谱,Tescan Mira 3高分辨率场发射扫描电子显微镜(SEM),Oxford X-MaxN能谱分析仪(EDS),紫外可见分光光度计(UV5500),布鲁克TENSOR-II傅里叶红外光谱仪,DX-2700型X射线衍射仪(XRD),TOC分析仪(岛津TOC-VCPH),ASAP 2460全自动比表面及孔隙度分析仪(BET)。

  • 将一定浓度的FeCl3·6H2O溶液和FeSO4·7H2O溶液混合,再将混合液快速加入到装有氨水、置于超声波清洗机中的三口烧瓶中,全程在通入氮气的条件下进行,控制温度为60 ℃。反应30 min后,用磁铁将黑色的磁性Fe3O4纳米材料收集,用去离子水反复冲洗至上清液呈中性后,置于真空干燥箱中60 ℃烘干,研磨后,储存于干燥皿中。样品用扫描电镜-能谱(SEM-EDS)、红外(FT-IR)、X射线衍射(XRD)、比表面(BET)进行表征。

  • 量取50 mL 20 μmol·L−1的SMX溶液于锥型瓶,将其置于摇床中,控制温度为30 ℃,转速为180 r·min−1,实验先投加一定量的Fe3O4反应30 min,待Fe3O4吸附平衡后,加入过硫酸盐溶液,每隔一定时间取水样,立即加入甲醇淬灭反应。反应液经0.22 μm滤膜过滤,利用高效液相色谱(HPLC)进行定量分析。通过单因素实验明确了PS浓度、Fe3O4投加量、初始pH对SMX降解效果的影响,确定PS浓度、Fe3O4投加量、初始pH最佳条件后,在此基础上又考察了共存离子和腐殖酸对SMX降解的影响。通过添加乙醇(EtOH)[15-16]及叔丁醇(TBA)[16]来鉴定体系中SO4和·OH的存在。实验中,SMX的降解可用拟一级动力学描述,如式(2)所示。

    式中:Ctt时刻的SMX浓度,μmol·L−1C0为SMX初始浓度,μmol·L−1t为反应时间,min;k为拟一级反应速率常数,min−1

  • 采用分光光度法[17]测定PS浓度。在NaHCO3存在的条件下,PS与KI反应生成黄色络合物,通过紫外可见分光光度计(UV5500,上海元析仪器有限公司)于400 nm处进行测定。SMX浓度采用美国安捷伦1260高效液相色谱仪及C-18的色谱柱进行定量分析。检测条件为:流动相(甲醇/0.1%甲酸)=35∶65,检测波长为270 nm,进样量为10 µL,流量为0.8 mL·min−1,柱温为30 ℃。

  • 对纳米Fe3O4进行扫描电镜(SEM)、能谱(EDS)、红外光谱(FT-IR)、X射线衍射(XRD)和比表面测试(BET)等分析,具体结果如图1~图4所示。如图1(a)所示,在放大100 000倍的情况下,可清晰地观察到催化剂晶体为立方体颗粒,颗粒均匀,粒径约为40 nm,部分颗粒之间发生了团聚,这说明颗粒之间存在磁性吸引;由图1(b)可知,颗粒中存在C、O、Fe、S、Cl元素,Fe和O含量最高,质量分数分别为39.16%和54.23%。

    图2为Fe3O4的FT-IR光谱图。由图2可知,在576、1 401、3 138 cm−1处出现3个较强的吸收峰。波数576 cm−1处为Fe—O伸缩振动峰,1 401 cm−1和3 338 cm−1处分别是H—O—H和O—H的伸缩振动峰,这可能是由于少量水分子吸附在Fe3O4表面所导致的。

    图3为Fe3O4的XRD图谱,将其与Fe3O4标准图谱(JCPDS PDF#65-3107)进行对比,在30.1º、35.4º、43.1º、53.4º、57.0º、62.5º、74.1º处具有较强的衍射峰,与标准Fe3O4所具有的特征衍射峰相吻合,这说明制得的催化剂为纯度较高的Fe3O4

    图4为依据Brunauer-Emmett-Teller方程计算得到的Fe3O4吸附氮气的吸附解吸等温曲线。由图4可知,该等温线呈现出明显的IV型,根据IUPAC的分类,说明Fe3O4为典型的中孔吸附材料。其平均孔径为12.936 2 nm,比表面积为30.816 3 m2·g−1,总孔容为0.112 449 cm3·g−1,表明Fe3O4可以提供大量的活性反应位点。

