-
A/A/O工艺是传统活性污泥工艺、生物硝化反硝化工艺和生物除磷工艺的结合体,具有强化生物脱氮和生物除磷的双重特点[1-2]。氧化沟工艺属于延时曝气活性污泥法,处理效果稳定[3]。A/A/O微曝氧化沟分为厌氧段、缺氧段和好氧段,3个区以隔墙分开来,形成较好的独立环境。池型为环形池形,兼有推流式和完全混流式的特点。A/A/O微曝氧化沟工艺作为一种现代化新型工艺,采用曝气和推流相分离的方式,具有流程简单、抗冲击能力强、出水水质稳定、能耗低和易操控等优点。同时,随着污水排放标准的提高,水质净化厂逐渐采用深度处理工艺,如V型滤池和高效纤维滤池等,以强化对污染物的去除。
目前,关于水质净化厂脱氮除磷的影响因素研究相对较多,但大多数基于实验室小试,且分析条件与内容单一[4-6]。同时,针对实际水质净化厂处理工艺进行污染物全程系统分析的研究亦相对较少。本研究以深圳某水质净化厂为例,以其A/A/O微曝氧化沟工艺和V型滤池为研究对象,分析了沿程污染物浓度和微生物活性,并结合物料平衡计算,探讨了该水质净化厂去除污染物的能力,寻找增强反应速率和水质净化厂系统稳定性的方法,以期为同类水质净化厂的出水达标提供参考。
深圳某水质净化厂A/A/O微曝氧化沟深度脱氮除磷工艺效果分析
Effect analysis of deep removal of nitrogen and phosphorus by A/A/O micro-aeration oxidation ditch process in a municipal wastewater treatment plant in Shenzhen, China
-
摘要: 为探究A/A/O微曝氧化沟深度脱氮除磷工艺的性能,根据深圳市某水质净化厂长期监测数据,分析了进水污染物浓度、生物池沿程脱氮除磷性能和微生物相。结果表明:进水可生化性一般,生物脱氮可行,但生物除磷效果有限,需借助化学除磷增强除磷效果,投药浓度与进水BOD5/TP值变化趋势呈负相关;生物池好氧段微生物的氨氧化速率和亚硝酸盐氧化速率能满足硝化反应的正常进行;但缺氧段反硝化速率较低,是生物脱氮的限制因素,可通过降低内回流DO和增加缺氧段碱度来增强微生物的反硝化速率;生物池中有大量的累枝虫、钟虫、盾纤虫和轮虫,且成熟期菌胶团数量较多,结构紧密;深度处理对TP和SS的去除率分别为60.3%和33.71%。物料平衡分析结果显示,被同化的氮含量和反硝化的氮含量各占43%和57%,通过微生物合成和吸附被去除的磷含量和与除磷药剂形成化学沉淀的磷含量各占49.06%和50.94%。本研究结果为水质净化厂深度脱氮除磷提供了思路,可为提高出水水质标准提供参考。
-
关键词:
- 污水处理 /
- A/A/O微曝氧化沟工艺 /
- 脱氮除磷 /
- 生物相 /
- 物料平衡
Abstract: In order to investigate the performance of A/A/O micro-aeration oxidation ditch process on deep nitrogen and phosphorus removal, based on the long-term monitoring data of a municipal wastewater treatment plant in Shenzhen, the concentration of influent pollutants, the performance of nitrogen and phosphorus removal along the A/A/O, and the biological phase were analyzed. The results showed the general biochemical properties for the influent, and feasible biological nitrogen removal effect, while the limited biological phosphorus removal effect. This indicated that the chemical phosphorus removal was needed to enhance the phosphorus removal effect. There are negative correlation between concentration of PAFC dosage and the BOD5/TP of influent. The ammonia oxidation rate and nitrite oxidation rate of the microorganisms in the aerobic section of A/A/O could meet the normal progress of the nitrification reaction. However, the low denitrification rate in the anoxic section of A/A/O was a limiting factor for biological denitrification. The denitrification rate of the microorganism could be enhanced by reducing the internal return DO and increasing alkalinity in this anoxic section. There were a large number of epistylis, vorticellas, aspidiscas and rotifers in the biological pool, and lots of bacterial micelles at the mature stage with compact strucuture. The removal rates of TP and SS by deep treatment process could reach 60.3% and 33.71%, respectively. Through the material balance analysis, the assimilated nitrogen content and denitrified nitrogen content accounted for 43% and 57%, respectively. The percent of phosphorus removed by microbial uptake and adsorption was 49.06%, and the percent of phosphorus formed as chemical precipitate of phosphorus and PAFC was 50.94%. The case provides ideas for deep nitrogen and phosphorus removal in municipal wastewater treatment plant, and provides reference for improving effluent water quality standards. -
