SBR串联生物强化稳定塘处理养猪废水工艺优化

郑效旭, 李慧莉, 徐圣君, 张宝, 张旭坡, 安娜, 白志辉. SBR串联生物强化稳定塘处理养猪废水工艺优化[J]. 环境工程学报, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016
引用本文: 郑效旭, 李慧莉, 徐圣君, 张宝, 张旭坡, 安娜, 白志辉. SBR串联生物强化稳定塘处理养猪废水工艺优化[J]. 环境工程学报, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016
ZHENG Xiaoxu, LI Huili, XU Shengjun, ZHANG Bao, ZHANG Xupo, AN Na, BAI Zhihui. Process optimization of SBR-biological stabilization ponds for swine wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016
Citation: ZHENG Xiaoxu, LI Huili, XU Shengjun, ZHANG Bao, ZHANG Xupo, AN Na, BAI Zhihui. Process optimization of SBR-biological stabilization ponds for swine wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016

SBR串联生物强化稳定塘处理养猪废水工艺优化

    作者简介: 郑效旭(1990—),男,博士研究生。研究方向:水污染控制技术。E-mail:xxzheng@rcees.ac.cn
    通讯作者: 白志辉(1971—),男,博士,研究员。研究方向:环境生物技术。E-mail:zhbai@rcees.ac.cn
  • 基金项目:
    中国科学院重点部署项目(ZDRW-ZS-2016-5);国家水体污染控制与治理科技重大专项(2015ZX07206006)
  • 中图分类号: X703.1

Process optimization of SBR-biological stabilization ponds for swine wastewater treatment

    Corresponding author: BAI Zhihui, zhbai@rcees.ac.cn
  • 摘要: 针对亚热带地区某规模化养猪场SBR处理低碳氮比(C/N)沼液出水不达标的问题,研究了以乙酸钠为速效碳源时其投加量对SBR运行效果的影响,并采用4级串联生物强化稳定塘工艺对SBR出水进行强化处理。结果表明:当乙酸钠投加量为400 mg·L−1时,SBR工艺对COD、氨氮和总氮的平均去除率分别从16%±1%、25%±4%和14%±1%提高到了32%±1%、55%±2%、27%±4%;串联生物强化稳定塘(BSPs)工艺对COD、氨氮、总氮和总磷的平均去除率达到了65%±2%、80%±4%、79%±3%和83%±4%,出水平均浓度分别为(155±5)、(67±2)、(89±2)和(6±1) mg·L−1,均可满足《畜禽养殖业污染物排放标准》(GB 18596-2001)的要求。以生物膜和双穗雀稗构成的前2级生物强化稳定塘系统对COD、氨氮、总氮和总磷的消纳量分别占整个串联稳定塘系统消纳量的57%、50%、51%和81%。进一步分析可知,串联生物强化稳定塘工艺对养猪废水主要污染物(COD、氨氮、总氮、总磷)的去除效果显著,采用此技术可实现废水的达标排放。
  • 石油烃 (PHC)是目前环境中广泛存在的有机污染物,是多种烃类 (正烷烃、支链烷烃、环烷烃、芳烃)和少量其他有机物的混合物[1-2]。PHC进入土壤后,不仅会破坏土壤结构,影响其通气性,而且石油烃进入食物链后会对人体产生不可逆性的致癌、致畸、致突变的三致作用[2]。因此,如何经济、快速、有效地去除土壤中的石油污染物成为研究的重点[3]。微生物修复技术因成本低、环境友好等优势成为目前处理处置PHC污染土壤的热点方法[4-5]

    PHC微生物修复技术是以PHC作为底物,利用微生物活动过程中发生的一系列生化反应所进行的代谢降解[6-7]。微生物修复技术在降解有害物质过程中不会破坏动植物生长的土壤环境,并且可以有效地去除土壤中的有机污染物[8]。该技术根据反应过程中是否需氧气可分为好氧修复和缺氧修复[9]。由于缺氧条件下 PHC降解速率比好氧条件下的低 (1-2个数量级),目前利用微生物降解PHC的现场和室内研究多集中在好氧条件下[10-11]。在好氧条件下土著微生物利用氧气作为电子受体降解环境中的污染物,能够在较短的时间内达到较高的去除效率 [12]

    然而由于地下储油罐或输油管线的渗泄漏、土壤表层污染物的向下迁移等,存在着大量被PHC污染的深层土壤[12]。土壤中氧气浓度会随土壤深度的增加而降低,即使深层土壤中存在一定量的氧气也会很快被微生物好氧呼吸消耗殆尽。因此PHC污染的深层土壤往往处于缺氧条件[13]。与好氧微生物降解不同,缺氧微生物降解过程中不需要补充氧气/空气,且能够适应复杂的环境条件,并且修复成本相对较低[14]。因此,PHC的缺氧微生物降解具有明显优势。尽管如此,目前PHC缺氧微生物降解规律尚不清楚。本研究以PHC污染的深层土壤为对象,探索不同种类和质量分数的电子受体对土壤中土著微生物丰度、群落结构以及PHC缺氧降解的影响规律。研究结果可为深层PHC污染土壤修复技术的研发提供技术支持。

    实验所用土壤来自华北地区某加油站地下深度2~5 m处。采集来的土壤样品现场过2 mm 筛并充分混合后装于自封袋中,保存于盛有冰袋的保温箱中快速运回实验室,采用四分法混匀备用。本研究所用土壤样品理化性质:pH为8.41;含水率为2.23%;TOC为1.44%;总铁为2.16%;硝酸根、硫酸根离子质量分数分别为36.60、133.42 mg·kg−1;土壤中黏土61.91%,粉土37.98%,砂土0.11%。实验所用硝酸钠 (NaNO3)、无水硫酸钠 (Na2SO4)均为分析纯;正己烷 (C6H14)、二氯甲烷 (CH2Cl2)均为色谱纯;高纯氮气 (N2,99.999%);石油烃 (C10~C40)标准溶液 (1 mg∙L−1,美国AccuStandard公司)。

    本研究土壤中PHC质量分数见表1。由于原土中C31~C40组分质量分数低 (仅占C10~C40的1.6%),在后续实验结果中对此组分不做进一步讨论。本研究主要探讨碳链长度为C1 (C10~C16)、C2 (C17~C23)、C3 (C24~C30)组分的降解规律。本研究原土中石油烃污染物以C2组分为主,其次为C1组分,C3组分占比最少。与原土 (YT)相比,灭菌土 (YTS)中C1组分的损失率最大 (35.36%),其次是C2组分 (33.65%),C3组分损失率最小 (17.33%)。