  • 在PS浓度为0~1.0 mmol·L−1的条件下,考察了其对SMX降解效果的影响,结果如图5所示。当PS浓度由0 mmol·L−1提高至0.5 mmol·L−1时,SMX降解速率逐渐提高,反应180 min后,SMX降解速率达到93.3%。分析原因为,随着体系中PS浓度的增加,过硫酸盐可被Fe3O4催化活化,从而产生更多的SO4参与反应(式(1)),故有利于SMX的降解[12]。当继续提高PS浓度至1.0 mmol·L−1时,SMX的降解率由93.3%降至88.8%。有研究[18]表明,过量的S2O28能够与SO4发生反应(式(3)),过量的SO4也会发生自身的淬灭反应(式(4))。

    由式(1)可知,催化剂Fe3O4的投加直接影响SO4的活化,从而对SMX的降解效果产生影响。在Fe3O4投加量为0~1.4 g·L−1的条件下,考察了SMX的降解效果。由图6可知,在未投加Fe3O4的条件下,SMX基本没有被降解,当Fe3O4投加量增加到1.2 g·L−1时,反应180 min,SMX的降解率可达到93.3%。由式(1)可知,增加Fe3O4的投加量可提供更多的Fe2+,PS被Fe3O4表面的Fe2+激活,从而产生更多的SO4参与反应。此外,磁性Fe3O4表面的Fe2+能够引发一系列类芬顿反应,因此,增加体系中Fe3O4投加量,能提高SMX的降解率。当继续增大Fe3O4至1.4 g·L−1时,SMX降解效果的变化并不明显,这可能是因为在Fe3O4催化活化PS反应中,体系中PS浓度相对不足造成的。

    图7为不同pH (3、5、7、9、11)对SMX的降解效果的影响。由图7可见,随pH的增大,SMX的降解率逐渐降低。这一现象与S2O28在不同pH下的不同氧化性有关[19]。在酸性条件下,S2O28不仅可以被Fe3O4激活产生SO4,还可以与H+反应生成SO4(式(5)和式(6)),有研究[20]表明,水溶液中SO4也会反应生成·OH(式(7)),从而促进活化PS反应的进行。

    在碱性条件下,SO4和OH更易反应生成·OH(式(8)),而·OH的氧化电位低于SO4[21];当pH升高时, 体系中Fe2+从Fe3O4表面脱除,反应产生的Fe3+也会生成氢氧化物胶体,从而增加磁性Fe3O4颗粒的团聚,致使其催化活性进一步的降低,因此,碱性条件对降解SMX的抑制作用更加明显。考虑自然状态下实际水体pH多为中性,故选择最适pH为7。

    反应过程中pH随时间的变化曲线如图8所示,由图8可知,在SMX降解过程中,当初始pH≥9时,反应过程中的pH逐渐下降,而在中性和酸性(3.0~5.0)条件下,反应过程中的pH略有增加,但变化并不显著。初始pH很高时,pH出现明显下降,很可能是由于SMX在降解过程中生成了CO2和较低分子质量的有机酸。鉴于H2CO3是一种弱酸,pKa1pKa2分别为6.3和10.3,当初始pH处于中性至酸性范围时,释放到溶液中的H+不足以改变溶液的pH,因此,溶液中pH相对稳定,这与GONG等[22]和WANG等[23]的研究结果相似。

    天然水体中存在着大量阴离子,其在维持酸碱平衡等方面发挥着重要的作用。实验考察了ClCO23NO3这3种阴离子在降解SMX实验中的影响。图9为加入2.5、5.0、7.5、10.0和12.5 mmol·L−1 Cl时对SMX降解效果的影响。由图9可知,与不投加Cl相比,在反应180 min后,对应不同的Cl投加浓度,SMX的降解率分别下降了1.08%、2.65%、4.65%、7.40%、8.61%。结果表明,低浓度的Cl对于SMX的降解基本无影响,随着Cl浓度的增加,对SMX降解抑制作用逐渐加强。有研究[24-25]表明,Cl是一种有效的自由基捕获剂,可与SO4反应生成氯自由基(Cl·) (式(9)),随着Cl浓度的升高,Cl·又可迅速与Cl反应,生成活性较低的二氯自由基(Cl2)[26](E0=1.36 V)(式(10)~式(12)),减弱了SO4的作用;其次,Cl也可能会优先吸附到磁性Fe3O4表面的活性部位,使得磁性Fe3O4催化能力降低,导致SO4产生量减少。另外,还有研究[27-28]表明,S2O28SO4等自由基的活性随溶液中离子强度的增大而降低。

