芬顿与氧化钙联合处理填埋库污泥的力学特性

林珊伊, 孙德安, 朱明瑞, 武亚军. 芬顿与氧化钙联合处理填埋库污泥的力学特性[J]. 环境工程学报, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
引用本文: 林珊伊, 孙德安, 朱明瑞, 武亚军. 芬顿与氧化钙联合处理填埋库污泥的力学特性[J]. 环境工程学报, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
LIN Shanyi, SUN De'an, ZHU Mingrui, WU Yajun. Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
Citation: LIN Shanyi, SUN De'an, ZHU Mingrui, WU Yajun. Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027

芬顿与氧化钙联合处理填埋库污泥的力学特性

    作者简介: 林珊伊(1995—),女,硕士研究生。研究方向:污泥处理。E-mail:lsyer031@shu.edu.cn
    通讯作者: 孙德安(1962—),男,博士,教授。研究方向:土力学。E-mail:sundean@shu.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(41772303)
  • 中图分类号: X705

Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide

    Corresponding author: SUN De'an, sundean@shu.edu.cn
  • 摘要: 面对城市生活污泥填埋库容趋于饱和的现状,亟需研究开发城市生活污泥的减量化及资源化技术。以填埋库污泥和新鲜污泥为研究对象,进行岩土工程特性实验,发现填埋库污泥有机质含量及含水率远低于新鲜污泥。通过固结实验和直剪实验,分别对比、分析了未加药剂的填埋库污泥和药剂调质填埋库污泥的固结系数、渗透系数和抗剪强度变化规律。结果表明:填埋库污泥在pH为4时,芬顿试剂(硫酸亚铁和过氧化氢)的最佳配比为Fe2+=8%、H2O2=12%;当氧化钙投加量增加时,调质污泥的压缩指数减小,抗剪强度略微增大;考虑到联合处理后污泥的资源化利用、强碱性对环境的影响和处理成本,在实际污泥处理工程中,氧化钙投加量15%是较为合适的添加量,且效果优于常用的氯化铁药剂调制污泥。经芬顿与氧化钙联合处理的填埋库污泥抗剪强度满足填埋库要求,能够实现减容减量,对填埋库污泥后续资源化利用具有一定的指导意义。
  • 随着污水处理厂污泥排放量的逐渐增加,未脱水剩余污泥给运输、贮存带来诸多问题,如果不能有效处理将会转移到大气、水体和土壤中,带来二次污染[1]。通常,传统机械脱水方式对污泥脱水效果比较有限,需要在机械脱水之前进行污泥调理。

    目前的研究已经使用了几种调节过程以提高污泥脱水性能,包括化学、物理、生物调节过程。丁绍兰等[2]利用CaO2氧化处理污泥;张微[3]利用微生物絮凝剂处理富营养化水体;高明[4]利用壳聚糖絮凝剂调理污泥脱水。以上研究人员均仅单独应用调理剂处理污泥来改善脱水性能。

    本研究采用CaO2与微生物絮凝剂或壳聚糖两两组合的方式调理污泥,并且优化投加顺序,重点研究CaO2与絮凝剂投加顺序对调理污泥改善脱水性能的影响。

    原污泥取自内蒙古呼和浩特某污水厂,取回立即放入冰箱中,4 ℃下静置24 h。实验中所用污泥样品均为弃去上清液后所获得的剩余污泥。

    实验试剂:过氧化钙(CaO2)、壳聚糖等均为分析级试剂,微生物絮凝剂根据张薇[3]的方法分离筛选提取制备。

    实验仪器:激光粒度分析仪(BT-9300S型,丹东百特仪器有限公司),Zeta电位(NanoPlus,麦克默瑞提克仪器有限公司),扫描电子显微镜(日立高新S-4800,日立高新技术公司)。

    分别取一定量CaO2(0.8、1.0、1.2 g·L−1)、微生物絮凝剂(4.0、5.0、6.0 g·L−1)、壳聚糖(4.0、5.0、6.0 g·L−1)于100 mL污泥中,并将盛放污泥的100 mL烧杯置于数显式磁力搅拌器,常温搅拌5 min,随后进行污泥比阻实验。做3组平行实验,实验结果取平均值。

    CaO2、微生物絮凝剂及壳聚糖对污泥脱水性能的影响结果如表1所示。可以看出,CaO2在1.0 g·mL−1污泥脱水效果最佳,微生物絮凝剂和壳聚糖均在5.0 g·mL−1时效果最好。

    表 1  调理及投加量
    Table 1.  Conditioning and dosage
    调理剂调理剂投加量/(g·mL−1)比阻SRF/(1013 m·kg−1)含水率/%
    CaO20.89.9390.06
    1.05.7783.76
    1.210.4392.27
    微生物絮凝剂4.07.1891.04
    5.05.3888.41
    6.011.1490.20
    壳聚糖4.011.0391.48
    5.010.4890.94
    6.013.6192.20
    原泥015.5592.72
     | Show Table
    DownLoad: CSV

    实验取一定剂量调理剂于100 mL污泥中,最优条件下进行污泥调理。为了分析CaO2和絮凝剂投加顺序对调理污泥的影响,取2种絮凝剂与CaO2相互组合,设置分组如下:原污泥、CaO2-微生物絮凝剂、微生物絮凝剂-CaO2、壳聚糖-CaO2、CaO2-壳聚糖,然后分析样品的脱水性能并研究相关机理,絮凝剂的投加方式如表2所示。

    表 2  调理剂投加方式
    Table 2.  Methods of conditioner dosing
    调理剂投加量/(g·L−1)投加顺序最佳温度/℃
    CaO2微生物絮凝剂壳聚糖
    原泥000300 r·min−1搅拌10 min30
    CaO2-微生物絮凝剂0.10.50CaO2 300 r·min−1搅拌3 min,微生物絮凝剂500 r·min−1搅拌7 min30
    微生物絮凝剂-CaO20.50.10微生物絮凝剂500 r·min−1搅拌7 min,CaO2 300 r·min−1搅拌3 min30
    CaO2-壳聚糖0.100.1CaO2 300 r·min−1搅拌5 min,壳聚糖300 r·min−1搅拌5 min30
    壳聚糖-CaO20.100.1壳聚糖300 r·min−1搅拌5 min,CaO2 300 r·min−1搅拌5 min30
     | Show Table
    DownLoad: CSV