    表 1  土壤中PHC质量分数
    Table 1.  Mass fraction of PHC in soil
    组名 碳原子数 原土PHC质量分数/ (mg·kg−1) 各PHC组分占原土中PHC质量分数的比例/% 灭菌土PHC质量分数/ (mg·kg−1) 各PHC组分占灭菌土中PHC质量分数的比例/%
    C1 C10~C16 184.68±5.21 20.72 119.37±1.52 19.86
    C2 C17~C23 626.99±14.69 70.36 416.02±6.55 69.21
    C3 C24~C30 79.51±2.53 8.92 65.73±2.84 10.93
    C4 C31~C40 14.53±2.08 13.25±1.97
    ΣPHC C10~C30 891.18±23.86 601.12±13.25
     | Show Table
    DownLoad: CSV

    本实验以PHC污染的深层土壤为对象,考察不同质量分数 (500、1 500、5 000 mg·kg−1)的硫酸盐、硝酸盐电子受体或混合电子受体对PHC缺氧降解的影响。将15g PHC污染土壤置于50 mL血清瓶中,依次加入6 mL去离子水、硝酸盐、硫酸盐溶液或硝酸盐硫酸盐混合溶液,保持水土比为0.4∶1,土壤中电子受体质量分数为0、500、1 500、5 000 mg·kg−1。将电子受体处理组记作LS、MS、HS、LN、MN、HN、HNS。其中L、M、N代表电子受体质量分数,分别为500、1 500、5 000 mg·kg−1;S、N、NS代表电子受体种类,分别为硫酸盐、硝酸盐、硫酸盐硝酸盐混合电子受体。另设置未添加电子受体的灭菌处理 (MJ)和未灭菌 (CK)处理作为对照。所有添加电子受体和未添加电子受体的处理组均重复9次 (共计9个血清瓶)。待土壤样品准备完成后,将配有专用铝盖的血清瓶转移到密闭手套箱中完成缺氧处理后密封[14]。操作步骤:在保证手套箱密闭的情况下,启动真空泵将手套箱内部空气抽出,待压力表指针示数稳定在0.1 MPa以下时,关闭真空泵并维持手套箱内真空状态30 min后再向箱体内缓缓充入高纯氮气,待压力表指针示数略高于大气压时,停止充入氮气并维持手套箱内充满氮气状态30 min。重复上述过程3次后,在缺氧手套箱内将血清瓶压上铝盖后转移至30 ℃恒温培养箱中避光培养。本研究中去离子水、电子受体溶液以及土壤样品灭菌处理操作参照文献报道方法进行[15]。在缺氧培养30、90、150 d后进行破坏性取样 (每次随机取出3个血清瓶)并做好时间标记。所有灭菌和未灭菌处理组在30、90、150 d检测土壤中PHC质量分数,未灭菌处理组在30、90、150 d测试微生物指标。

    土壤中PHC的提取采用超声萃取法[16]。称取2 g干燥土壤样品放入40 mL聚四氟乙烯管中,分别加入正己烷和二氯甲烷各20 mL的混合溶剂进行超声萃取30 min,高速 (5 000 r·min−1)离心10 min,此过程重复3次。将离心所得上清液过滤后通过旋转蒸发仪和氮吹仪浓缩至1 mL,转移至2 ml棕色玻璃瓶。采用气相色谱仪 (GC,Agilent 7890B型)进行PHC的浓度测定,利用外标法峰面积进行定量分析。气相色谱柱型号为HP-5MS (30 m×0.25 mm×0.25 μm)。测定条件:进样口温度300 ℃,不分流进样,进样量1.0 μL;柱箱初始温度为50 ℃,保持2 min,以40 ℃·min−1升至230 ℃,再以20 ℃·min−1升至320 ℃,保持20 min;气体流量为高纯氮气1.5 mL·min−1,氢气30 mL·min−1,空气300 mL·min−1

    土壤DNA采用MOBIO Power Soil DNA Isolation Kit试剂盒提取,细菌丰度的测定采用实时定量PCR扩增技术[17]。以16S rDNA作为靶基因对细菌丰度进行检测。细菌引物为338F (5'-ACTCCTACGGGAGGCAGCAG-3')和806R (5'-GGACTACHVGGGTWTCTAAT-3'),片段大小为420。反应条件为:95 ℃预变性3 min,95 ℃变性30 s,58 ℃退火30 s,72 ℃延伸1 min,35个循环。完成上述操作后,将待测样品放在荧光定量PCR仪中进行反应,实时定量PCR扩增效率为92.20%。

    微生物群落结构分析测试参照FREY等[18]的方法,使用Fastp软件对原始测序序列进行质控,采用Flash软件进行拼接 (最小重叠长度为10 bp,重叠区允许的最大错配比为0.2)。使用UPARSE软件在97%的相似度对序列进行OTU聚类分析。采用RDP classifier分类器对每条序列进行物种分类注释,比对Silva 16S rRNA数据库进行物种注释分析 (比对阈值为80%),统计各样品的细菌群落组成。

    不同种类和质量分数的电子受体对土壤中细菌丰度的影响随时间变化规律如图1所示。PHC污染原土 (YT)中细菌基因拷贝数lg值为6.28 g−1,经过30、90、150 d缺氧培养后,对照组 (CK)土壤中细菌基因总量分别增加了0.10、0.21、0.30 g−1 (图1)。表明在不加入电子受体进行缺氧培养的情况下,土壤中的细菌丰度随着培养时间的增加有所增长,但增长速度缓慢。添加不同种类和质量分数的电子受体缺氧培养150 d后,土壤中细菌基因总量与对照组 (CK)相比增加了0.38~0.70个数量级,表明缺氧条件下加入电子受体促进了土壤中细菌丰度增长 (图1)。土壤中加入不同种类和质量分数的电子受体缺氧培养30、90、150 d后,土壤中细菌总量与第0 d (YT)相比分别增加了0.12~0.39、0.30~0.49、0.67~1.00个数量级,表明添加电子受体后,土壤中细菌丰度随着培养时间的增加而增长 (p<0.05)。

    图 1  不同电子受体条件下土壤中细菌丰度变化
    Figure 1.  Variation of bacterial abundance in soil under different electron acceptor conditions

    土壤中加入不同种类和质量分数电子受体缺氧培养150 d后,硫酸盐处理组LS、MS、HS土壤中细菌基因总量与对照组 (CK)相比增加了0.38、0.57、0.58个数量级;硝酸盐处理组LN、MN、HN土壤中细菌基因总量与对照组 (CK)相比增加了0.47、0.57、0.70个量级;混合电子受体组HNS土壤中细菌基因总量与对照组 (CK)相比增加了0.60个数量级 (图1)。总的来看,PHC污染土壤中添加电子受体种类相同时,细菌丰度随电子受体质量分数的增加而增加;添加电子受体质量分数相同时,细菌丰度从高到底排序为硝酸盐处理组>混合电子受体处理组>硫酸盐处理组。

