-
电催化氧化技术由于具有占地面积小、氧化能力强、无二次污染等特点而广泛应用于难生物降解废水的预处理或未达标废水的深度处理中[1-2]。电催化氧化反应发生在电极和溶液相接触的区域,将污染物传递到电极表面成为电催化氧化反应的基础与前提。有研究[3]表明:传质问题成为了限制电催化氧化技术应用的原因之一。因此,改善系统内的传质对提高电催化氧化的效率及降低能耗有明显作用,增加体系流体速度,会加速污染物由溶液向电极表面的扩散及电极表面生成强氧化物质向溶液中的传递速度,最终提高电催化降解速率。此外,有机物电催化氧化过程受传质控制,为了提高电催化氧化反应器的传质性能,研究者[3-6]从不同角度开展研究,如改变操作参数、开发新型反应器、湍流增强组件、折流板、改变电极的几何结构来优化反应器内流体流动和流体分布等。
由于电催化氧化反应是在电极表面发生的,溶液的对流和扩散会造成反应区域内的流体流动及物质浓度分布不均,不同电极位置的极化程度和反应速度也不相同,因此,了解电极表面的局部传质性能是有益的。尽管实验方法可以获得反应器内的平均传质系数[7-8],然而电催化氧化反应在阴阳极之间进行,加上反应过程伴随着气体析出带来的扰动,目前已有的实验方法难以精确测定反应区域内的某一点的流速。计算机技术的发展为预测反应器内流体的流动提供了可能。
计算流体力学(computional fluid dynamics, CFD)是基于能量、质量及动量定律发展的数值模拟工具,已广泛应用于废水处理领域的研究中[9-11]。与实验方法相比,CFD可以显著地降低实验测试的次数,节约资金和时间。CFD能够精确地模拟水处理单元流体的流动行为,并在有限的时间内模拟反应器的性能,通过改变参数条件寻求最佳设计方案,对反应器设计、优化起到了重要的作用。有研究[11]利用CFD对管式电化学反应器去除废水中的Cr(VI)进行模拟实验,结果表明,较低流速下反应器的进水口位置对系统内的流体扩散有重要的影响,增加流速能够显著促进反应器内的流体扩散和污染物的去除速度。DURAN等[12]利用CFD不同模型对环形管反应器进行模拟,并确定层流模型能够预测Re<1 500的流体流动情况,使用AKN和Reynolds应力模型对反应器模拟的可信度较高。SANTOS等[13]利用CFD对电催化反应器内的流体流动及传质情况进行了模拟,利用传质准数方程对模拟结果进行验证,结果表明,CFD预测与实验所得舍伍德数(Sh)吻合度较高,证明了CFD结果的准确性。张艺龙[14]将CFD用于电催化氧化反应器电极组件与隔板的相对位置进行模拟研究,对反应器进行改进,其能耗较改进前平均降低30.80%。SU等[15]研究结果表明,将网状电极代替传统平板电极后,其可以作为湍流组件增加流体的扰动,且传质无因次方程与实验结果吻合度较高。
本研究从数值仿真角度,采用CFD比较相同有效面积的平板结构和网状结构电极对反应器内部流体分布及速度的影响,并模拟不同进水位置对反应器及电极表面速度分布情况,进而优化电催化反应器的设计,通过确定传质准数方程对模型进行验证。此外,利用极限电流法测定不同进水方式时反应器内的平均传质系数,从而为开发高效传质电催化氧化反应器提供参考。
CFD模拟用于电催化反应器电极结构及进水方式的优化
Optimization of electrode shape and influent mode of electro-catalytic reactor based on CFD simulation
-
摘要: 为优化电催化反应器内不同构型的电极结构及进水方式,利用计算流体力学(CFD),模拟反应器内部流体分布并对利用极限电流密度法模拟结果进行实验验证。结果表明:切向进水时,反应器内的传质性能最佳,当进流速为0 m·s−1时,其极限电流为侧面进水和的底部进水1.34倍和1.21倍;当增大进水流速至0.062 m·s−1时,切向进水的极限电流为静止时的1.49倍,切向进水传质增强系数γ为1.475,高于底部进水(1.428)及侧面进水(1.317)方式。网状的电极结构及切向进水有利于反应器内及电极表面的均匀的速度分布,进而提高反应过程中溶液分布的一致性及空间利用率;增大进水流速可以有效地提高反应器的极限电流和传质性能。上述研究结果可为电催化反应器的设计提供一定的参考。
-
关键词:
- 电催化反应器 /
- 计算流体力学(CFD) /
- 电极结构 /
- 进水方式
Abstract: In order to optimize the electrode configuration and influent mode inside the electro-catalytic ractor, computational fluid dynamics (CFD) was used to simulate the velocity distribution and the simulation result was validated by limiting current method. The results showed that tangential influent mode had excellent mass transfer capability, its limiting current was 1.34 times and 1.21 times of that in lateral and bottom influent modes under static conditions, respectively. When the inlet velocity increased to 0.062 m·s−1, the limiting current of tangential influent mode was 1.49 times of the static state, and the corresponding mass transfer enhancement factor (γ) was 1.475, being higher than that of bottom (1.428) and lateral (1.317) influent mode, which illustrated that the limiting current and mass transfer capability can be enhanced by increasing inlet velocity effectively. The result demonstrated mesh electrode and tangential influent mode favored the uniform velocity distribution on electrode surface and in the electro-catalytic reactor so as to promote the uniformity of solution distribution and space utilization in electro-catalytic reaction. In addition, increasing inlet velocity could effectively enhance the limiting current and mass transfer performance of electro-catalytic reactor. The above result would provide certain reference for the design of electrochemical reactors. -
-