    影响CaO2调理污泥脱水作用的主要因素是pH[5],故本实验初始pH设置为5、6、7、8和9等5个梯度,考察其对污泥脱水性能的影响。按以上顺序及剂量投加搅拌后,测定对应比阻(SRF)。

    污泥Zeta电位测定。分别将原污泥和不同调理剂处理后的污泥置于50 mL离心试管中,以10 000 r·min−1的转速离心10 min,收集上清液。

    污泥悬浊液粒径分布。使用去离子水将污泥样品稀释后,采用激光粒度分析仪[5]测定污泥粒径分布。

    微观形貌分析。通过扫描电子显微镜(SEM)研究污泥样品的微观形貌特征。

    胞外聚合物(EPS)的提取和测定。将样品置于50 mL离心试管,在3 000 r·min−1离心10 min,收集上清液视为可溶性EPS(S-EPS);加入0.05% NaCl溶液作为缓冲溶液,并轻摇1 min至沉淀完全溶解,在2 kHz超声处理10 min,并将此重悬的溶液在7 000 r·min−1离心10 min,收集离心溶液视为松散结合的EPS(LB-EPS);加入缓冲液并轻摇1 min,至残留沉淀完全溶解,在2 kHz超声处理10 min,并将此重悬的溶液在10 000 r·min−1离心10 min,收集离心上清液视为紧密结合的EPS(TB-EPS)。用蒽酮法测定多糖,改良Folin-Lowry法测定蛋白质[6]

    结合水测定。将一定量调理后的污泥置于100 mL离心试管,在10 000 r·min−1离心15 min,除去上清液称得W1,并在105 ℃烘干到恒重,称得W2,离心之前的重量W0[7]W1/W0W2/W0分别反映不同状态预期结合水的变化。

    调理剂投加顺序对污泥脱水性能的影响结果如图1所示,CaO2与微生物絮凝剂或壳聚糖两两组合调理后污泥的SRF(7.13×1013、12.35×1013、5.84×1013、10.98×1013 m·kg−1)均低于原泥SRF(15.55×1013 m·kg−1);CaO2与微生物絮凝剂及壳聚糖两两组合调理后污泥的含水率分别为79.18%、82.41%、80.47%、89.74%,而原污泥的含水率高达92.72%。由此可见,CaO2联合絮凝剂作用的污泥与原泥相比具有更好的脱水性能。由图1可以看出,SRF(CaO2-微生物絮凝剂)<SRF(微生物絮凝剂-CaO2)<SRF(原泥),SRF(CaO2-壳聚糖)<SRF(壳聚糖-CaO2)<SRF(原泥),由此可见,CaO2投加顺序对污泥脱水的影响较大,CaO2在水中会缓慢生成H2O2和O2,是一种安全性高且通用的氧化剂;同时,生成的Ca2+还有助于助凝作用,经计算,在絮凝剂与CaO2的最佳投加比例下,生成的Ca2+完全可以满足絮凝剂对助凝剂投加量的需求。因此,经过CaO2-絮凝剂调节的污泥比絮凝剂-CaO2调节的污泥具有更好的脱水性能。

    图 1  不同调理剂组合对污泥脱水的影响
    Figure 1.  Effects of different combinations ofconditioning agents on sludge dewatering

    初始pH对污泥脱水性能的影响如图2所示。CaO2-壳聚糖调理污泥在pH为5最佳、CaO2-微生物絮凝剂调理污泥的最佳pH为7、微生物絮凝剂-CaO2、壳聚糖-CaO2调理污泥pH均在6为最佳。WU等[8]证明在偏酸性环境中,CaO2可在数小时内完全反应,但当pH超过8时,需要几天乃至几十天才可以反应完全。CaO2反应属于放热反应,随pH的增大,放热逐渐降低,pH越高,越不利于CaO2的反应。因此,pH是研究CaO2作为调理剂的主要因素。在最佳pH时,SRF(CaO2-微生物絮凝剂)<SRF(微生物絮凝剂-CaO2),SRF(CaO2-壳聚糖)<SRF(壳聚糖-CaO2),由此可见,在最佳条件下,经过CaO2-絮凝剂调节的污泥比絮凝剂-CaO2调节的污泥脱水性能更好。

    图 2  pH对污泥脱水的影响
    Figure 2.  Effects of pH on sludge dewatering

    污泥Zeta电位分析结果如图3所示,原污泥电位为−6.18 mV,调理后污泥的电位分布如下:微生物絮凝剂-CaO2为−5.43 mV、壳聚糖-CaO2为−4.58 mV、CaO2-微生物絮凝剂为−1.03 mV、CaO2-壳聚糖为−4.07 mV。根据DLOV理论,Zeta电位越接近0 mV,污泥颗粒脱水性能越好。因此,由以上数据可知,CaO2-絮凝剂对污泥脱水的调理效果最好。本结果与CAO等[9]的研究结果一致,通常情况下,污泥颗粒之间会因为带有相同电荷而排斥,形成相对稳定的胶体态系统,不利于污泥颗粒的脱水性能[10]。因此,减少污泥表面电荷,使污泥颗粒间脱稳凝聚,也被作为改善污泥脱水性能的一种手段。如果先添加CaO2,会使溶液中离子浓度增高,再添加絮凝剂,会使颗粒之间由于絮凝作用相互靠近,扩散层厚度被减小,Zeta电位降低。

    图 3  不同调理剂组合对污泥Zeta电位的影响
    Figure 3.  Effects of different conditioning agent combinations on the zeta potential of sludge

