-
磺胺甲恶唑(sulfamethoxazole,SMX)作为磺胺类典型代表,因其具有抗菌谱广、使用方便、价格低廉等特点,被广泛用于水产养殖、畜牧业以及由各种微生物引起的人类疾病预防和治疗中[1-2]。经现有常规污水处理工艺处理后,尽管COD等指标都能达到排放标准,但仍有许多SMX及其中间代谢产物残留在出水中,经过长年的积累会对地表水以及地下水造成不可修复的损坏[3],继而影响整个生态系统的良性循环,最终危害人类健康[4-7]。因此,寻求高效经济的去除方法,控制SMX在水环境的含量对生态环境与生命安全均具有重要的现实意义[8]。
目前,SMX的降解方法主要有芬顿法、改良芬顿法、吸附法等。苏荣军等[9]利用Fenton氧化体系对SMX制药废水进行了研究,在最佳实验条件下,60 min内,SMX的降解率达到了88.9%;赵天亮等[10]利用光降解方法有效地去除了SMX,但少有研究较为系统地考察水中共存阴离子和腐殖酸对SMX降解的影响。近年来,基于硫酸根自由基(
$ {\rm{SO}}_{\rm{4}}^{\rm{ - }} \cdot $ )高级氧化技术被广泛应用于土壤和地下水原位修复和有毒有害难生化降解的有机废水实践中[11-13]。由于$ {\rm{SO}}_{\rm{4}}^{\rm{ - }} \cdot $ (E0=2.5~3.1 V)有着比羟基自由基(·OH)(E0=1.8~2.7 V)更高的氧化还原电位,可以氧化水中绝大部分有机物,Fe2+作为被广泛使用的激活剂,其具有消耗速度快和形成Fe3+沉积并阻碍反应的明显缺点[14]。Fe3O4具有较高的催化活性,能够缓慢向溶液中释放Fe2+,且因其磁性也更易实现固液分离,在常温常压下反应就可以进行(式(1)),不产生二次污染的同时还可以重复利用多次,是真正的绿色催化剂。本研究采用共沉淀法制备了具有较高催化活性的磁性纳米Fe3O4,并对其物化性质进行了表征,分别考察了PS浓度、Fe3O4投加量、初始pH、共存阴离子(Cl−、$ {\rm{CO}}_{\rm{3}}^{{\rm{2 - }}}$ 、$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ )以及腐殖酸(HA)对SMX降解效果的影响,同时考察了Fe3O4的性能和重复利用效果,进一步对降解SMX反应(式(1))的作用机理进行探讨。
磁性纳米Fe3O4活化过硫酸盐降解水中磺胺甲恶唑
Degradation of sulfamethoxazole in water by magnetic nano-Fe3O4 activated persulfate
-
摘要: 采用共沉淀法制备了具有较高催化活性的磁性纳米Fe3O4,并对其催化活化过硫酸盐(PS)降解磺胺甲恶唑(SMX)的性能进行了探究,考察了PS浓度、Fe3O4投加量、初始pH、共存阴离子(Cl-、
$ {\rm{CO}}_{\rm{3}}^{{\rm{2 - }}}$ 、$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ )以及腐殖酸(HA)对SMX降解效果的影响。SEM、EDS、FT-IR、XRD和BET表征结果表明,实验制备了较高纯度的Fe3O4纳米颗粒;重复性实验结果表明,Fe3O4具有良好的稳定性;催化降解SMX的实验结果表明,提高PS的浓度、增加Fe3O4的投加量均可提高SMX的降解率,且SMX的降解反应符合拟一级动力学。当PS浓度为0.5 mmol·L−1、Fe3O4投加量为1.2 g·L−1、初始pH=7.0时,Fe3O4活化PS降解SMX的效果最佳,在反应180 min后,SMX降解率达到93.3%。XPS光谱分析结果表明,反应过程中Fe2+主要参与了活化PS降解SMX的过程。乙醇(EtOH)和叔丁醇(TBA)自由基淬灭实验结果证明,在Fe3O4/PS体系中同时存在$ {\rm{SO}}_{\rm{4}}^{\rm{ - }} \cdot $ 和·OH,$ {\rm{SO}}_{\rm{4}}^{\rm{ - }} \cdot $ 对SMX的降解发挥了主导作用。以上结果为含磺胺甲恶唑废水的处理提供了催化剂选择,也可为过硫酸盐高级氧化体系中阴离子和腐殖酸对反应的影响效果提供参考。Abstract: Fe3O4 magnetic nanoparticles with high catalytic activity were prepared with co-precipitation method, and its performance on catalytic activating persulfate (PS) and degrading sulfamethoxazole (SMX) was evaluated. The effects of PS concentration, Fe3O4 dosage, initial pH, coexisting anions(Cl-,$ {\rm{CO}}_{\rm{3}}^{{\rm{2 - }}}$ and$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ ) and humic acid (HA) on sulfamethoxazole degradation were investigated. The characterization results of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) demonstrated that Fe3O4 magnetic nanoparticles with high purity have been successfully prepared. The result of repeated experiments showed that Fe3O4 magnetic nanoparticles possessed excellent stability and reusability. The results of SMX degradation showed that the degradation rate of SMX increased with the increase of PS concentration and Fe3O4 dosage, and the SMX degradation process fitted the first-order kinetics. At 0.5 mmol·L−1 PS, Fe3O4 dosage of 