    添加不同种类和质量分数电子受体的土壤微生物在门水平上的群落结构及其变化如图2所示。与原土 (YT)中的优势菌种主要为变形菌门 (Proteobacteria, 35.59%)、放线菌门 (Actinobacteria, 31.80%)和厚壁菌门 (Firmicutes, 24.69%)。向PHC污染土壤中加入不同种类和质量分数的电子受体缺氧培养30、90 d和150 d后,与相同培养时间的对照组 (CK)土壤中细菌群落结构相比,经过30、90、150 d缺氧培养的电子受体处理组土壤中放线菌门的相对丰度均有所降低,厚壁菌门的相对丰度均有所增加 (150 d的HS处理组除外),变形菌门相对丰度无明显变化。对土壤中原土 (YT)和经过150 d缺氧培养的对照组 (CK)、电子受体处理组门水平细菌群落结构进行主坐标分析 (Principal Co-ordinates Analysis, PCoA)(图3)。结果表明,原土 (YT)与对照组 (CK)、电子受体处理组之间土壤中细菌群落结构组成在门水平存在明显差异;而对照组 (CK)和电子受体处理组之间土壤中细菌群落结构组成在门水平相似 (图3)。

    图 2  不同电子受体条件下土壤中细菌群落结构变化 (门水平)
    Figure 2.  Changes of bacterial community structure in soil under different electron acceptor conditions (phylum level)
    图 3  不同电子受体条件下土壤中细菌群落结构的PCoA分析 (门水平)
    Figure 3.  PCoA analysis of bacterial community structure in soil under different electron acceptor conditions(phylum level)

    缺氧条件下PHC降解菌主要属于变形菌门(Proteobacteria)和厚壁菌门(Firmicutes)[19-20]。本研究中,缺氧培养150 d后对照组 (CK)中 Proteobacteria和Firmicute基因拷贝数总量lg值为6.42g−1,与第0 d相比分别增加了0.36个数量级。缺氧培养150 d后硫酸盐处理组 (LS、MS、HS)和硝酸盐处理组 (LN、MN、HN)土壤中Firmicutes和Proteobacteria的总数量lgN较对照组 (CK)分别增加了0.39、0.53、0.58个数量级和0.47、0.58、0.70个数量级;HNS处理土壤中Firmicutes和Proteobacteria的总数量lgN较对照组 (CK)分别增加了0.60个数量级。结果表明,当土壤中加入电子受体种类相同时,土壤中PHC潜在降解菌随着电子受体的质量分数增加而增加;加入的电子受体质量分数相同时,土壤中PHC潜在降解菌丰度从高到低分别为硝酸盐、混合电子受体、硫酸盐。

    缺氧培养150 d后,灭菌处理 (MJ)和未灭菌处理 (CK)土壤中ΣPHC和C1、C2、C3降解率变化如图4所示。在灭菌处理中,ΣPHC和C1、C2、C3降解率均未超过8.85%,未明显观察到PHC的去除 (p<0.05);而未灭菌处理中,ΣPHC和C1、C2、C3组分有较好的去除效果 (p<0.05)(图4),降解率与原土 (YT)相比增加了11.25%~18.48%,表明PHC在缺氧培养150 d内发生了生物降解。有机污染场地土壤中往往存在着潜在降解菌[20]。本研究原土 (YT)中潜在降解菌 (Proteobacteria和Firmicute)基因拷贝数lg值为6.06 g−1。此外,硝酸盐和硫酸盐可作为缺氧条件下有机污染物微生物降解的电子受体[21]。本研究土壤中硝酸盐、硫酸盐的质量分数分别为36.60 mg·kg−1和133.42 mg·kg−1。由于所用土壤存在潜在降解菌和电子受体,缺氧培养150 d的对照处理组中发生了PHC缺氧降解。

    图 4  不同电子受体条件下土壤中ΣPHC和C1、C2、C3残留率变化
    Figure 4.  Changes in residual rates of ΣPHC and C1, C2, C3 in soil under different electron acceptor conditions

    图4所示,添加不同种类和质量分数的电子受体缺氧培养150 d后,土壤中ΣPHC和C1、C2、C3组分降解率与CK相比分别增加了3.91%~21.50%和0.76%~29.67%、4.44%~19.01%、7.00%~22.14%,明显促进了PHC的缺氧降解 (p<0.05)。从图1图2中可以看出向PHC污染深层土壤中加入硫酸盐、硝酸盐溶液缺氧培养150 d后,土壤中潜在降解菌总数量lgN与CK相比增加了0.39~0.58、0.47~0.70个数量级,促进了土壤中土著微生物的生长,土壤中PHC潜在降解菌随着电子受体的质量分数增加而增加。进一步探究土壤中PHC降解率与微生物之间的关系,发现ΣPHC和C1、C2、C3组分的降解率均随土壤中细菌丰度和潜在PHC降解菌丰度增加而增加,PHC降解率与土壤中细菌丰度/潜在PHC降解菌丰度存在正相关关系 (图5)。

    图 5  不同电子受体条件下土壤中细菌、潜在PHC降解菌丰度与ΣPHC、C1、C2和C3组分降解率关系
    Figure 5.  Relationship between abundance of bacteria and potential PHC-degrading bacteria in soil under different electron acceptor conditions and biodegradation rates of ΣPHC, C1, C2 and C3 components

    本研究中,缺氧培养150 d后硫酸盐处理组 (LS、MS、HS)和硝酸盐处理组 (LN、MN、HN)土壤中ΣPHC组分降解率较CK分别增加了3.91%、7.61%、13.89%和7.13%、11.28%、21.50%,使C1-C3组分降解率较CK分别增加了0.76%~7.00% (LS)、6.27%~c13.46% (MS)、11.59%~19.53% (HS)和4.56%~7.41% (LN)、13.68%~13.92% (MN)、19.01%~29.67% (LN)(图4);HNS处理土壤中ΣPHC和C1、C2、C3组分的降解率较CK分别增加了11.59%和21.69%、14.19%、20.55% (图4)。此结果表明,添加相同种类的电子受体促进了土壤中ΣPHC和C1、C2、C3组分的缺氧生物降解,降解率随着电子受体的质量分数增加而增加;添加质量分数相同的不同种类电子受体土壤中ΣPHC和C1、C2、C3组分的降解率由高到低分别为硝酸盐、混合电子受体、硫酸盐。