    将各污泥中粒径视为不同调理剂处理后的粒径分布如图4所示,调理后污泥的粒径分布结果为CaO2-微生物絮凝剂(33.73 μm)>微生物絮凝剂-CaO2(32.97 μm)>原泥(30.92 μm);CaO2-壳聚糖(31.65 μm)>壳聚糖-CaO2(31.10 μm)>原泥(30.92 μm),以上2组数据均表明CaO2在絮凝剂之前投加污泥颗粒更大。产生以上结果的原因可能是,污泥EPS中的大分子聚合物会因CaO2的氧化作用转化为低分子质量物质,污泥絮体会在一定程度上发生裂解,导致污泥絮体粒径逐渐减小,絮凝剂使污泥颗粒在桥接、沉淀网捕以及电中和的作用下迅速聚集成更大的颗粒[11]。随着反应时间的延长,压缩双电层所引起的聚集体会因为发生水分剥离使絮凝物尺寸逐渐减小。当聚集的速率与断裂的速率达到平衡时,絮体粒径大小达到稳定[12]。通过比较图4所得数据,表明CaO2-絮凝剂对污泥脱水调理效果更好。

    图 4  不同调理剂组合对污泥粒度分布的影响
    Figure 4.  Effects of different conditioning agent combinations on particle size distribution of sludge

    图5(a)为原污泥的扫描电镜微观形貌图,可以看出,原污泥表面为紧密结合且相对光滑的层状结构,孔隙较少。图5(b)为微生物絮凝剂-CaO2调理后污泥的扫描电镜微观形貌图,可以看出,污泥絮体出现裂痕,表面变得疏松凹凸而不规则,但没有出现较多较大孔隙。图5(c)为污泥在CaO2-微生物絮凝剂调理的扫描电镜微观形貌图,可以看出,污泥絮体表面粗糙不平且由无数小的团状结构聚集组成,出现较多较大孔隙。上述实验结果出现差异的原因可能为:在图5(b)中,污泥在絮凝剂的作用下先絮凝成一个更加密实的整体,将水分牢牢锁住,即使CaO2的氧化作用使污泥表面发生裂解,絮体出现裂痕,也没有形成较多的孔隙[13];在图5(c)中,先投加CaO2,污泥层状结构会在氧化作用下发生裂解破碎形成不规则的小絮体,即使絮凝剂重新团聚组装,也无法拼接成一个密实的整体。由此可见CaO2在絮凝剂之前投加对污泥结构破坏更彻底。

    图 5  原污泥和调理后污泥的扫描电镜图
    Figure 5.  Scanning electron micrograph images of raw and conditioned sludge

    不同调理剂组合对污泥胞外聚合物(EPS)的蛋白质和多糖含量的影响如图6所示。糖类和蛋白质的可溶性胞外聚合物(S-EPS)变化基本一致:CaO2-微生物絮凝剂>CaO2-壳聚糖>壳聚糖-CaO2>微生物絮凝剂-CaO2>原泥。结合蛋白质(LB-EPS、TB-EPS)变化:原泥>壳聚糖-CaO2>微生物絮凝剂-CaO2>CaO2-壳聚糖>CaO2-微生物絮凝剂。结合糖类(LB-EPS、TB-EPS)变化:原泥>壳聚糖-CaO2>微生物絮凝剂-CaO2>CaO2-微生物絮凝剂>CaO2-壳聚糖。由此可知,调理剂处理过后的可溶性糖类和可溶性蛋白质的浓度增加,而结合的糖类和蛋白质却呈相反趋势。归纳数据表明CaO2-絮凝剂具有更好的破坏污泥絮凝物的效果。这与已有研究[14-15]的结论一致:在非稳态的运行条件下,污泥的絮凝性、沉降性、压缩性和脱水性与S-EPS的含量呈正相关,而与LB-EPS、TB-EPS的含量。因此,先投加CaO2对污泥脱水性更好。

    图 6  不同调理剂组合对污泥胞外聚合物(EPS)的蛋白质和多糖含量的影响
    Figure 6.  Effects of different conditioning agents on protein and polysaccharide content in extracellular polymer (EPS) of sludge

    结合水分析实验结果(如图7所示),湿泥饼与烘干到恒重的干泥饼在离心处理过后,结合水的变化趋势是一致的,均为CaO2-微生物絮凝剂<CaO2-壳聚糖<微生物絮凝剂-CaO2<壳聚糖-CaO2<原泥,实验结果与前面胞外聚合物及扫描电镜的分析结果一致。CaO2的氧化作用使污泥发生裂解破碎,絮凝剂的絮凝作用会使污泥团聚、锁住一部分水分。综上所述,CaO2在絮凝剂之前投加,CaO2的氧化作用会使污泥的Zeta电位更接近0 mV、污泥颗粒更大、污泥的产生较多较大孔隙、污泥絮体和细胞结构被破坏更彻底,在调解过程中更多结合水被释放,因此,先投加CaO2有助于破坏细胞壁以及溶解EPS,更好地改善污泥脱水性能。

    图 7  调理后污泥离心后结合水含量变化的影响
    Figure 7.  Change in bound water content of conditioned sludge after centrifugation

    1)调理剂投加顺序按照先加0.1 g·mL−1CaO2、后加0.5 g·mL−1微生物絮凝剂或壳聚糖污泥,脱水效果最好。它的含水率降低20%左右,比阻值分别为7.13×1013 m·kg−1和5.84×1013 m·kg−1

    2)通过扫描电子显微镜(SEM)、Zeta电位、污泥颗粒测试分析,CaO2在微生物絮凝剂或者壳聚糖之前投加,污泥的层状结构被裂解破碎,形成更小颗粒,电位更接近于0 mV,污泥脱水效果更好。

    3)污泥EPS含量的检定结果显示,CaO2-微生物絮凝剂或者CaO2-壳聚糖处理污泥后,可溶性糖类和可溶性蛋白质的浓度增加,而结合的糖类、蛋白质以及结合水含量明显降低。这表明CaO2在微生物絮凝剂或者壳聚糖之前投加对降低污泥含水率更有效。