1.2 g·L−1 and initial pH 7.0, nano-Fe3O4 activated persulfate could achieve the best degradation of SMX, and SMX degradation rate could reach 93.3% after 180 min. X-ray photoelectron spectroscopy (XPS) analysis showed that Fe2+ was mainly involved in the process of activating PS and degrading SMX. The free radical quenching experiments with ethanol (EtOH) and tert-butanol (TBA) showed that$ {\rm{SO}}_{\rm{4}}^{\rm{ - }} \cdot $ and ·OH simultaneously occurred in Fe3O4/PS system and$ {\rm{SO}}_{\rm{4}}^{\rm{ - }} \cdot $ played the dominant role on SMX degradation. The above results can provide a reference for the effects of anions and humic acids on the reaction in the persulfate advanced oxidation system.-
Key words:
- magnetic nano Fe3O4 /
- persulfate /
- sulfamethoxazole /
- sulfate radical /
- degradation rate
-
-
[1] 司晓薇. 环境中磺胺类药物的残留、形态转化及生态毒性研究[D]. 新乡: 河南师范大学, 2016. [2] 李珂, 刘振鸿, 钱雅洁, 等. 基于硫酸根自由基的高级氧化对头孢氨苄的降解特性[J]. 环境工程学报, 2019, 13(1): 40-48. doi: 10.12030/j.cjee.201808012 [3] 周明毅, 魏琛, 盛贵尚, 等. 紫外活化过硫酸钠降解水中三唑酮的效能[J]. 环境工程学报, 2019, 13(4): 810-817. doi: 10.12030/j.cjee.201810017 [4] 闻长虹, 毛顺, 郑丽英, 等. 抗生素磺胺甲恶唑在模拟太阳光下的光解[J]. 湖南文理学院学报(自然科学版), 2015, 27(2): 47-50. [5] 钟振兴, 张远, 徐建, 等. 磺胺甲恶唑在沉积物中的降解行为研究[J]. 农业环境科学学报, 2012, 31(4): 819-825. [6] PADHYE L P, YAO H, KUNG'U F T, et al. Year-long evaluation on the occurrence and fate of pharmaceuticals personal care products, andendocrine disrupting chemicals in an urban drinking water treatment plant[J]. Water Research, 2014, 51(6): 266-276. [7] YU H, GE P, CHEN J W, et al. The degradation mechanism of sulfamethoxazole under ozonation: A DFT study[J]. Environmental Science-Processes & Impacts, 2017, 19(3): 379-387. [8] 银仁莉. 超声联合臭氧技术降解磺胺甲恶唑的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [9] 苏荣军, 韩思宇. Fenton试剂处理磺胺甲恶唑制药废水的研究[J]. 哈尔滨商业大学学报(自然科学版), 2015, 31(2): 183-186. [10] 赵天亮, 吴文卫, 游俏, 等. 磺胺甲恶唑光降解影响因素研究[J]. 环境科学导刊, 2016, 35(6): 78-83. doi: 10.3969/j.issn.1673-9655.2016.06.018 [11] 安继斌, 夏春秋, 陈红宇, 等. UVA/Fe3O4活化过硫酸盐降解阿特拉津[J]. 环境科学研究, 2018, 31(1): 130-135. [12] 杨焱明, 冷艳秋, 林欣, 等. Fe3O4/石墨烯活化过硫酸盐降解罗丹明B废水的研究[J]. 环境科学与管理, 2014, 39(4): 80-84. doi: 10.3969/j.issn.1673-1212.2014.04.020 [13] 许志至, 徐岗, 蒋素英, 等. 过硫酸钠与双氧水催化降解印染废水的实验研究[J]. 工业水处理, 2016, 36(5): 32-35. doi: 10.11894/1005-829x.2016.36(5).032 [14] 李峰, 刘桂芳, 梁涛, 等. Fe2+/NH2OH联合活化过硫酸盐降解水中磺胺甲恶唑[J]. 高校化学工程学报, 2017, 31(5): 1210-1216. [15] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [16] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. [17] LIANG C, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543. doi: 10.1016/j.chemosphere.2008.08.043 [18] MOUSSAVI G, MOMENNEJAD H, SHEKOOHIYAN S, et al. Oxidation of acetaminophen in the contaminated water using UVC/ $ {{\rm{S}}_{\rm{2}}}{\rm{O}}_{\rm{8}}^{{\rm{2 - }}}$ process in a cylindrical photoreactor: Efficiency and kinetics of degradation and mineralization[J]. Separation and Purification Technology, 2017, 181: 132-138. doi: 10.1016/j.seppur.2017.03.022[19] LU X, SHAO Y S, GAO N Y, et al. