-
水解酸化工艺具有处理水量大、耐冲击负荷、运行费用低等特点,在高浓度且不易生物降解的纺织印染等工业废水处理中获得了广泛的应用[1]。水解酸化工艺运行性能的评估一直是近年来的研究热点和难点[2],目前尚缺乏有效的在线评估手段和设备,常用的B/C变化以及挥发性脂肪酸含量等指标,均存在检测周期较长、反馈不及时等问题。当发生异常工况时,可能因为反馈不及时而无法进行有效地应急处理,从而对水解酸化系统运行效果以及后续生化工艺环节的处理效率和出水达标造成负面影响。因此,有必要开发新型在线评估水解酸化工艺运行性能的指标和方法,从而实现对运行工况的及时反馈。
微生物燃料电池(MFC)型传感器是一种颇具吸引力的新型电化学微生物传感器,MFC本质是一种利用微生物的催化作用,将有机物中的化学能转化为电能的电化学装置。在经典的双室MFC结构[3]中,具有胞外电子传递能力的微生物(exoelectrogenic bacteria)附着生长在阳极表面,在氧化有机生物质的同时释放电子和质子。电子通过外电路传递到阴极,同时质子透过质子交换膜或者阳离子交换膜扩散到阴极室。在阴极表面,电子、质子和氧化剂反应,最终生成稳定的还原产物,从而完成整个能量转化的电化学过程。
MFC传感器已用于各种领域,如水质监测、工艺过程在线监测、胞外产电菌筛选、腐蚀性生物膜识别和病原体检测[4-6]。近年来,研究人员又尝试开发了多种用于工艺在线诊断的MFC传感器,与传统的生物传感器相比,MFC传感器具有以下几个主要优点:待监测的水样可以为MFC提供富集阳极微生物所需的接种菌和有机底物;作为传感元件,MFC传感器中的阳极生物膜能够先天再生和自我修复,显著提高了传感器的稳定性和自我可持续性;MFC传感器不需要额外的传感器或电源,因为其可直接产生和输出电信号;在传感器操作期间,不需要额外的营养物质、底物或微生物,这简化了MFC传感器的管理和维护并降低了相关成本。
XU等[7]制作了一套潜水式MFC传感器,通过综合分析MFC电压、阳极电位和工作温度的变化,允许人们跟踪活性污泥工艺的运行状态,并提供潜在风险的早期预警,包括进水中高浓度有机物和氨氮冲击、温度异常和毒性物质冲击。结果表明,该在线监测和预警系统具有对AS体系性能变化的高度敏感,并且具有良好的稳定性和重现性。LIU等[8]研制了一种用于监测厌氧消化(AD)过程的壁喷射微生物燃料电池,发现MFC的电信号与pH变化、甲烷气体产量以及进水中的COD浓度在6个月的实验中具有良好的相关性,从而首次验证了MFC信号可以反映AD过程的动态变化。之后LIU等[9]又开发了一套集成MFC、气体流量计和pH计的新型传感器系统,重点研究该系统对厌氧发酵过程的在线诊断性能,在进水中施加不同类型冲击时,观察到MFC电信号、质子浓度和气体流速的重复瞬态响应,瞬态响应持续时间<1~6 h。而JIA等[10]则研究了一种将基于微生物燃料电池(MFC)的生物传感器和上流式厌氧污泥床(UASB)相结合的新型耦合系统,用于UASB反应器内部操作的实时在线监测,通过比较电压和pH之间的信号反馈时间点,来探索不同浓度的灵敏度。结果表明,电信号反馈比pH更敏感,并且在进水浓度为1 000~4 000 mg·L−1时,具有可接受的重现性和稳定性。
目前,基于MFC技术的生物传感器在水解酸化工艺在线监测中的应用研究鲜有报道。本研究分别模拟了水解酸化正常进水和异常进水冲击的工况,考察了MFC型传感器用于水解酸化工艺在线监测的可行性,从微观层面,探讨了不同工况下MFC阳极室内微生物群落结构特征,为扩展MFC型传感器的应用范围提供了有效依据。
微生物燃料电池在水解酸化工艺运行性能评估中的应用
Application of microbial fuel cells in evaluation of the operation performance of hydrolytic acidification process
-
摘要: 为扩展水解酸化工艺运行性能在线评估的新方法,研究了微生物燃料电池(MFC)对于水解酸化体系正常及异常进水工况下运行情况的反馈性能,考察了MFC作为水解酸化工艺在线监测传感器的可行性。结果表明:在启动运行的第1阶段,将水解酸化体系进水碳氮比条件控制为40∶1时,主要污染物COD的去除率保持在50%,总氮平均去除率20%,MFC电信号也总体平稳;第2阶段,向水解酸化体系进水间歇施加一系列的低碳氮比(0.5∶1、0.5∶1、20∶1、8∶1、4∶1、2∶1、1∶1)冲击,在冲击施加期间,MFC电信号有非常明显的增强峰反馈,且最高电压值与进水中施加的低碳氮比冲击的比值呈线性关系。采用16S rDNA宏基因组高通量测序技术,对比分析了微生物燃料电池阳极室内微生物在接受碳氮比冲击前后的微生物菌群结构的差异,结果显示,多次低碳氮比冲击会促进MFC阳极生物膜中优势菌门厚壁菌门Firmicutes、拟杆菌门Bacteroidetes和阳极室悬浮物中优势菌门变形菌门Proteobacteria的富集,从而刺激产电。本研究结果可为MFC在水解酸化工艺运行性能评估中的应用提供参考。Abstract: In order to extending a new method for online evaluation of the operation performance of the hydrolysis and acidification process, the feedback performance of the microbial fuel cell (MFC) to the operation of the hydrolytic acidification system under normal and abnormal influent conditions was studied, and the feasibility of using MFC as an on-line monitoring sensor for the hydrolytic acidification process was investigated. The results showed that at the first stage of the start-up operation, when the carbon-nitrogen ratio in the influent of the hydrolysis acidification system was controlled at 40∶1, the average removal rate of main pollutants COD maintained at 50%, and the average removal rate of ammonia nitrogen was 20%, and the electrical signal of MFC was generally stable. At the second stage, a series of shocks with low carbon-nitrogen ratios (0.5∶1, 0.5∶1, 20∶1, 8∶1, 4∶1, 2∶1, 1∶1) were applied intermittently to the influent of hydrolyzed acidification system, during the application of the shock, the significantly enhanced peak feedback occurred in the MFC electrical signal, and a linear relationship was determined between the highest voltage value and the ratio of the low carbon-nitrogen shock applied to the influent. The 16S rDNA metagenome high-throughput sequencing technology was used to comparative analyze the difference of microbial community structure in the microbial fuel cell anode chamber before and after the carbon-nitrogen ratio shock. It was found that multiple low-carbon-to-nitrogen ratio shocks could promote the enrichment of the dominant phylum Firmicutes and Bacteroidetes in the anode biofilm of MFC, and the enrichment of the dominant phylum Proteobacteria in the suspension of anode chamber, thereby stimulate the electricity generation. The research can provide a reference for the application of MFC in the evaluation of the operation performance of the hydrolytic acidification process.