  • 图 1  不同龄期污泥颗粒级配曲线

    Figure 1.  Particle size grading curves of sludge with different ages

    图 2  有机质含量与取样深度的关系

    Figure 2.  Relation between organic content and sampling depth

    图 3  含水率与取样深度的关系

    Figure 3.  Relation between water content and sampling depth

    图 4  不同配比芬顿试剂调质污泥的孔隙比-压力曲线

    Figure 4.  Void ratio-pressure curves of landfill sludge conditioned by Fenton’s reagent in different ratios

    图 5  不同配比芬顿试剂调质污泥的渗透特性

    Figure 5.  Permeability characteristics of landfill sludge conditioned by Fenton’s reagent in different ratios

    图 6  不同配比芬顿试剂调质污泥的抗剪强度

    Figure 6.  Shear strength of landfill sludge conditioned by Fenton’s reagent in different ratios

    图 7  芬顿与氧化钙联合处理填埋库污泥的压缩特性

    Figure 7.  Compression characteristics of landfill sludge conditioned by Fenton’s reagent with calcium oxide

    图 8  芬顿与氧化钙联合处理下污泥的渗透特性

    Figure 8.  Permeability characteristics of landfill sludge conditioned by Fenton’s reagent with calcium oxide

    图 9  芬顿与氧化钙联合处理下填埋库污泥的抗剪强度

    Figure 9.  Shear strength of landfill sludge conditioned by Fenton’s reagent with calcium oxide

    图 10  芬顿与氧化钙联合处理污泥与FeCl3调质污泥渗透特性对比

    Figure 10.  Permeability characteristics of landfill sludge conditioned by FeCl3 and Fenton’s reagent with calcium oxide

    表 1  填埋库污泥药剂调质方案

    Table 1.  Test schemes of landfill sludge with different reagents %

    实验编号Fe2+占比H2O2占比CaO占比
    F4H4440
    F4H6460
    F4H8480
    F8H4840
    F8H8880
    F8H128120
    F8H168160
    FHC58125
    FHC1081210
    FHC1581215
    实验编号Fe2+占比H2O2占比CaO占比
    F4H4440
    F4H6460
    F4H8480
    F8H4840
    F8H8880
    F8H128120
    F8H168160
    FHC58125
    FHC1081210
    FHC1581215
    下载: 导出CSV
  • [1] 吴雪峰, 李青青, 李小平. 城市污泥处理处置管理体系探讨[J]. 环境科学与技术, 2010, 33(4): 186-189. doi: 10.3969/j.issn.1003-6504.2010.04.044
    [2] 余杰, 田宁宁, 王凯军, 等. 中国城市污水处理厂污泥处理、处置问题探讨分析[J]. 环境工程学报, 2007, 1(1): 82-86. doi: 10.3969/j.issn.1673-9108.2007.01.021
    [3] 张华, 范建军, 赵由才. 基于填埋处置的污水厂脱水污泥土工性质研究[J]. 同济大学学报(自然科学版), 2008, 36(3): 361-365. doi: 10.3321/j.issn:0253-374X.2008.03.016
    [4] 李娟, 张盼月, 曾光明, 等. Fenton氧化破解剩余污泥中的胞外聚合物[J]. 环境科学, 2009, 30(2): 475-479. doi: 10.3321/j.issn:0250-3301.2009.02.027
    [5] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037
    [6] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
    [7] NEYENS E, BAEYENS J, WEEMAES M, et al. Pilot-scale peroxidation (H2O2) of sewage sludge[J]. Journal of Hazardous Materials, 2003, 98(1): 91-106.
    [8] TONY M A, ZHAO Y Q, FU J F, et al. Conditioning of aluminum-based water treatment sludge with Fenton’s reagent: Effectiveness and optimising study to improve dewaterability[J]. Chemosphere, 2008, 72(4): 673-677. doi: 10.1016/j.chemosphere.2008.03.032
    [9] 洪晨, 邢奕, 司艳晓, 等. 芬顿试剂氧化对污泥脱水性能的影响[J]. 环境科学研究, 2014, 27(6): 615-622.
    [10] SINGH T S, PANT K K. Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials[J]. Journal of Hazardous Materials, 2005, 131(1): 29-36.
    [11] 孙政, 朱伟, 贺敏杰. 污水厂污泥固结特性研究[J]. 科学技术与工程, 2013, 13(11): 3146-3150. doi: 10.3969/j.issn.1671-1815.2013.11.048
    [12] 蒋建国, 杜伟, 殷闽, 等. 石灰稳定化污泥恶臭物质释放特征研究[J]. 中国环境科学, 2012, 32(9): 1620-1624. doi: 10.3969/j.issn.1000-6923.2012.09.012
    [13] 于文华, 濮文虹, 时亚飞, 等. 阳离子表面活性剂与石灰联合调理对污泥脱水性能的影响[J]. 环境化学, 2013, 32(9): 1785-1791. doi: 10.7524/j.issn.0254-6108.2013.09.027
    [14] 杨爱武, 胡垚. 城市污泥新型固化技术及其力学特性[J]. 岩土力学, 2019, 40(11): 1-10.
    [15] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 岩土工程勘察规范: GB 50021-2001[S]. 北京: 中国建筑工业出版社, 2001.
    [16] 国家质量技术监督局, 中华人民共和国建设部. 土工试验方法标准: GB/T 50123-1999[S]. 北京: 中国计划出版社, 1999.
    [17] 谭晓慧, 沈梦芬, 张强, 等. 用激光粒度仪进行粘土的颗粒分析[J]. 土木建筑与环境工程, 2011, 33(6): 96-100.
    [18] 孙德安, 许志良. 结构性软土渗透特性研究[J]. 水文地质工程地质, 2012, 39(1): 36-41.
    [19] CAMPBELL H W, RUSH R J, TEW R. Sludge dewatering design manual research report[R]. Burlington: Ontario Ministry of the Environment, 1978.
    [20] 武亚军, 唐欣, 崔春义, 等. 城市生活污泥真空固结特性试验研究[J]. 东南大学学报(自然科学版), 2018, 48(4): 772-780. doi: 10.3969/j.issn.1001-0505.2018.04.026
    [21] 骆丽宁, 王丽娟, 杨敏, 等. 氧化-铁盐絮凝联合对调理改善污泥脱水性能的影响[J]. 环境工程学报, 2018, 12(2): 630-637. doi: 10.12030/j.cjee.201708105
    [22] 王现丽, 王世峰, 吴俊峰, 等. 光电Fenton技术处理污泥深度脱水液研究[J]. 环境科学, 2014, 35(1): 208-213.
    [23] 曾庆洋, 伍健东, 周兴求, 等. 石灰投加比对污泥低温干燥特性及冷凝液性质的影响[J]. 环境工程学报, 2017, 11(10): 5603-5608. doi: 10.12030/j.cjee.201611158
    [24] 黄绍松, 梁嘉林, 张斯玮, 等. Fenton氧化联合氧化钙调理对污泥脱水的机理研究[J]. 环境科学学报, 2018, 38(5): 1906-1919.
    [25] 梁嘉林. 芬顿氧化联合氧化钙对五种市政污泥深度脱水性能影响的研究[D]. 广州: 广东工业大学, 2016.
    [26] 中华人民共和国住房和城乡建设部, 中华人民共和国国家发展和改革委员会. 城镇污水处理厂污泥处理处置技术指南(试行)[S]. 2011.
    [27] 冯瑞, 银奕, 李子富, 等. 添加低比例石灰调质的脱水污泥堆肥试验研究[J]. 中国环境科学, 2015, 35(5): 1442-1448. doi: 10.3969/j.issn.1000-6923.2015.05.022
    [28] WU Y J, LIN Z X, KONG G Q, et al. Treatment of municipal sludge by Fenton oxidation combined vacuum preloading[J]. Environmental Science and Pollution Research, 2018, 25(16): 15990-15997. doi: 10.1007/s11356-018-1736-5
    [29] 吴彦瑜, 周少奇, 覃芳慧, 等. Fenton法氧化/混凝作用去除腐殖酸的研究[J]. 环境科学, 2010, 31(4): 996-1001.
  • 加载中
图( 10) 表( 1)
计量
  • 文章访问数:  5071
  • HTML全文浏览数:  5071
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-04
  • 录用日期:  2020-03-28
  • 刊出日期:  2020-10-10
林珊伊, 孙德安, 朱明瑞, 武亚军. 芬顿与氧化钙联合处理填埋库污泥的力学特性[J]. 环境工程学报, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
引用本文: 林珊伊, 孙德安, 朱明瑞, 武亚军. 芬顿与氧化钙联合处理填埋库污泥的力学特性[J]. 环境工程学报, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
LIN Shanyi, SUN De'an, ZHU Mingrui, WU Yajun. Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
Citation: LIN Shanyi, SUN De'an, ZHU Mingrui, WU Yajun. Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027