[1] RUIZ B G, GOMEZ-LAVIN S, DIBAN N, et al. Efficient electrochemical degradation of poly- and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant[J]. Chemical Engineering Journal, 2017, 322: 196-204. doi: 10.1016/j.cej.2017.04.040 [2] 黄琳琳, 李珊珊, 刘峻峰, 等. 电催化氧化/EGSB/SBR处理养牛场废水的效能研究[J]. 中国给水排水, 2019, 35(23): 1-5. [3] JUTTER K, GALLA U, SCHMOEDER H. Electrochemical approaches to environmental problems in the process industry[J]. Electrochimica Acta, 2000, 45: 2575-2594. doi: 10.1016/S0013-4686(00)00339-X [4] LIRA-TECO J E, RIVERA F, FARIAS-MOGUEL O, et al. Comparison of experimental and CFD mass transfer coefficient of three commercial turbulence promoters[J]. Fuel, 2016, 167: 337-346. doi: 10.1016/j.fuel.2015.11.053 [5] 韩金磊. 基于计算流体力学的电化学反应器流场模拟机结构优化[D].长春: 吉林大学, 2011. [6] BENGOA C, MONTILLET A, LEGENTILHOMME P, et al. Characterization and modeling of the hydrodynamic behavior in the filter-press-type FM01-LC electrochemical cell by direct flow visualization and residence time distribution[J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2199-2206. [7] RIVERA E P, RIVERA F F, CRUZ-DIAZ M R, et al. Numerical simulation of mass transport in a filter press type electrochemical reactor FM01-LC: Comparison of predicted and experimental mass transfer coefficient[J]. Chemical Engineering Research & Design, 2012, 90(11): 1969-1978. [8] WANG J D, LI T T, ZHOU M M, et al. Characterization of hydrodynamics and mass transfer in two types of tubular electrochemical reactors[J]. Electrochimica Acta, 2015, 173: 698-704. doi: 10.1016/j.electacta.2015.05.135 [9] 刘伟京, 李根锋, 徐军, 等. 厌氧折流板反应器的水力流态模拟及优化[J]. 中国给水排水, 2012, 28(11): 6-9. doi: 10.3969/j.issn.1000-4602.2012.11.002 [10] 柳蒙蒙, 陈梅雪, 杨敏, 等. 基于CFD的大型膜生物反应器的设计及运行优化[J]. 环境工程学报, 2018, 12(2): 552-558. doi: 10.12030/j.cjee.201708022 [11] MARTINEZ-DELGADILLO S A, MOLLINEDO-PONCE H, MENDOZA-ESCAMILLA V, et al. Residence time distribution and back-mixing in a tubular electrochemical reactor operated with different inlet flow velocities, to remove Cr(VI) from wastewater[J]. Chemical Engineering Journal, 2010, 165: 776-783. doi: 10.1016/j.cej.2010.09.066 [12] DURAN J E, TAGHIPOUR F, MOHSENI M, et al. CFD modeling of mass transfer in annular reactors[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5390-5401. [13] SANTOS J, GERALDES V, VELIZAROV S, et al. Characterization of fluid dynamics and mass-transfer in an electrochemical oxidation cell by experimental and CFD studies[J]. Chemical Engineering Journal, 2010, 157(2/3): 379-392. [14] 张艺龙. 电催化氧化体系效能预测模型构建及反应器构型优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2013. [15] SU J, LU H Y, XU H, et al. Mass transfer enhancement for mesh electrode on a tubular electrochemical reactor using experimental and numerical simulation method[J]. Russian Journal of Electrochemistry, 2011, 47: 1293-1298. doi: 10.1134/S1023193511110140 [16] RIVER F F, PONCE D L C, WALSH F C, et al. The reaction environment in a filter-press laboratory reactor: The FM01-LC flow cell[J]. Electrochimica Acta, 2015, 161: 436-452. doi: 10.1016/j.electacta.2015.02.161 [17] GRIFFITHS M, CARLOS P D L. Mass transport in the rectangular channel of a filter-press electrolyzer (The FM01-LC reactor)[J]. AIChE Journal, 2005, 51(2): 682-687. doi: 10.1002/aic.10311 [18] WALSH F C. A First Course in Electrochemical Engineering[M]: Romsey: The Electrochemical Consultancy, 1993. [19] 苏静. 有机污染物电化学氧化反应器的流体动力学和传质性能研究[D]. 长春: 吉林大学, 2011.