-
水体富营养化是严重的水质污染问题,磷是导致水体富营养化的主要营养元素[1]。为抑制藻类生长,水体中磷浓度应控制在一个较低的范围内(<0.05 mg∙L−1)[2]。但A/A/O等污水处理工艺对磷的去除效果并不理想,出水磷浓度一般在0.5~2 mg∙L−1[3-4]。因此,需要深度除磷,以进一步降低水中的磷浓度。
吸附法是一种常用的水处理方法,与其他深度除磷方法(如纳滤/反渗透[5]、离子交换[6]和人工湿地[7]等)相比,具有操作简便、出水水质优和运行稳定等优势[8-10]。在除磷吸附剂中,金属复合吸附剂有较强的磷酸盐吸附特性[11-13],其可融合单金属的优势,且能够展现出不同于单金属的物理化学特性,如较大的比表面积和零电位点(pHpzc)等,在一定程度上提高了对磷酸盐的吸附性能[14-15]。LYU等[12]合成了Fe-Al-Mn复合吸附剂,他们在Fe-Mn的基础上引进了氧化铝,提高了吸附剂的pHpzc和除磷性能。HAO等[13]合成了La-Fe复合吸附剂,发现Fe的掺杂提高了吸附剂的除磷性能及其分离能力。
铈和锆基吸附剂具有环境友好、抗酸碱能力强、稳定性高等优势,其对磷酸盐具有优良的去除能力和较高的选择性[16-18]。SU等[18]制备的Ce-Zr复合吸附剂具有较佳的磷吸附容量和选择性,但其pHpzc仅为3.9,当pH接近中性时,磷的去除率急剧下降,最低降至55%,而水的pH通常为中性,影响其实际应用。ZnO是常用的金属氧化物,除磷性能良好,且具有高的零电位点(pHpzc=9.5)[19]。将ZnO掺杂至Ce-Zr中,可望有效改善吸附剂pHpzc,提高pH使用范围和除磷能力。因此,本研究制备了一种新型的Ce-Zr-Zn复合吸附剂,结合XRD、SEM、BET、XPS和FT-IR等分析表征手段,研究了其深度除磷的吸附性能和相关机理,旨在寻找一种理想的除磷吸附剂,并为该材料用于水体深度除磷提供参考。
三元复合吸附剂Ce-Zr-Zn对水中低浓度磷的吸附性能及其机理
Performance and mechanism of adsorption of low concentration phosphate in water by Ce-Zr-Zn ternary composite adsorbent
-
摘要: 为缓解水体富营养化问题,通过沉淀法合成了新型的三元复合吸附剂Ce-Zr-Zn,且将其用于除磷研究。结合XRD、SEM、BET、XPS和FT-IR表征分析,研究了其对水中低浓度磷的吸附性能及可能的吸附机理。结果表明:Ce-Zr-Zn具有优异的除磷特性,磷的去除率可高达96%,出水磷浓度低于0.045 mg·L−1;其对磷酸盐的最大吸附容量为66.61 mg·g−1,磷酸盐吸附过程符合拟二级动力学模型和Freundlich模型。此外,吸附剂具有较宽的pH适用范围(3~9)和良好的磷酸盐选择性。机理分析结果表明,配位体交换和静电吸附是该吸附剂除磷的主要原因。以上结果可为该材料用于水体深度除磷提供参考。Abstract: In order to alleviate the eutrophication problem, a novel Ce-Zr-Zn ternary composite adsorbent was synthesized by co-precipitation method for phosphate removal. The adsorption performance and proposed mechanisms of low concentration phosphate were investigated through the combination of XRD, SEM, BET, XPS and FT-IR characterization analysis. The results showed that the adsorbent had an excellent performance on phosphate removal with the removal rate above 96%, and the residual phosphate concentrations in the effluent were below 0.045 mg·L−1. The maximum phosphorus adsorption capacity was 66.61 mg·g−1. The phosphate adsorption process conforms to the pseudo-second-order kinetic model and Freundlich model. In addition, the adsorbent exhibited a wide pH range of 3~9 and a good selectivity toward phosphate. The mechanism analysis showed that ligand exchange and electrostatic interaction are the main phosphorus removal contributors. The above results can provide references for the application of this Ce-Zr-Zn ternary composite adsorbent to perform advanced phosphate removal in water.