    虽然添加不同种类和质量分数的电子受体明显促进了PHC的降解 (图4),但所有处理中ΣPHC和C1、C2、C3组分在30 d内快速降解;而随着时间的推移 (培养90 d后),各处理组中PHC的降解速率都明显减慢或停止 (图5)。由于有机污染物进入土壤后往往会经历一个较长时间的“老化”过程,往往以“快”、“慢”、“极慢”等解吸组分形式存在[22-25]。污染物的“快”解吸组分易于生物利用,“慢”和“极慢”等解吸组分不易被生物利用,难以进一步去除[26-28]。因此,在培养前期易被生物利用的PHC可能已经被生物降解去除,致使培养的后期阶段 (如培养90 d后)PHC的降解速率均明显减慢或停止。

    图4(b)~图4(d)所示,添加不同种类和质量分数的电子受体缺氧培养150 d后,土壤中C1和C2、C3组分缺氧降解率均在HN处理组最高 (降解率为40.92%和37.48%、34.87%),HS处理组最低 (降解率为30.78%和30.07%、31.70%),HNS处理组介于二者之间 (降解率为32.94%和32.67%、33.28%)。由此可以观察到在所有5 000 mg·kg−1处理中,随着碳数的增加,PHC去除率降低,各组分PHC降解率为C1>C2>C3。这表明土壤中添加不同组分PHC的缺氧降解效果与其碳链长度成反比。C1组分具有高挥发性和较低的分子量,且疏水性弱、易被生物利用[29],其降解率甚至达到30.78%~40.92% (图4)。随着C2、C3组分碳链长度增加,分子量逐渐增大,物质结构更加稳定,其生物有效性也更低,难以被生物利用[30],其降解率为30.07%~37.48%、31.70%~34.87%。此外,土壤中C1组分在培养30 d后残留率迅速降低,随着时间的推移趋于稳定或停止;C2、C3组分在培养30 d后降解速率显著降低但未停止,随着时间的推移 (90 d)后趋于稳定或停止 (图4)。这可能是由于土壤中C1组分生物有效性更高更易被生物利用;而C2、C3组分生物因其有效性低而难以被微生物降解去除,导致其降解速率减慢。

    1)向PHC污染的深层土壤中加入的电子受体种类相同时,土壤中细菌丰度、潜在PHC降解菌丰度随电子受体的质量分数增加而增加,ΣPHC和C1、C2、C3组分的降解率也随加入电子受体的质量分数增加而增加。

    2)向PHC污染深层土壤中加入相同质量分数的不同种类电子受体时,土壤中细菌丰度和PHC潜在降解菌丰度从高到低分别为硝酸盐、混合电子受体、硫酸盐。ΣPHC和C1、C2、C3组分降解率为硝酸盐处理>混合电子受体处理>硫酸盐处理。

    3)土壤中ΣPHC和C1、C2、C3组分的降解率随着土壤中细菌丰度、潜在PHC降解菌丰度的增加而增加,PHC的降解率与土壤中细菌丰度/潜在PHC降解菌丰度存在正相关关系。

  • 图 1  养猪废水处理工艺流程图

    Figure 1.  Process flow chart of pig wastewater treatment

    图 2  微生物膜和双穗雀稗组成的生物强化控氮稳定塘

    Figure 2.  BSPs being consisted of biofilm fillers and Paspalumdistichum

    图 3  SBR运行工况

    Figure 3.  Operating conditions of SBR system

    图 4  投加乙酸钠对SBR工艺的影响

    Figure 4.  Effect of sodium acetate dosage on SBR process

    图 5  BSPs对COD的去除

    Figure 5.  Removal of COD in BSPs

    图 6  BSPs的脱氮效果

    Figure 6.  Denitrification effect in BSPs

    图 7  BSPs对总磷的去除

    Figure 7.  Removal of total phosphorus in BSPs

    表 1  原进、出水水质与排放标准

    Table 1.  Original quality of influent and effluent standard

    水质及标准pHCOD/(mg·L−1)SS/(mg·L−1)NH4+-N/(mg·L−1)TP/(mg·L−1)
    原进水6~93 500~6 0002 000~4 000620~960100~280
    原出水6~9300~540450~600300~51030~40
    排放标准6~9≤400≤200≤80≤8
    水质及标准pHCOD/(mg·L−1)SS/(mg·L−1)NH4+-N/(mg·L−1)TP/(mg·L−1)
    原进水6~93 500~6 0002 000~4 000620~960100~280
    原出水6~9300~540450~600300~51030~40
    排放标准6~9≤400≤200≤80≤8
    下载: 导出CSV

    表 2  各处理单元对污染物的消纳量与容积负荷

    Table 2.  Amount of pollutants reduction and volumetric loading in each treatment unit