    不同CO23浓度对SMX降解效果的影响如图10所示。结果表明,分别加入0.01、0.05、0.10 mmol·L−1 CO23,反应180 min后,低浓度CO23对SMX的降解效果有轻微抑制作用,SMX的降解率由93.3%降至84%;当CO23浓度提高至1.00 mmol·L−1时,对SMX降解效果的抑制作用明显增强,SMX的降解率下降至31%。其原因可能是:体系中CO23会发生水解,生成HCO3,而2种离子在溶液中的占比是由溶液的pH决定的(式(13)和式(14))。当溶液pH为7.0±0.1时,可以认为溶液中主要以HCO3/CO23共同离子存在,能够与SO4反应,产生CO3(式(15)和式(16))。

    CO3也能与有机物反应,但SO4反应速率常数高于CO3,因此,在体系中加入较高浓度的CO23时,SMX降解速率会有所降低。同时,高浓度CO23SO4也有淬灭作用。GAO等[29]采用热活化过硫酸盐氧化降解三氯生,研究结果表明,碱性物质(如CO23HCO3)的存在对三氯生降解具有抑制效果。

    不同NO3浓度对SMX降解效果的影响如图11所示。由图11可知,与不投加NO3相比,当反应中分别加入0.01、0.10、0.50、1.00 mmol·L−1NO3,反应180 min后,SMX的降解率分别增加了0.2%、1.1%、2.2%、2.9%。结果表明,低浓度NO3对SMX降解具有轻微的促进作用。有研究[28,30]表明,水中的NO3在自然光或者紫外光的照射下发生一系列化学反应(式(17)~式(21)),生成亚硝酸自由基(NO2)、硝基自由基(NO3·)、氧自由基(O·)等活性自由基,其进一步与水反应产生OH·,与SO4协同作用达到强化降解SMX的作用。

    实验考察了腐殖酸对SMX降解效果的影响。腐殖酸是腐殖质的重要组成部分,是经植物残体腐解后,由碳、氢、氧、氮等元素组成的一类高分子有机弱酸物质。其总量庞大,广泛分布江河湖海,土壤煤矿等各地,对生态平衡中碳循环、矿物迁移积累、土壤肥力等多方面都有影响。实验研究了不同浓度HA对SMX降解效果的影响,如图12所示。由图12可见,随着HA浓度的增加,对SMX降解的抑制作用加强。其原因可能是因为:HA结构复杂且含有大量的苯环、羰基和羧基等多种官能团,和SMX共同竞争SO4,并可能率先和SO4发生反应,因而对SMX降解效果造成不利影响。

    实验考察了反应过程中TOC的变化情况。实验将单独PS氧化效果、单独Fe3O4吸附效果与Fe3O4/PS体系降解效果进行了对比,结果如图13所示。由图13可见,单独PS氧化和单独Fe3O4吸附的矿化率很低,难以实现矿化,而Fe3O4活化PS可以实现SMX的有效矿化。

  • 据报道,含有α氢原子的醇与·OH或SO4具有较高的反应速率,含有α氢的EtOH可以作为辨别过硫酸根与·OH或SO4贡献的淬灭剂,而TBA对SMX降解效果的影响可以用来区分·OH与SO4贡献大小[12]。通过投加EtOH及TBA,对体系中主要自由基进行了鉴定,结果如图14所示。Fe3O4/PS体系中EtOH和TBA的存在均不同程度地抑制了SMX的降解,在添加EtOH后,SMX的降解率下降了19.2%,其速率常数为7.8×10−3 min−1;在添加TBA后,SMX的降解率下降了10.3%,其速率常数为1.14×10−2 min−1。由此可见,EtOH对SMX降解的抑制能力明显强于TBA,体系中SMX降解率的差异表明体系中SO4和·OH是共同存在的。同时,从SMX降解的速率常数可以看出,在添加TBA和EtOH后,SMX降解的速率常数逐级降低。由速率常数递减的差值可以推测,SO4在降解SMX的过程中发挥了主导作用,其贡献率为58.9%,而·OH的贡献率为41.1%。