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments[J]. Ecotoxicology and Environmental Safety, 2017, 141: 139-147. doi: 10.1016/j.ecoenv.2017.03.022 [20] LIANG C, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. doi: 10.1016/j.chemosphere.2006.05.026 [21] 范聪剑, 刘石军, 刘哲, 等. 过硫酸盐技术去除水中有机污染物的研究进展[J]. 环境科学与技术, 2015, 38(6P): 136-141. [22] GONG H, CHU W. Photodegradation of sulfamethoxazole with a recyclable catalyst[J]. Industrial & Engineering Chemistry Research, 2015, 54: 12763-12769. [23] WANG S Z, WANG J L. Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions[J]. Chemical Engineering Journal, 2018, 351: 688-696. doi: 10.1016/j.cej.2018.06.137 [24] SU R K, WEI Z S, LUO S, et al. Environmental aatrix effects on degradation kinetics of ibuprofen in a UV/persulfate system[J]. Journal of Advanced Oxidation Technologies, 2018, 21(1): 138-148. doi: 10.26802/jaots.2017.0067 [25] MA X Y, CHENG Y Q, GE Y J, et al. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin[J]. Ultrasonics Sonochemistry, 2018, 40(Pt A): 763-772. [26] 王萍. 过硫酸盐高级氧化技术活化方法研究[D]. 青岛: 中国海洋大学, 2010. [27] YAN J C, LEI M, ZHU L H, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1398-1404. [28] QIN Q D, FU D F, GAO N Y, et al. Kinetic degradation of chloramphenicol in water by UV/persulfate system[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332: 406-412. doi: 10.1016/j.jphotochem.2016.09.021 [29] GAO H P, CHEN J B, ZHANG Y L, et al. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system[J]. Chemical Engineering Journal, 2016, 306: 522-530. doi: 10.1016/j.cej.2016.07.080 [30] 马烨姝, 陈菊香, 高乃云, 等. 无机阴离子对UV/PS降解水中2,4-DCP的影响[J]. 给水排水, 2017, 43(11): 19-24. doi: 10.3969/j.issn.1002-8471.2017.11.006 [31] YANG Y, LU X L, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2, and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate[J]. Water Research, 2017, 118: 196-207. doi: 10.1016/j.watres.2017.03.054 [32] TAN C Q, GAO N Y, DENG Y, et al. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate[J]. Journal of Hazardous Materials, 2014, 276: 452-460. doi: 10.1016/j.jhazmat.2014.05.068 [33] CHENG F Y, SU C H, YANG Y S, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications[J]. Biomaterials, 2005, 26(7): 729-738. doi: 10.1016/j.biomaterials.2004.03.016 [34] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002 [35] 叶林静, 关卫省, 宋优男, 等. 磁性Fe3O4/ZnO核壳材料的制备及降解四环素类抗生素[J]. 应用化学, 2013, 30(9): 1023-1029. [36] GAO X J, FAN X J, CHEN X P, et al. Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation of β-lactam antibiotics in wastewater[J]. International Journal of Environmental Science and Technology, 2018, 15: 2203-2212. doi: 10.1007/s13762-017-1596-4