芬顿与氧化钙联合处理填埋库污泥的力学特性

    通讯作者: 孙德安(1962—),男,博士,教授。研究方向:土力学。E-mail:sundean@shu.edu.cn
    作者简介: 林珊伊(1995—),女,硕士研究生。研究方向:污泥处理。E-mail:lsyer031@shu.edu.cn
  • 1. 上海大学土木工程系,上海 200444
  • 2. 上海城投污水处理有限公司,上海 200120
基金项目:
国家自然科学基金资助项目(41772303)

摘要: 面对城市生活污泥填埋库容趋于饱和的现状,亟需研究开发城市生活污泥的减量化及资源化技术。以填埋库污泥和新鲜污泥为研究对象,进行岩土工程特性实验,发现填埋库污泥有机质含量及含水率远低于新鲜污泥。通过固结实验和直剪实验,分别对比、分析了未加药剂的填埋库污泥和药剂调质填埋库污泥的固结系数、渗透系数和抗剪强度变化规律。结果表明:填埋库污泥在pH为4时,芬顿试剂(硫酸亚铁和过氧化氢)的最佳配比为Fe2+=8%、H2O2=12%;当氧化钙投加量增加时,调质污泥的压缩指数减小,抗剪强度略微增大;考虑到联合处理后污泥的资源化利用、强碱性对环境的影响和处理成本,在实际污泥处理工程中,氧化钙投加量15%是较为合适的添加量,且效果优于常用的氯化铁药剂调制污泥。经芬顿与氧化钙联合处理的填埋库污泥抗剪强度满足填埋库要求,能够实现减容减量,对填埋库污泥后续资源化利用具有一定的指导意义。

English Abstract

  • 随着新型城镇化建设的蓬勃发展,我国人口城镇化率呈高速增长趋势,伴随而来的是高体量污水及剩余污泥的大量产生。据统计[1],截至2016年9月底,我国污泥年产生量达4×107 t,并以每年10%的速度增长,预计2025—2050年间将突破6×108 t (以含水率80%计)。我国目前主要的污泥处置方式为土地填埋[2-3],面对体量逐年增长的污泥,各填埋库容量已趋近饱和。因此,亟需对填埋库污泥进行深度脱水处理,实现减容减量并提高污泥力学性质,为后续资源化利用打下基础。

    由于污泥中含有大量胞外聚合物(EPS),这种亲水基团会形成高度水化的带电絮凝基质,从而产生黏结力,使得污泥难以通过机械压滤方式真正实现固液分离[4-5]。深度脱水的实质是破坏污泥胞外聚合物的亲水结构,进而改变絮体凝胶状态及表面结构[6]。近年来,国内外学者尝试使用芬顿试剂氧化破解细胞,来改善污泥的脱水性能。NEYENS等[7]研究发现,当亚铁离子(Fe2+)及过氧化氢(H2O2)质量比大于1时,对污泥的作用机理以絮凝作用为主,反之以氧化破解作用为主。TONY等[8]使用响应面曲线法探究Fe2+、H2O2浓度及pH对污泥脱水特性的影响,结果表明,Fe2+与H2O2投加量分别为21 mg·g−1及105 mg·g−1时,毛细吸水时间(CST)降低48%。洪晨等[9]通过测试泥饼含水率及CST,研究了芬顿试剂对污泥脱水性能的影响,并通过液相色谱分析芬顿试剂对污泥大分子有机物氧化分解的程度。