    处理单元消纳量/(kg·d−1)容积负荷/(g·(m3·d)−1)
    COD氨氮总氮总磷COD氨氮总氮总磷
    第1级稳定塘10.4±1.09.2±0.89.6±0.71.8±0.15.2±0.54.5±0.44.7±0.30.9±0.1
    第2级稳定塘9.8±1.16.9±0.79.8±0.51.1±0.16.3±0.74.4±0.56.3±0.30.7±0.1
    第3级稳定塘10.5±0.812.8±0.513.5±0.50.3±0.11.9±0.12.3±0.12.4±0.10.1±0.0
    第4级稳定塘4.7±0.73.6±0.35.1±0.30.3±0.15.9±0.94.4±0.36.4±0.30.4±0.0
    处理单元消纳量/(kg·d−1)容积负荷/(g·(m3·d)−1)
    COD氨氮总氮总磷COD氨氮总氮总磷
    第1级稳定塘10.4±1.09.2±0.89.6±0.71.8±0.15.2±0.54.5±0.44.7±0.30.9±0.1
    第2级稳定塘9.8±1.16.9±0.79.8±0.51.1±0.16.3±0.74.4±0.56.3±0.30.7±0.1
    第3级稳定塘10.5±0.812.8±0.513.5±0.50.3±0.11.9±0.12.3±0.12.4±0.10.1±0.0
    第4级稳定塘4.7±0.73.6±0.35.1±0.30.3±0.15.9±0.94.4±0.36.4±0.30.4±0.0
    下载: 导出CSV
  • [1] 王亮, 陈重军, 陈英旭, 等. 规模化猪场养殖废水UASB-SFSBR-MAP处理工艺中试研究[J]. 环境科学, 2013, 34(3): 979-985.
    [2] 段妮娜, 董滨, 何群彪, 等. 规模化养猪废水处理模式现状和发展趋势[J]. 净水技术, 2008, 27(4): 9-15. doi: 10.3969/j.issn.1009-0177.2008.04.003
    [3] 高春芳, 刘超翔, 王振, 等. 人工湿地组合生态工艺对规模化猪场养殖废水的净化效果研究[J]. 生态环境学报, 2011, 20(1): 154-159. doi: 10.3969/j.issn.1674-5906.2011.01.027
    [4] SU J J, LIU Y L, SHU F J, et al. Treatment of piggery wastewater by contact aeration treatment in coordination with the anaerobic fermentation of three-step piggery wastewater treatment (TPWT) process in Taiwan[J]. Journal of Environmental Science & Health Part A, 1997, 32(1): 55-71.
    [5] BORTONE G. Integrated anaerobic/aerobic biological treatment for intensive swine production[J]. Bioresource Technology, 2009, 100(22): 5424-5430. doi: 10.1016/j.biortech.2008.12.005
    [6] 董宝刚, 宋小燕, 刘锐, 等. 间歇曝气SBR与传统SBR处理养猪沼液的比较研究[J]. 环境科学, 2016, 37(11): 4309-4316.
    [7] 邓良伟, 郑平, 李淑兰, 等. 添加原水改善SBR工艺处理猪场废水厌氧消化液性能[J]. 环境科学, 2005, 26(6): 107-111.
    [8] 宋小燕, 刘锐, 税勇, 等. 间歇曝气SBR处理养猪沼液的短程脱氮性能[J]. 环境科学, 2016, 37(5): 1873-1879.
    [9] LI J, ELLIOTT D, NIELSEN M, et al. Long-term partial nitrification in an intermittently aerated sequencing batch reactor (SBR) treating ammonium-rich wastewater under controlled oxygen-limited conditions[J]. Biochemical Engineering Journal, 2011, 55(3): 215-222. doi: 10.1016/j.bej.2011.05.002
    [10] 王欢, 裴伟征, 李旭东, 等. 低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮[J]. 环境科学, 2009, 30(3): 815-821. doi: 10.3321/j.issn:0250-3301.2009.03.032
    [11] OBAJA D, MACE S, MATA-ALVAREZ J. Biological nutrient removal by a sequencing batch reactor(SBR) using an internal organic carbon source in digested piggery wastewater[J]. Bioresource Technology, 2005, 96(1): 7-14. doi: 10.1016/j.biortech.2004.03.002
    [12] 邵留, 徐祖信, 尹海龙. 污染水体脱氮工艺中外加碳源的研究进展[J]. 工业水处理, 2007, 27(12): 10-14. doi: 10.3969/j.issn.1005-829X.2007.12.003
    [13] 张巍, 许静, 李晓东, 等. 稳定塘处理污水的机理研究及应用研究进展[J]. 生态环境学报, 2014, 23(8): 1396-1401. doi: 10.3969/j.issn.1674-5906.2014.08.023
    [14] 潘涌璋, 唐纪进, 张临苏. 高级综合稳定塘处理养猪场废水[J]. 环境工程, 2004, 22(5): 12-13. doi: 10.3969/j.issn.1000-8942.2004.05.003
    [15] COSTA R H R D, MEDRI W. Modelling and optimisation of stabilisation ponds system for the treatment of swine wastes: Organic matter evaluation[J]. Brazilian Archives of Biology and Technology, 2002, 45(3): 385-392. doi: 10.1590/S1516-89132002000300017
    [16] CRUDDAS P, WANG K, BEET D, et al. Diagnosis of an anaerobic pond treating temperate domestic wastewater: An alternative sludge strategy for small works[J]. Ecological Engineering, 2014, 63: 64-71. doi: 10.1016/j.ecoleng.2013.12.011
    [17] FORBES D A, REDDY G, HUNT P G, et al. Comparison of aerated marsh-pond-marsh and continuous marsh constructed wetlands for treating swine wastewater[J]. Journal of Environmental Science and Health Part A, 2010, 45(7): 803-809. doi: 10.1080/10934521003708927
    [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [19] 张兰河, 丘晓春, 张宇, 等. 碳源投加方式对SBR工艺脱氮速率的影响[J]. 环境工程学报, 2015, 9(2): 731-736. doi: 10.12030/j.cjee.20150237
    [20] 郑效旭. 规模化养猪废水处理技术研究与工艺优化[D]. 兰州: 兰州理工大学, 2019.
    [21] 邓良伟, 郑平, 陈子爱. Anarwia工艺处理猪场废水节能效果的研究[J]. 农业工程学报, 2006, 22(12): 172-175. doi: 10.3321/j.issn:1002-6819.2006.12.036
    [22] 金海峰, 佟晨博, 朱永健, 等. UASB+A/O+Fenton组合工艺处理生猪养殖废水工程实例[J]. 资源节约与环保, 2015(12): 54-55. doi: 10.3969/j.issn.1673-2251.2015.12.044
    [23] 莫负恩, 顾洪如, 沈益新, 等. 双穗雀稗对猪场污水的净化效果[J]. 草地学报, 2010, 18(3): 469-472. doi: 10.11733/j.issn.1007-0435.2010.03.029
    [24] 杨清海, 李秀艳, 赵丹, 等. 植物-水生动物-填料生态反应器构建和作用机理[J]. 环境工程学报, 2008, 2(6): 852-857.
  • 加载中
图( 7) 表( 2)
计量
  • 文章访问数:  5709
  • HTML全文浏览数:  5709
  • PDF下载数:  71
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-10
  • 录用日期:  2019-04-23
  • 刊出日期:  2020-06-01
郑效旭, 李慧莉, 徐圣君, 张宝, 张旭坡, 安娜, 白志辉. SBR串联生物强化稳定塘处理养猪废水工艺优化[J]. 环境工程学报, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016
引用本文: 郑效旭, 李慧莉, 徐圣君, 张宝, 张旭坡, 安娜, 白志辉. SBR串联生物强化稳定塘处理养猪废水工艺优化[J]. 环境工程学报, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016
ZHENG Xiaoxu, LI Huili, XU Shengjun, ZHANG Bao, ZHANG Xupo, AN Na, BAI Zhihui. Process optimization of SBR-biological stabilization ponds for swine wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016
Citation: ZHENG Xiaoxu, LI Huili, XU Shengjun, ZHANG Bao, ZHANG Xupo, AN Na, BAI Zhihui. Process optimization of SBR-biological stabilization ponds for swine wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016

SBR串联生物强化稳定塘处理养猪废水工艺优化

    通讯作者: 白志辉(1971—),男,博士,研究员。研究方向:环境生物技术。E-mail:zhbai@rcees.ac.cn
    作者简介: 郑效旭(1990—),男,博士研究生。研究方向:水污染控制技术。E-mail:xxzheng@rcees.ac.cn
  • 1. 兰州理工大学土木工程学院,兰州 730050
  • 2. 中国科学院生态环境研究中心,北京 100085
  • 3. 中国科学院大学资源与环境学院,北京 100049
基金项目:
中国科学院重点部署项目(ZDRW-ZS-2016-5);国家水体污染控制与治理科技重大专项(2015ZX07206006)