-
-
[1] 薛念涛, 曹明利, 纪玉琨, 等. 水解酸化工艺的研究现状与发展趋势[J]. 环境工程, 2013, 31(5): 50-54. [2] 丁雷, 祁佩时, 赵一先. 水解酸化工艺效果评价体系研究[J]. 环境工程, 2012, 30(6): 65-68. [3] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. [4] JIANG Y, YANG X F, PENG L, et al. Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 292-305. doi: 10.1016/j.rser.2017.06.099 [5] SUN J Z, KINGORIS G P, SI R W, et al. Microbial fuel cell-based biosensors for environmental monitoring: A review[J]. Water Science & Technology, 2015, 71(6): 801-809. [6] YANG H J, ZHOU M H, LIU M M, et al. Microbial fuel cells for biosensor applications[J]. Biotechnology Letters, 2015, 37(12): 2357-2364. doi: 10.1007/s10529-015-1929-7 [7] XU G H, WANG Y K, SHENG G P, et al. An MFC-based online monitoring and alert system for activated sludge process[J]. Scientific Reports, 2014, 4: 6779. [8] LIU Z D, LIU J, ZHANG S P, et al. Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process[J]. Bioresource Technology, 2011, 102: 10221-10229. doi: 10.1016/j.biortech.2011.08.053 [9] LIU Z D, LIU J, LI B M, et al. Focusing on the process diagnosis of anaerobic fermentation by a novel sensor system combining microbial fuel cell, gas flow meter and pH meter[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13658-13664. doi: 10.1016/j.ijhydene.2014.04.076 [10] JIA H, YANG G, WANG J, et al. Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and upflow anaerobic sludge bed reactor[J]. Bioresource Technology, 2016, 218: 286-293. doi: 10.1016/j.biortech.2016.06.064 [11] KIM J R, CHENG S A, OH S E, et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells[J]. Environmental Science & Technology, 2007, 41: 1004-1009. [12] 何伟华. 空气阴极微生物燃料电池模块化构建与放大构型关键因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [13] 史昕欣. 空气阴极微生物燃料电池阴极结构及催化剂的研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. [14] SUN M, SHENG G P, ZHANG L, et al. An MEC-MFC-coupled system for biohydrogen production from acetate[J]. Environmental Science & Technology, 2008, 42(21): 8095-8100. [15] 唐嘉丽, 岳秀, 于广平, 等. 双氧水协同生化法处理实际印染废水[J]. 环境工程学报, 2018, 12(7): 1942-1950. doi: 10.12030/j.cjee.201712056 [16] 梁鹏, 范明志, 曹效鑫, 等. 微生物燃料电池表观内阻的构成和测量[J]. 环境科学, 2007, 28(8): 1894-1898. doi: 10.3321/j.issn:0250-3301.2007.08.043 [17] LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews Microbiology, 2019, 17: 307-319. doi: 10.1038/s41579-019-0173-x [18] KUNTKE P, SMIECH K M, BRUNING H, et al. Ammonium recovery and energy production from urine by a microbial fuel cell[J]. Water Research, 2012, 46(8): 2627-2636. doi: 10.1016/j.watres.2012.02.025 [19] KUNTKE P, GELEJI M, BRUNING H, et al. Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell[J]. Bioresource Technology, 2011, 102(6): 4376-4382. doi: 10.1016/j.biortech.2010.12.085 [20] GIL G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics, 2003, 18: 327-334. doi: 10.1016/S0956-5663(02)00110-0 [21] KIM G T, WEBSTER G, WIMPENNY J W, et al. Bacterial community structure, compartementalization and activity in a microbial fuel cell[J]. Journal of Applied Microbiology, 2006, 101: 698-710. doi: 10.1111/j.1365-2672.2006.02923.x [22] RABAEY K, BOON N, SICILIANO S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology, 2004, 70: 5373-5382. doi: 10.1128/AEM.70.9.5373-5382.2004 [23] AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental Science & Technology, 2006, 40: 3388-3394. [24] LEE J, PHUNG N T, CHANG I S, et al. Use of acetate for enrichment of electrochemically active microorganisms and their 16S-rDNA analyses[J]. FEMS Microbiology Letters, 2003, 223(2): 185-191. doi: 10.1016/S0378-1097(03)00356-2