    考虑到单一的药剂调质无法满足污泥后续资源化利用的需求,研究人员[10-11]尝试通过添加生石灰等固化剂进行探讨,发现污泥固化能够提高污泥强度、降低透水性,并且能够使重金属离子固化,从而减少环境污染,因此,污泥固化可作为资源化利用的预处理手段,而且已成为污泥处置的研究热点。蒋建国等[12]利用污泥与石灰高效混合器制备5%、10%、15%石灰添加量的稳定化污泥,发现在均匀混合条件下,污泥臭味强度明显降低。于文华等[13]研究了2种阳离子表面活性剂与石灰联合调理对剩余污泥脱水性能的影响,发现石灰投加量15 g∶100 g(干基)时,污泥比阻降低17.7%,明显改善了污泥的脱水性能。杨爱武等[14]对城市污泥进行生石灰消化处理,发现固化后污泥的重金属浸出毒性满足要求,且无侧限抗压强度随养护龄期的增加而增大。可见,大部分学者的研究对象为未经填埋的剩余活性污泥(即新鲜污泥),主要关注芬顿试剂对污泥脱水性能的改善以及固化剂对重金属离子的作用机理,而对填埋年限超过5 a的填埋库污泥力学特性研究较少。因此,本研究以上海某污水处理厂填埋库污泥为研究对象,与新鲜污泥进行对比,分析两者物理力学性质的差异。通过固结实验和直剪实验,以固结系数、渗透系数和抗剪强度为指标,探究填埋库污泥芬顿试剂(硫酸亚铁和过氧化氢)的最佳配比;在此基础上,联合氧化钙处理污泥,研究其压缩特性、渗透特性以及抗剪强度,并将实验结果与氯化铁药剂调质污泥进行对比,全面探讨芬顿与氧化钙联合处理填埋库污泥的力学特性。

  • 供试污泥为上海城市生活土覆盖填埋库污泥,库中污泥经絮凝剂聚丙烯酰胺(PAM)离心脱水后填埋且填埋期已达7 a;对比实验的污泥样品为取自同一污水处理厂并添加PAM离心脱水未经填埋的新鲜污泥。实验期间污泥样品存放于4 ℃恒温冷藏箱中。

  • 激光粒度仪(Mastersizer2000,英国马尔文仪器公司);二联中压式固结仪(GJZ,国电南京自动化股份有限公司);气动直剪仪(HM-2560A.3F,美国Humboldt公司);pH计(pHS-3C型,上海精密科学仪器有限公司)。

    实验所用试剂包括七水合硫酸亚铁(FeSO4·7H2O)、浓硫酸(H2SO4,98%)、氧化钙(CaO)、过氧化氢(H2O2, 30%),以上药剂均为分析纯(AR)。

  • 采用原位钻孔法[15]进行取样,共设置3个取样点,每个取样点均采集4个深度的污泥,采样点深度分别为0.5~1.0、2.0~3.0、4.0~5.0和5.0~6.3 m。其中,药剂调质所用污泥为取样污泥均匀搅拌所得。采用常规土工实验方法[16]测定填埋库污泥及新鲜污泥的基本性质。其中,颗粒分析实验采用激光粒度仪[17]测定。称取等量填埋库污泥,加入蒸馏水,调含水率为75%,以避免药剂调质过程中药剂分布不均而影响调质效果。利用浓硫酸将污泥的pH调至4,再依次加入占干基不同百分比的硫酸亚铁和过氧化氢,根据固结实验[16]测得的渗透系数和直剪实验[16]测得的抗剪强度,确定芬顿试剂最佳配比。其中,固结实验采用二联中压式固结仪,直剪实验采用气动直剪仪。根据固结实验结果,利用时间平方根法[16]计算固结系数Cv,再根据式(1)求得渗透系数k[18]

    式中:e1为前一级压力下的孔隙比;av为前一级压力与本级压力区段下的压缩系数,MPa−1γw为水的重度,kN·m−3

    确定芬顿试剂最佳配比后,采用该配比对填埋库污泥进行调质,并分别加入5%、10%及15%的氧化钙联合处理污泥,测定孔隙比、压缩指数、渗透系数及抗剪强度,具体药剂调质方案列于表1,药剂含量按占填埋库污泥干基的百分比计算。

  • 填埋库污泥与新鲜污泥的比重分别为1.85和1.56;液限分别为179%和422%;塑限分别为115%和125%;湿密度分别为1.12 g·cm−3和1.02 g·cm−3;pH分别为6.7和7.2。颗粒分析实验[16]结果见图1。由图1可知,填埋库污泥和新鲜污泥粒径大于0.075 mm的砂颗粒占比分别为14.2%和50.6%,小于0.002 mm粒径的胶体颗粒占比分别为6.6%和0.6%;且填埋库污泥平均粒径d50为0.017 mm,新鲜污泥平均粒径d50为0.082 mm。可见,新鲜污泥由于含有大量菌胶团及大分子有机物,粒径较大;而填埋库污泥经过一段时间的降解,大分子有机物分解为小分子有机物及无机物,微生物中的胞内结合水转化为自由水[19]。因此,胶体颗粒占比大于新鲜污泥。此外,CAMPBELL等[19]研究发现,市政污泥约有90%的颗粒能过0.075 mm筛孔,本研究填埋库污泥小于0.075 mm的粒径占比85.5%,结果略大于其粒径。

    填埋库污泥有机质含量随取样深度的变化见图2。由图2可知,填埋库污泥的有机质含量最大可达55.2%,最小为28.2%,大部分为35.2%~44.8%,平均值为40.9%,且有机质含量随深度增加的变化规律不明显。对比新鲜污泥测得的有机质含量66.7%,填埋库污泥有机质含量较小,可见其降解程度远高于新鲜污泥,降解明显。