摘要: 针对亚热带地区某规模化养猪场SBR处理低碳氮比(C/N)沼液出水不达标的问题,研究了以乙酸钠为速效碳源时其投加量对SBR运行效果的影响,并采用4级串联生物强化稳定塘工艺对SBR出水进行强化处理。结果表明:当乙酸钠投加量为400 mg·L−1时,SBR工艺对COD、氨氮和总氮的平均去除率分别从16%±1%、25%±4%和14%±1%提高到了32%±1%、55%±2%、27%±4%;串联生物强化稳定塘(BSPs)工艺对COD、氨氮、总氮和总磷的平均去除率达到了65%±2%、80%±4%、79%±3%和83%±4%,出水平均浓度分别为(155±5)、(67±2)、(89±2)和(6±1) mg·L−1,均可满足《畜禽养殖业污染物排放标准》(GB 18596-2001)的要求。以生物膜和双穗雀稗构成的前2级生物强化稳定塘系统对COD、氨氮、总氮和总磷的消纳量分别占整个串联稳定塘系统消纳量的57%、50%、51%和81%。进一步分析可知,串联生物强化稳定塘工艺对养猪废水主要污染物(COD、氨氮、总氮、总磷)的去除效果显著,采用此技术可实现废水的达标排放。

English Abstract

  • 近年来,随着我国农业产业化工作的不断推进,规模化畜禽养殖企业得到了迅猛发展,但养殖规模急剧扩增的同时也加剧了污染物排放与生态环境保护之间的矛盾。据2010年全国第一次污染源普查公报的结果显示,畜禽养殖业对环境带来的污染已然成为我国农业面源污染之首,其排放的化学需氧量(COD)、总氮(TN)和总磷(TP)分别占农业面源污染的95.8%、37.9%和56.3%[1]。目前,规模化养猪废水的处理模式主要有3种:还田模式、工业化处理模式以及生态处理模式[2]。传统的还田模式不仅需要大量的耕种土地进行消纳,还存在传播人畜疾病的危险;工业化处理模式虽占地面积小,但是投资大,能耗高,且需要专门的技术人员运行维护。规模化养猪场多远离城市,土地资源相对丰富,高效的生态处理模式在我国南方地区具有应用推广的优势[3]

    目前,国内外大部分规模化养猪场多采用工业化处理模式,其流程基本一致,多为固液分离-厌氧消化-好氧组合工艺,但是对于经厌氧消化后的低C/N沼液废水,由于碳源不足导致好氧段工艺普遍存在脱氮效率低、出水水质难达标等问题[4-5]。序批式活性污泥法(sequencing batch reactor,SBR)作为养猪废水好氧段常用生物处理技术,具有工艺简单、运行方式灵活、自动化程度高等优点,但利用该工艺对消化液的脱氮除磷问题依旧未得到很好的解决[6-7]。相较于传统的SBR工艺,间歇曝气序批式活性污泥法 (intermittently aerated SBR,IASBR)能够降低硝化过程中氧气的消耗量和反硝化过程中对碳源的需求量,但碳源不足仍然是制约短程硝化反硝化处理效果的主要因素[8-10]。王亮等[1]在间歇曝气序批式火性污泥法的基础上进行了改进,提出分步进水序批式活性污泥法(step-fed SBR,SFSBR),该工艺在每一次运行周期的缺氧段补充35%的原水为反硝化过程提供碳源。但相较于甲醇或乙酸钠等外加速效碳源,反硝化过程中原水利用率偏低,脱氮效率不高,并且原水中含有较高浓度的TP,使得SFSBR系统除磷工艺也不理想[11]。因此,选择性地投加易于生物降解的有机物,可以快速有效地提高低C/N废水的脱氮效率[12]

    近年来,以稳定塘为代表的生态处理工艺得到广泛应用。稳定塘作为一种天然的或经过人为修整构建的生态池塘,通过对塘内的废水进行稀释和沉淀作用,水生植物的吸收作用、微生物代谢作用以及浮游生物作用使得污染物得以降解[13]。传统的稳定塘处理技术按照工作原理可分为好氧塘、兼性塘、厌氧塘和曝气塘。随着塘工艺运行设计的不断改进和完善,生物滤塘、藻类沉降塘、水生植物塘和高效复合厌氧塘等新型塘处理工艺逐渐解决了传统塘工艺占地面积大、水力停留时间长以及塘泥堆积严重等问题[14-16]。在实际的工程应用中,单一的塘处理工艺很难对高浓度的养殖废水进行高效处理,通常是将不同类型的塘处理工艺进行优化组合来提高养殖废水的处理效果,以此实现达标排放[17]

    本研究主要针对规模化养猪场经厌氧消化后的低C/N废水(沼液)在SBR段脱氮效率低和出水不达标的问题,在SBR段投加碳源强化脱氮的基础上,结合生态处理技术的特点,依据猪场周边实际情况,提出并构建了串联生物强化稳定塘处理工艺;通过现场检测分析该组合工艺对养殖废水主要污染物(COD、氨氮、总氮、总磷)的去除效果,实现减控去污的目的,以期为规模化养猪场的废水达标处理提供参考。

  • 某规模化养猪场所处位置为湖南省株洲市,该养殖场现存栏种猪5 000余头,养殖废水的每日排放量约120 m3(夏季),主要为猪栏冲洗水和猪粪尿水。该地年平均气温17.8 ℃,无霜期292 d,年降水量约1 410 mm,属典型的亚热带地区。养殖场原采用固液分离-厌氧消化-SBR组合工艺处理养殖猪水,经该处理后的废水出水水质无法满足《畜禽养殖业污染物排放标准》(GB 18596-2001)排放要求,原进、出水水质与排放标准如表1所示。

    针对该养殖场原废水处理工艺(厌氧消化+SBR)出水不达标问题,提出了向SBR段投加速效碳源(乙酸钠)的方法。同时,结合养殖场周围环境和地形特征,设计了4级串联生物强化稳定塘系统,该生态处理系统仅对原废水处理工艺二沉池出水进行处理,总工艺流程如图1所示。