表 1 2018年1—12月某水质净化厂进水水量与污染物浓度
Table 1. Wastewater inflow and pollutant concentration in the municipal wastewater treatment plantfrom January to December, 2018
月份 水量/(104 m3) COD/(mg·L−1) BOD5/(mg·L−1) NH4+-N/(mg·L−1) TN/(mg·L−1) TP/(mg·L−1) BOD5/COD BOD5/TN BOD5/TP 1 10.62 308.5 111.1 19.3 28.3 4.59 0.36 3.93 24.20 2 8.90 287.6 94.9 17.6 25.7 4.18 0.33 3.69 22.70 3 11.34 338.3 109.4 20 29.2 5.82 0.32 3.74 18.80 4 11.42 228.2 78.1 20.9 29.9 5.11 0.34 2.61 15.28 5 13.32 216.1 72.6 16.5 27.1 4.18 0.34 2.67 17.37 6 20.02 131.4 46.2 23.1 31.5 2.86 0.35 1.46 16.15 7 22.16 155.7 45.3 12.4 19.2 3.27 0.29 2.35 13.85 8 20.09 136.2 33.6 10.1 15.9 2.66 0.25 2.11 12.63 9 18.24 104.9 25.9 10.9 14.2 1.61 0.25 1.82 16.09 10 16.52 178.4 56.1 17.1 21.7 3.76 0.31 2.58 14.92 11 16.63 167.2 47.2 16.7 23.4 3.39 0.28 2.01 13.92 12 17.54 153.1 54 17.3 24.3 2.78 0.35 2.22 19.42 表 2 2018年1—12月某水质净化厂出水水质
Table 2. Analysis of effluent quality in the municipal wastewater treatment plant from January to December, 2018
mg·L−1 月份 COD BOD NH4+-N TN TP 1 21.73 3.50 0.68 12.60 0.33 2 17.19 3.51 0.63 11.83 0.29 3 19.33 2.83 0.46 12.91 0.34 4 19.90 2.52 0.54 11.82 0.27 5 15.44 2.31 0.36 12.00 0.26 6 13.41 2.33 1.00 14.90 0.17 7 14.28 2.18 0.14 7.27 0.21 8 14.42 2.03 0.20 6.37 0.20 9 13.84 2.19 0.17 6.32 0.14 10 17.51 2.13 0.16 9.30 0.26 11 15.62 2.32 0.27 11.10 0.25 12 14.45 2.18 0.23 10.27 0.28 表 3 二级出水和深度出水水质
Table 3. Effluent quality of secondary and advanced treatment processes
mg·L−1 水质来源 SS COD NH4+-N TN TP 进水 217.78 200.47 16.83 24.2 3.68 二级出水 6.11 16.52 0.40 10.93 0.63 深度出水 4.05 16.43 0.40 10.56 0.25 -
[1] 刘章富, 熊杨, 侯铁, 等. 同步生物除磷脱氮的几种实用新工艺[J]. 中国给水排水, 2002, 18(9): 65-68. doi: 10.3321/j.issn:1000-4602.2002.09.022 [2] 李斯亮. A2O工艺处理东北小城镇污水的优化运行及效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [3] 冀宝友. Orbal氧化沟在小城镇污水处理厂中的调试运行研究[D]. 重庆: 重庆大学, 2011. [4] 赵维妍. SBR工艺处理生活污水同步脱氮除磷的效能研究[D]. 郑州: 华北水利水电大学, 2019. [5] POGNANI M, BARRENA R, FONT X, et al. A complete massbalance of a complex combined anaerobic/aerobic municipal source-separated waste treatment plant[J]. Bioresource Technology, 2011, 102(7): 4646-4653. [6] 杨洋. 城市污水厂A2O工艺效能优化与应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [7] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 1989. [8] 郑兴灿, 张昱. 城镇污水处理厂微量污染物的来源与控制途径[J]. 给水排水, 2018, 54(2): 1-3. doi: 10.3969/j.issn.1002-8471.2018.02.001 [9] 郭玉梅, 李志平, 王莹莹, 等. A2O与V型滤池组合工艺强化脱氮除磷性能分析[J]. 中国给水排水, 2015, 31(5): 11-15. [10] 许德超, 陈洪波, 李小明, 等. 静置/好氧/缺氧序批式反应器(SBR)脱氮除磷效果研究[J]. 环境科学学报, 2014, 34(1): 152-159. [11] 郑育毅. 改性硅藻土深度处理城市污水厂尾水的实验研究[J]. 环境工程学报, 2011, 5(7): 1527-1531. [12] 郭强. 城市污水处理厂升级改造工艺及运行研究[D]. 西安: 西安工业大学, 2018. [13] 夏雪, 邵明非, 吕小梅, 等. 不同碳源驯化除磷污泥的除磷效果及菌群结构分析[J]. 环境科学研究, 2014, 27(8): 936-942.