    填埋库污泥含水率随取样深度的变化如图3所示,由图3可知,填埋库污泥含水率为72.2%~76.3%,平均值为72.5%,低于新鲜污泥的含水率为82.0%,且随取样深度的变化不明显。其原因在于,土覆盖填埋库区并未在底部设置液体导排层,水分无法排走,因而测得的填埋库污泥含水率差异较小[20]

  • 为了研究过氧化氢(H2O2)和亚铁离子(Fe2+)对填埋库污泥(除特别说明外,以下简称为污泥)处理效果的影响,亚铁离子占干基4%和8%时,不同过氧化氢投加量调质污泥的孔隙比e随固结压力p的变化(e-lgp)分别见图4(a)图4(b)。由图4(a)可知,当亚铁离子占污泥干基4%时,对比原泥,发现芬顿药剂调质污泥的压缩指数较小(压缩指数即e-lgp曲线的斜率),且不同含量过氧化氢调质污泥的压缩指数大致相似。由图4(b)可知,当亚铁离子占污泥干基8%时,芬顿药剂调质污泥的压缩指数相比原泥明显减小,压缩性较低。其原因在于芬顿试剂破坏EPS后,二价铁等絮凝剂在污泥脱水过程中充当骨架结构作用[21],因而调质污泥的压缩性减小。此外,在不同应力范围内,原泥与调质污泥的孔隙比大小关系不同。由图4(a)可知,在应力为1~7 kPa时,原泥与调质污泥的孔隙比大致相同,但应力超过8 kPa后,随着压力的增加,原泥的孔隙比逐渐减小,且均小于调质污泥的初始孔隙比。由图4(b)可得到相同的规律,在压力较大的情况下,原泥的孔隙比随着压力的增大迅速减小。原因在于:加荷初期,原泥的颗粒接触点具有一定的胶结力,能够承受一定的压力而变形较小;但压力较大时胶结被破坏,原泥的变形较大,孔隙结构被压缩,因此,随着压力的增加,原泥的孔隙比明显减小[11]。此外,由图4(b)可知,亚铁离子占污泥干基8%时,调质污泥的初始孔隙比均小于原泥。这表明加入芬顿试剂后,污泥的孔隙结构被填充,密实度变高。

    由于渗透系数能够一定程度上反映同一类土的孔隙结构,不同过氧化氢(H2O2)和亚铁离子(Fe2+)配比下,调质污泥的渗透系数k随应力p和孔隙比e的变化见图5。由图5(a)可知,在应力相同的条件下,相比其他工况污泥的渗透系数,芬顿配比Fe2+=4%、H2O2=8%和芬顿配比Fe2+=8%、H2O2=12% 2组工况调质污泥的渗透系数较高,且远高于原泥的渗透系数,说明脱水性能较好。由图5(b)可知,随着孔隙比的减小,不同芬顿试剂调质污泥的渗透系数逐渐减小,反之,渗透性增大。在重合的孔隙比区间内,相同孔隙比下芬顿配比Fe2+=8%和H2O2=12%调质污泥的渗透系数最大,脱水性能最佳。其主要原因在于:该配比下,调制污泥中的亲水基团(如EPS)被芬顿试剂氧化破坏,释放结合水,当水流经污泥时所受阻力较小;同时,过氧化氢完全反应释放大量气体,因而调质污泥中的连通孔隙多于封闭孔隙,排水通道增多,渗透系数增大[4]。此外,由图5(b)可知,亚铁离子投加量为8%时,当H2O2投加量低于12%,同一孔隙比下污泥的渗透系数随过氧化氢投加量的增加而增大,反之则减小。可见,H2O2投加量并非越高越好,投加过量时,气泡会抑制羟基自由基数量,从而对污泥的脱水性能产生负效应[22]

    亚铁离子占干基4%和8%时,不同过氧化氢投加量调质污泥的抗剪强度随应力的变化见图6。由图6(a)可知:当应力较低时,芬顿试剂调质污泥的抗剪强度相比原泥略微提高;当应力较高时,调质污泥的抗剪强度则大幅度提高。由图6(b)可得到相同的规律,且不同过氧化氢投加量下的调质污泥抗剪强度差异较小。其原因在于:芬顿试剂会破坏胞外聚合物释放结合水,在应力作用下,调质污泥的初始孔隙比小于原泥,密实度高;同时,亚铁离子易被氧化,与带负电荷的污泥土颗粒形成胶体,胶结力增大,从而抗剪强度增强[13]

    综上所述,根据压缩特性及抗剪强度相似,而渗透特性最优的条件,选取芬顿试剂配比(Fe2+=8%、H2O2=12%)作为填埋库污泥的最佳配比,用最佳配比调质的污泥渗透系数相比原泥,高出一个数量级。

  • 在确定芬顿试剂最佳配比的基础上,研究氧化钙投加量对污泥压缩特性的影响,在芬顿试剂最佳配比的条件下,分别投加5%、10%、15%氧化钙调质污泥的孔隙比和压缩指数随应力的变化见图7。由图7(a)可知,与原泥相比,调质污泥的初始孔隙比明显减小,且氧化钙投加量越大,污泥初始孔隙比越小,污泥初始孔隙比与最终孔隙比的差值越小。这说明污泥经芬顿与氧化钙联合处理后体积明显减小。对比图7(a)图4(b)污泥的初始孔隙比可得,经芬顿与氧化钙联合处理后,污泥的初始孔隙比为3.0~4.4。相比于芬顿试剂调质污泥,初始孔隙比明显减小,能够达到减容减量的目的。这可以克服单一芬顿试剂调质污泥不能明显减容的缺点,在一定程度上可缓解填埋库容量饱和的现状,具有实际工程意义。随氧化钙投加量的增大,污泥初始孔隙比减小的原因在于,在反应过程中,氧化钙与污泥中的水分发生水化反应,释放热量致使污泥中的水分蒸发,且污泥中的固体物质质量也随着氧化钙投加量的增多而增加。曾庆洋等[23]研究发现,石灰投加比越大,污泥的初始含水率越低,这与本研究结果相同。