-
Key words:
- phosphate removal /
- Ce-Zr-Zn /
- adsorption performance /
- mechanisms
-
表 1 磷吸附动力学参数
Table 1. Kinetic parameters for phosphate adsorption
拟一级动力学 拟二级动力学 k1/min−1 qe/ (mg∙g−1) R2 k2/ (g∙(mg·min)−1) qe /(mg∙g−1) R2 0.012 3.96 0.956 0.003 4.79 0.968 表 2 磷吸附等温线拟合参数
Table 2. Isotherm parameters for phosphate adsorption
Langmuir模型 Freundlich 模型 KL/(L∙mg−1) qm /(mg∙g−1) R2 KF n R2 0.60 66.61 0.860 38.10 7.24 0.977 -
[1] ZAMPARAS M, ZACHARIAS I. Restoration of eutrophic freshwater by managing internal nutrient loads: A review[J]. Science of the Total Environment, 2014, 496: 551-562. doi: 10.1016/j.scitotenv.2014.07.076 [2] GENZ A, KORNMÜLLER A, JEKEL M. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide[J]. Water Research, 2004, 38: 3523-3530. doi: 10.1016/j.watres.2004.06.006 [3] MULKERRINS D, DOBSON A D W, COLLERAN E. Parameters affecting biological phosphate removal from wastewaters[J]. Environment International, 2004, 30: 249-259. doi: 10.1016/S0160-4120(03)00177-6 [4] IFTEKHAR S, KÜÇÜK M E, SRIVASTAVA V, et al. Application of zinc-aluminium layered double hydroxides for adsorptive removal of phosphate and sulfate: Equilibrium, kinetic and thermodynamic[J]. Chemosphere, 2018, 209: 470-479. doi: 10.1016/j.chemosphere.2018.06.115 [5] DOLAR D, KOŠUTIĆ K, VUČIĆ B. RO/NF treatment of wastewater from fertilizer factory: Removal of fluoride and phosphate[J]. Desalination, 2011, 265: 237-241. doi: 10.1016/j.desal.2010.07.057 [6] KIM H C. High-rate MIEX filtration for simultaneous removal of phosphorus and membrane foulants from secondary effluent[J]. Water Research, 2015, 69: 40-50. doi: 10.1016/j.watres.2014.11.012 [7] PARK J H, WANG J J, KIM S H, et al. Phosphate removal in constructed wetland with rapid cooled basic oxygen furnace slag[J]. Chemical Engineering Journal, 2017, 327: 713-724. doi: 10.1016/j.cej.2017.06.155 [8] SHI W, FU Y, JIANG W, et al. Enhanced phosphate removal by zeolite loaded with Mg-Al-La ternary (hydr)oxides from aqueous solutions: Performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 33-44. doi: 10.1016/j.cej.2018.08.003 [9] CHEN L, LI Y, SUN Y, et al. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability[J]. Chemical Engineering Journal, 2019, 360: 342-348. doi: 10.1016/j.cej.2018.11.234 [10] GU W, XIE Q, QI C, et al. Phosphate removal using zinc ferrite synthesized through a facile solvothermal technique[J]. Powder Technology, 2016, 301: 723-729. doi: 10.1016/j.powtec.2016.07.015 [11] 雷行, 杨雪, 刘婷, 等. 锆改性铝氧化物对水中磷的吸附特性[J]. 环境工程学报, 2018, 12(5): 1389-1396. doi: 10.12030/j.cjee.201710107 [12] LYU J, LIU H, LIU R, et al. Adsorptive removal of phosphate by a nanostructured Fe-Al-Mn trimetal oxide adsorbent[J]. Powder Technology, 2013, 233: 146-154. doi: 10.1016/j.powtec.2012.08.024 [13] HAO H, WANG Y, SHI B. NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: Synthesis and adsorption mechanistic study[J]. Water Research, 2019, 155: 1-11. doi: 10.1016/j.watres.2019.01.049 [14] LIU R, SUI W Y, WANG Y, et al. Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water[J]. Journal of Environmental Chemical Engineering, 2018, 6: 5269-5286. doi: 10.1016/j.jece.2018.08.008 [15] REN Z, SHAO L, ZHANG G. Adsorption of phosphate from aqueous solution using an iron-zirconium binary oxide sorbent[J]. Water, Air and Soil Pollution, 2012, 223: 4221-4231. doi: 10.1007/s11270-012-1186-5 [16] LIU T, ZHENG S, YANG L. Magnetic zirconium-based metal-organic frameworks for selective phosphate adsorption from water[J]. Journal of Colloid Interface Science, 2019, 552: 134-141. doi: 10.1016/j.jcis.2019.05.022 [17] WANG L, WANG J, HE C, et al. Development of rare earth element doped magnetic biochars with enhanced phosphate adsorption performance[J]. Colloids and Surfaces A, 2019, 561: 236-243. doi: 10.1016/j.colsurfa.2018.10.082 [18] SU Y, YANG W, SUN W, et al. Synthesis of mesoporous cerium-zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water[J]. Chemical Engineering Journal, 2015, 268: 270-279. doi: 10.1016/j.cej.2015.01.070 [19] DEGEN A, KOSEC M. Effect of pH and impurities on the surface charge of zinc oxide[J]. Journal of the European Ceramic Society, 2000, 20: 667-673. doi: 10.1016/S0955-2219(99)00203-4 [20] MITROGIANNIS D, PSYCHOYOU M, BAZIOTIS I, et al. Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite[J]. Chemical Engineering Journal, 2017, 320: 510-522. doi: 10.1016/j.cej.2017.03.063 [21] LIU X, HU Q, WU Q, et al. Aligned ZnO nanorods: A useful film to fabricate amperometric glucose biosensor[J]. Colloids Surfaces B: Biointerfaces, 2009, 74: 154-158. doi: 10.1016/j.colsurfb.2009.07.011 [22] LIU H, SUN X, YIN C, et al. Removal of phosphate by mesoporous ZrO2[J]. Journal of Hazardous Materials, 2008, 151: 616-622. doi: 10.1016/j.jhazmat.2007.06.033 [23] FU H, YANG Y, ZHU R, et al. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite[J]. Journal of Colloid Interface Science, 2018, 530: 704-713. doi: 10.1016/j.jcis.2018.07.025 [24] HE Y, LIN H, DONG Y, et al. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism[J]. Applied Surface Science, 2017, 426: 995-1004. doi: 10.1016/j.apsusc.2017.07.272 [25] KUROKI V, BOSCO G E, FADINI P S, et al. Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media[J]. Journal of Hazardous Materials, 2014, 274: 124-131. doi: 10.1016/j.jhazmat.2014.03.023 [26] FANG L, LIU R, LI J, et al. Magnetite/lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles[J]. Water Research, 2018, 130: 243-254. doi: 10.1016/j.watres.2017.12.008