    原废水处理工艺SBR池尺寸(L× B× H)为10 m × 8 m × 4 m,半地下式钢砼结构,池底设搅拌系统及膜片式曝气器,采用2台鼓风机,1用1备,鼓风机流量为3.2 m3·h−1。第1级生物强化稳定塘是由生物膜软性填料和水生植物构成的稳定塘,总面积约1 500 m2,塘深1.8~2.0 m,水深1.2~1.5 m,水力停留时间10~18 d,生物强化控氮稳定塘照片如图2所示。水面以下悬挂生物膜软性填料,材质为合成纤维,平均悬挂长度1.0 m,间距300 mm,悬挂面积1 300 m2;水面以上培植本土优势植物-双穗雀稗(Paspalumdistichum),植物覆盖面积占塘总面积约70%~80%。第2级生物强化稳定塘系统也是由生物膜软性填料和水生植物构成的稳定塘,塘总面积约1 300 m2,塘深1.8~2.0 m,水深1.0~1.5 m,水力停留时间8~15 d。水面以下悬挂生物膜软性填料,悬挂面积1 100 m2,平均悬挂长度0.8 m,间距300 mm;水面以上培植双穗雀稗,植物覆盖面积占塘总面积约80%~90%。第3级稳定塘总面积约4 500 m2,塘深2~3 m,水深1~1.5 m,水力停留时间40~60 d;水面以下不悬挂生物膜填料,水面以上自然生长多种本土水生植物,如双穗雀稗、莲花、水花生等,植被总覆盖面积约30%~40%。第4级稳定塘为植物塘,塘总面积约2 000 m2,塘深0.6~1.0 m,水深0.3~0.5 m,水力停留时间5~8 d,塘内双穗雀稗种植覆盖面积达90%以上。

    串联生物强化稳定塘工程于2018年3月开始建设,施工周期为40 d。工程施工前,首先将第1级和第2级塘系统中原储存的废水抽至周边茶园和林地进行水肥一体化土地消纳。施工结束后,系统开始启动,将原废水处理系统二沉池出水排放至第1级生物强化稳定塘系统,同时向SBR池投加乙酸钠(碳源),SBR池运行工况如图3所示。系统稳定运行3个月以后,塘内栽种的双穗雀稗生长情况良好,膜填料大量附着优势菌群,废水中氮、磷等污染物在串联塘系统中逐步得到降解,并从第4级塘系统出水口达标排放。

  • 该串联生物强化稳定塘系统于2018年4月中旬建成并开始运行,运行期间每隔12 h(1个运行周期)对SBR工艺的进、出水进行取样,并于2018年8月起,每3 d对串联塘系统的每一级进、出水口采集水样。各营养盐指标的测定主要依据文献中的方法[18],消解和分析仪器均产自美国哈希(HACH)公司,型号分别为DRB200和DR3900,COD的测定采用消解比色法,氨氮的测定采用水杨酸法,总氮的测定采用过硫酸盐氧化法,总磷的测定采用消解-钼锑抗分光光度法。

  • 污染物(COD、氨氮、总氮、总磷)消纳量采用式(1)计算。

    式中:W为某处理单元或生态塘系统对污染物的消纳量,kg·d−1Q0为某处理单元或生态塘系统进水流量,m3·d−1Q1为某处理单元或生态塘系统出水流量,m3·d−1

    容积负荷采用式(2)计算。

    式中:P为某处理单元或生态塘系统单位容积对污染物的消纳量,g·(m3·d)−1V为某处理单元或生态定塘系统有效容积,m3

    采用Excel 2013和SPSS Statistics 25软件进行数据处理和分析,采用OriginPro 2017进行作图。

  • SBR工艺对污染物的去除效果随乙酸钠投加量的变化情况如图4所示。当乙酸钠投加量为0 mg·L−1时,SBR工艺进水COD、氨氮、总氮、总磷的进水浓度分别为(530 ± 19)、(416 ± 23)、(453 ± 15)和(34 ± 1) mg·L−1,出水浓度分别为(445 ± 14)、(310 ± 5)、(389 ± 8)和(23 ± 4) mg·L−1;进水C/N很低,其平均值只有1.2左右。由于碳源严重不足且原有SBR池设计容积较小,且进水碳源严重不足,C/N比仅为1.2左右,难以满足污染物的降解要求。SBR工艺对COD、氨氮、总氮和总磷的去除率仅为16%、25%、14%和32%左右。

    图4(a)所示,COD的去除率随乙酸钠投加量的增加逐渐增加,并在乙酸钠投加量为400 mg·L−1时达到最大值32% ± 3%。COD去除率上升的原因可能是投加的乙酸钠为水中微生物细胞的合成提供了所需的能源物质,增强了微生物代谢活动。如图4(b)图4(c)所示,随着乙酸钠投加量的增加,氨氮和总氮的去除率呈现先大幅升高后微弱降低的趋势,并在乙酸钠投加量为400 mg·L−1时达到最大值。说明投加的乙酸钠提升了废水的可生化性,好氧段大量积累的硝酸盐在缺氧段被反硝化菌还原成N2而得到释放,提高了TN的去除率。废水体中硝酸盐和亚硝酸盐的浓度通过反硝化过程的顺利进行有了大幅度的降低,很好的解决了好氧段累计的亚硝酸盐抑制微生物活性而导致氨氮去除率低的问题[19-20]。当乙酸钠投加量为500 mg·L−1时,氨氮和总氮的去除率开始下降,可能是因为好氧段内其他异养型微生物利用投加过量的乙酸钠大量消耗水中的溶解氧,进而抑制亚硝化细菌和硝化细菌的代谢活动,影响脱氮效果。此外,总磷的进出水浓度在监测期间波动较大,去除率低,乙酸钠的投加对总磷出水浓度几乎没有影响,如图4(d)所示。

    由上面的分析可知,投加碳源后,除总磷以外,SBR工艺对COD、氨氮、总氮的去除率分别从16% ± 1%、25% ± 4%、14% ± 1%提高到了32% ± 1%、55% ± 2%、27% ± 4%。虽然SBR工艺对污染物的去除效果有所提升,但仍无法达到《畜禽养殖业污染物排放标准》的排放要求,需要后续工艺对尾水进行深度处理。

  • 1)串联生物强化稳定塘处理工艺对COD的去除效果。串联生物强化稳定塘关于COD进出水浓度和去除率在监测期间的变化如图5所示。监测结果表明,COD的平均进水浓度为(450±10) mg·L−1,进水COD在305~540 mg·L−1之间变化。由图5可以看出,虽然系统进水COD浓度波动较大,但经过串联塘系统处理过的出水浓度较低。观测期内COD的平均去除率为65%±2%,平均出水浓度为(155±5) mg·L−1,浓度在106~208 mg·L−1之间变化,远低于国家《畜禽养殖业污染物排放标准》中所要求的排放阈值。

  • 2) 串联生物强化稳定塘处理工艺对氮的去除效果。串联生物强化稳定塘关于氮的进、出水浓度以及去除率随时间变化如图6所示。监测结果(图6(a))表明,总氮的平均进水浓度为(406±5) mg·L−1,进水浓度在349~438 mg·L−1之间变化,进水浓度波动较大。观测期内总氮的平均去除率为79% ± 3%,出水平均浓度为(89±2) mg·L−1,浓度在72~103 mg·L−1之间变化,说明该系统对总氮的脱除效果较好;如图(图6(b))所示,氨氮的平均进水浓度为(338±5) mg·L−1,进水浓度在281~385 mg·L−1之间变化。氨氮的进水浓度也存在着较大的波动,但出水比较稳定,观测期内氨氮的平均去除率为80%±4%,出水平均浓度为(67±2) mg·L−1,出水浓度在52~78 mg·L−1之间变化,低于国家《畜禽养殖业污染物排放标准》中所要求的排放阈值,说明该串联生物强化稳定塘系统对氨氮具有高效的去除能力。