    图7(b)可知,原泥的压缩指数大于0.4,属于高压缩性土,在高于100 kPa压力下,随着压力的增大,原泥的压缩指数逐渐减小,压缩性变差。其原因在于,EPS使得结合水难以通过机械压滤方式直接排出[5]。此外,在芬顿试剂最佳配比的条件下,分别投加5%、10%、15%氧化钙的调质污泥在有侧限条件下受压,低于100 kPa时调质污泥的压缩指数随应力的增加逐渐增大,高于100 kPa后压缩指数几乎不变;而且,应力相同的情况下,与原泥相比,氧化钙投加量越大,调质污泥的压缩指数越小,压缩性越低。这是因为芬顿试剂调质填埋库污泥会释放大量气体[9],加入氧化钙后,碱首先发生中和反应,提升反应体系pH。随着氧化钙投加量的增加,氢氧化铁胶体转变为絮体,带负电荷的污泥土颗粒会与带正电的钙离子发生结合,在絮体表面形成氢氧化铁-硫酸钙晶体的复合刚性结构,土颗粒骨架形成,从而降低调质污泥的压缩性[24]。可见,芬顿与氧化钙联合处理的污泥若应用到土工建筑材料中,则沉降量较小,稳定性较高。

    在芬顿试剂最佳配比的条件下,分别投加5%、10%、15%氧化钙调质污泥的渗透系数随应力的变化见图8。由图8可知,在6 kPa荷载下,氧化钙投加量5%、10%、15%调质污泥的渗透系数分别为5.10×10−6、2.80×10−6和2.58×10−6 cm·s−1,远高于原泥的渗透系数1.19×10−7 cm· s−1。可见,芬顿与氧化钙联合处理后,填埋库污泥的渗透系数在10−6量级,与原泥相比,渗透系数大幅提高,脱水性能较优,调质效果较好。其原因在于:污泥经芬顿与氧化钙联合处理后,蛋白质和多糖均呈下降趋势,亲水性基团EPS得到有效去除;同时,氢氧化铁和钙的混合物嵌入到污泥的絮体中,形成刚性骨架与排水通道,也可能使污泥的脱水性能提高[25]

    为了验证经芬顿与氧化钙联合处理后,污泥是否形成刚性骨架,将调质污泥进行剪切。污泥的抗剪强度随应力的变化如图9所示。由图9可知,与原泥相比,调质污泥的抗剪强度明显增加,表明已形成刚性骨架,且在芬顿试剂最佳配比的条件下,随着氧化钙投加量的增加,调质污泥的抗剪强度略微增大,均满足填埋库填埋污泥无侧限抗压强度需高于50 kPa的要求[26]

    综上所述,芬顿试剂与氧化钙联合处理污泥后,随着氧化钙投加量的增加,填埋库污泥的初始孔隙比明显减小,压缩指数递减,抗剪强度略微递增,能够实现减容减量,作为污泥堆肥等资源化利用的前处理手段[27]。考虑到药剂调质处理后污泥的后续资源化利用、强碱性(芬顿与15%氧化钙联合处理污泥的pH为9.46)对环境的影响以及处理成本,在实际污泥处理工程中,氧化钙投加量15%是较为合适的添加量。于文华等[13]研究了生石灰对污泥处理的影响,发现氧化钙投加量为15%(干基)时,污泥比阻最低,脱水率最高,与本研究中有关氧化钙的适宜投加量相同。

  • 氯化铁(FeCl3)调制的污泥渗透系数大幅提高且能够实现减容减量,是常用的污泥调质药剂。WU等[28]分别加入了占填埋库污泥干基10%、20%、30%和40%的氯化铁(分别编号为F10、F20、F30、F40)进行药剂调质,将其实验结果与本研究结果进行对比,不同药剂调质污泥的渗透系数随应力和孔隙比的变化如图10所示。由图10(a)可知,在同一应力下,芬顿与氧化钙联合处理污泥的渗透系数均高于氯化铁药剂调质污泥的渗透系数。由于孔隙比是表征土体孔隙结构最直接的指标,由图10(b)可知,在孔隙比相同的条件下,芬顿与氧化钙联合处理污泥的渗透系数大于氯化铁调质污泥。其原因在于:加入氯化铁进行调质后,混凝作用未能将污泥全部胶体颗粒除去,从而形成封闭孔隙影响污泥的脱水性能[29];而芬顿与氧化钙联合处理污泥能够形成刚性骨架,连通孔隙较多,且随着亲水性胞外聚合物的减少,水分通过污泥所受阻力较小,因此渗透系数较高。

  • 1)借助常规土工实验方法发现,与新鲜污泥相比,填埋期为7 a的填埋库污泥降解明显,胶体颗粒占比较大,有机质含量及含水率远低于未经填埋的新鲜污泥,可见新鲜污泥与填埋库污泥的性质差异较大。

    2)根据压缩特性及抗剪强度相似,而渗透特性最优的条件,选取Fe2+=8%和H2O2=12%(pH为4)作为处理填埋库污泥芬顿试剂的最佳配比。芬顿联合氧化钙处理污泥后,发现随着氧化钙投加量的增加,污泥的初始孔隙比明显减小,压缩指数递减,抗剪强度略微递增,能够实现减容减量。考虑到联合处理后污泥的资源化利用和强碱性对环境的影响和处理成本,在实际填埋库污泥处理工程中,氧化钙投加量15%是较为合适的添加量。

    3)比较不同药剂调质污泥的渗透特性发现,芬顿与氧化钙联合处理填埋库污泥的渗透特性优于氯化铁药剂调质的污泥。其主要原因在于,氧化钙能够与铁离子形成骨架与透水通道,从而提高污泥强度。因此,建议在工程实践中采用芬顿联合氧化钙的方法处理填埋库污泥。

参考文献 (29)

返回顶部

目录

/

返回文章
返回