  • 本研究对反应后的降解产物进行了分析,提出了可能的降解路径(如图15所示)。·OH表现出与烯烃双键和苯胺的高反应活性,主要反应途径之一是与位于恶唑环上的双键进行加成反应,这与BUXTON等[15]的研究结果相似。SO4比·OH更具选择性和亲电性,其主要是通过在烯烃双键的恶唑环上引发亲电攻击,生成醇类化合物(TP 287),恶唑环中的氮原子会增强烯烃双键的电子密度,且比异恶唑环中的烯烃双键表现出更强的供电子能力,这与YANG等[31]的研究结果相似。

  • 通过比较SMX降解反应前后Fe3O4的X射线光电子能谱 (X-ray photoelectron spectroscopy, XPS),分析了PS活化机理,结果如图16所示。由图16(a)可知:反应前,Fe3O4中的710.6 eV和713.0 eV的铁带为Fe2p,观察到的位置与磁铁矿铁赋值的研究[32]一致;反应后,Fe3O4中的结合能略有增加,这表明Fe3O4中Fe2+和Fe3+组分的变化。Fe3+的比例增加了15.9%,这表明在反应过程中部分Fe2+发生了电子捕获。另外,O1s的XPS光谱如图16(b)所示。反应前,529.4、530.7、531.4 eV处的3个峰证实晶格氧(O2−)、氢氧化物(OH)和H2O共同存在Fe3O4中,这与先前的研究结果[32-33]一致。活化反应后,Fe3O4中的O2−、OH和H2O的比例发生变化,O2-的占比有所升高,OH和H2O的占比降低,这表明催化剂上的OH和H2O参与反应,并生成了H+和Fe(氧)氢氧化物[34]。Fe3O4表面的Fe2+活化PS可生成SO4(式(1)),通过SO4与H2O的反应生成了∙OH (式(7)),从而参加SMX降解过程。Fe2+可被氧化为Fe3+,并在Fe3O4表面上沉淀下来,从而形成Fe(氧)氢氧化物(式(22)和式(23))。

    在pH=7.0、SMX浓度为20 μmol·L−1、Fe3O4投加量为1.2 g·L−1、PS浓度为0.5 mmol·L−1、温度为(30±0.5) ℃的最佳实验条件下,对Fe3O4进行重复性实验,结果如图17所示。每次反应进行180 min后,将Fe3O4取出,先用甲醇冲洗3次[35-36],利用相似相溶原理,将沉积包裹在Fe3O4表面的反应代谢产物溶解,再用蒸馏水反复冲洗3次后,加入到下次重复实验中。结果表明,经过4次循环实验后,SMX的降解率分别为93%、88%、82%和73%,Fe3O4表现出了较好的稳定性和催化活性,这说明Fe3O4能够稳定地应用到活化过硫酸盐和处理抗生素废水的高级氧化应用中。

  • 1)通过共沉淀法制备了纳米Fe3O4,其具有良好的活化PS和降解磺胺甲恶唑的能力。在PS浓度为0.5 mmol·L−1,Fe3O4投加量为1.2 g·L−1,初始pH为中性的条件下,经180 min反应后,SMX的降解率达到了93.3%,且降解过程符合拟一级动力学方程。

    2)纳米Fe3O4在酸性或中性条件下对PS均有较好的催化活性,且Fe3O4具有良好的稳定性。XPS光谱分析结果表明,反应过程中Fe2+发生了电子捕获,主要参与了催化活化PS降解SMX的过程。

    3)水中低浓度的阴离子ClCO23对SMX降解反应具有较小的抑制作用,而NO3对SMX降解反应有轻微的促进作用。腐殖酸的存在对SMX降解反应产生较强的抑制作用。

    4)采用EtOH及TBA作为淬灭剂进行自由基识别,结果表明,在Fe3O4/PS体系中,SO4和·OH同时存在,SO4在SMX降解过程中发挥了主导作用。

参考文献 (36)

返回顶部

目录

/

返回文章
返回