  • 3) 串联生物强化稳定塘处理工艺对磷的去除效果。如图7所示,总磷的平均去除率为83%±4%,平均进水浓度为(35±1) mg·L−1,进水浓度在28~49 mg·L−1之间变化,平均出水浓度为(6±1) mg·L−1,浓度在3~8 mg·L−1之间变化,低于国家《畜禽养殖业污染物排放标准》中所要求的排放阈值,说明该串联稳定塘处理系统对总磷的去除效果明显。

  • 串联生物强化稳定塘工艺各处理单元对污染物的日平均消纳量和容积负荷如表2所示。可以看出,每一级处理单元对输入的COD、总氮、氨氮、总磷均具有去除效果,并且各处理单元对不同类型污染物的消纳量和去除能力也不同。从污染物的消纳量来看,由双穗雀稗和生物膜共同构成的前2级生物强化塘对输入的污染物均能够表现出较强的消纳能力,尤其是对总磷的去除效果最好,前2级生物强化塘对总磷的消纳量占整个串联系统消纳量的90%。

  • 邓良伟等[21]分别通过SBR工艺、厌氧-SBR工艺以及厌氧-加原水-间隙曝气(Anarwia)工艺对猪场废水的处理效果进行了分析比较。其结果表明:相较于其他2个工艺,以厌氧-SBR工艺为代表的常规厌氧-好氧组合工艺对猪场养殖废水的处理效果不明显,不适用于猪场养殖废水的处理。近年来,出现的一些新的养殖废水处理技术在技术层面上解决了大部分养猪场普遍采用厌氧-好氧组合工艺去除率低的问题,取得了比较好的治理效果。金海峰等[22]采用UASB+A/O+Fenton工艺对猪场养殖废水进行处理,并在A/O段采用MBR工艺代替二沉池进行固液分离,经处理后的废水COD从8 000 mg·L−1降至100 mg·L−1以下,氨氮从600 mg·L−1降至15 mg·L−1以下。王亮等[1]采用UASB-SFSBR-MAP(磷酸铵镁结晶)组合工艺实验了对养殖废水的高效去除,该技术对COD、氨氮和总磷的去除率分别达到了95.1%、92.7%和88.8%,其中MAP对磷的回收率达到了83.8%。以上技术处理效果较好,但工程投资和运行成本较高。因此,对于有土地资源的养殖场来说,以稳定塘为基础的低成本生态处理技术可以为养殖废水的末端处理提供参考。

    本研究介绍的原有SBR工艺的处理效率过低,污水污染负荷仍然很高,这就对串联稳定塘的处理能力提出了较高要求。以生物膜+双穗雀稗为核心的前2级生物强化稳定塘,其主要治污机理在于以下3个方面:1) 悬挂在水面以下的微生物膜填料具有机械强度强、比表面积大的特点,不仅能够很好的起到固定微生物的作用,也为水生动物提供良好的栖息场所,有利于提高环境中生物种群的丰度和密度,形成复杂的食物链系统;2) 本工程所筛选的水体修复植物双穗雀稗具有根系发达、耐污能力强等优势,其根系不仅能够从水体中大量地吸收氮、磷等营养元素,还能够向水体中分泌可供微生物利用的O2和有机酸等代谢产物,促进根系与微生物膜填料之间形成丰富的微生物群落,提高生物强化塘系统的脱氮除磷效果[23]。通过对双穗雀稗进行定期收割和饲料化加工,可同时实现较高的水质净化效果和经济收益;3) 栽种于生物膜填料中的双穗雀稗,其发达的根系与生物膜填料在空间上相互交叉缠绕,形成复杂的立体式空间结构。生物膜填料可以为双穗雀稗的稳定生长提供结构上的支撑,而双穗雀稗分泌的代谢产物又可以为附着在生物膜填料表面的微生物群落提供必需的养分,二者相互作用,充分发挥各自的优势,从而实现高效去除氮磷等污染物的目的[24]

    实际上,由生物膜和双穗雀稗构成的前2级生物强化稳定塘系统已经将绝大部分污染物质进行了吸收和降解。可能是由于前2级生物强化塘系统中双穗雀稗覆盖率较高、根系发达,使得截留在根系和生物膜上的污染物能够充分的被植物和微生物所利用,从而实现高效的去污效果。第3级塘系统对COD、氨氮和总氮的消纳量也比较高,其主要的原因是该塘占地面积大、水深较深,废水能够在塘内停留很长的时间而被水体中的植物和微生物所吸收利用。相对于其他几个塘处理单元,第3级塘系统未经过较多的人工修饰和强化,水环境中微生物的种类和密度相较于前2级塘系统较少,塘中的莲花、水花生等植物多为自然生长,植被的覆盖率也较低,因此该塘系统虽然能够大量的消纳污染物质,但单位容积内对污染物的消纳量偏少,消纳能力较差。经过前3级塘系统的消纳,废水中绝大部分污染物已被降解和去除,再经过第4级植物塘的强化作用,使得废水中的污染物浓度能够在串联生物强化稳定塘系统中逐级递减,系统出水最终能够达到并优于国家《畜禽养殖业污染物排放标准》中的排放要求。

    通过对原SBR工艺进行优化以及在原废水处理工艺之后增设串联生物强化稳定塘系统,虽然能够使处理后的养殖废水达标排放,但还需要持续跟踪和研究该系统的长期运行效果和维护方法。此外,现阶段国家《畜禽养殖业污染物排放标准》对污染物浓度的限值较高,若按照此标准向环境中排放养殖废水,仍然存在一定的污染风险。建议养殖企业加强与种植行业的合作,开发种养结合的生态循环技术模式,实现养分的资源化利用[20]

  • 1)向SBR工艺缺氧段投加乙酸钠,可以有效提高猪场沼液废水中COD和氮的去除率。当乙酸钠投加量为400 mg·L−1时,COD、氨氮、总氮的去除率可以提高约1倍。

    2)增设串联生物强化稳定塘系统对原处理工艺排放的尾水进行深度处理,该系统对COD、氨氮、总氮和总磷的去除率分别可达到65%、80%、79% 和83%,出水水质满足《畜禽养殖业污染物排放标准》(GB 18596-2001)中所要求的排放阈值。

    3)由双穗雀稗和生物膜构成的前2级生物强化稳定塘能够大量削减废水中COD和氮磷等污染物,表现出较高的容积负荷。

参考文献 (24)

返回顶部

目录

/

返回文章
返回