Processing math: 100%

高负荷活性污泥法中污水有机组分表征

江海鑫, 贺艺, 戴晓虎, 陈洪斌. 高负荷活性污泥法中污水有机组分表征[J]. 环境工程学报, 2020, 14(6): 1471-1480. doi: 10.12030/j.cjee.201908098
引用本文: 江海鑫, 贺艺, 戴晓虎, 陈洪斌. 高负荷活性污泥法中污水有机组分表征[J]. 环境工程学报, 2020, 14(6): 1471-1480. doi: 10.12030/j.cjee.201908098
JIANG Haixin, HE Yi, DAI Xiaohu, CHEN Hongbin. Characterization of organic fractions in wastewater for high-rate activated sludge process[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1471-1480. doi: 10.12030/j.cjee.201908098
Citation: JIANG Haixin, HE Yi, DAI Xiaohu, CHEN Hongbin. Characterization of organic fractions in wastewater for high-rate activated sludge process[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1471-1480. doi: 10.12030/j.cjee.201908098

高负荷活性污泥法中污水有机组分表征

    作者简介: 江海鑫(1994—),男,博士研究生。研究方向:污水处理与资源化。E-mail:jhx1994@tongji.edu.cn
    通讯作者: 陈洪斌(1968—),男,博士,教授。研究方向:污水处理与资源化。E-mail:bhctxc@tongji.edu.cn
  • 基金项目:
    国家重点研发计划重点专项(2017YFC0403402);政府间国际科技创新合作重点专项国家重点研发计划项目(2016YFE0123500)
  • 中图分类号: X703.1

Characterization of organic fractions in wastewater for high-rate activated sludge process

    Corresponding author: CHEN Hongbin, bhctxc@tongji.edu.cn
  • 摘要: 污水有机组分表征是高负荷活性污泥法(HRAS)模型建立的基础。针对经典活性污泥1号模型不适用于HRAS这一问题,提出了相应的双水解模型,即将污水有机组分中水解型有机物分为快速水解型与慢速水解型2种,发现两者水解动力学参数具有明显差异。对原水氧利用速率进行参数拟合,通过灵敏度和共线性分析,估计了快速生物降解型有机物、快速水解型有机物、慢速水解型有机物以及异养菌等4种污水有机组分,探讨了污水有机组分与增加HRAS碳源捕获率的关系。结果表明:以上4种有机组分均可被准确识别,共线性指数γK低于经验限值,各组分比例分别为13.9%、11.6%、12.6%和12.8%;从污水组分角度来说,提高HRAS碳源捕获率的3个方向分别为:反应器中的异养菌尽可能将快速生物降解型有机物和快速水解型有机物同化生成细胞物质;避免絮体污泥中的慢速水解型有机物过量水解;抑制异养菌衰减,减少内源呼吸产物的产生。双水解模型对污水有机组分成功表征有助于HRAS的设计、运行及优化。
  • 铬离子主要是通过铬盐生产行业及相关产业排放的废渣和废水流入环境中而引起污染. 其中的Cr(Ⅵ)具有强烈的毒性,可能造成遗传性基因缺陷,吸入可能致癌等,对环境危害极大并具有持久危险性[1]. 因此,Cr(Ⅵ)的污染治理已经引起研究者广泛关注. 对废水重金属铬污染的治理方法一般采用化学沉淀法[2]、氧化还原法[3]、离子交换法[4]和吸附法[5]等. 其中吸附法是使用较多的一种方法,而所选用的吸附剂的种类也很多,常用的有活性炭[1]、天然有机吸附剂[6]、无机吸附剂[7]和合成吸附剂[8]. 工业上最常用的吸附剂是活性氧化铝[9]、硅胶[10]、活性炭[11]和分子筛[12]. 在这种情况下,活性氧化铝因其对重金属离子的强亲和力而被认为是一种有前途的吸附剂. 一般来说,这些材料要么在其框架内提供大量官能团(如石墨烯氧化物和其他活性炭材料),要么晶格空位(如金属氧化物)可以有效去除废水中的污染物[13]. 废水中污染物富集的适宜材料应满足三个特点:(1)去除率快,对污染物的富集能力强;(2)环保、成本低;(3)结构稳定,可重复使用. 金属氧化物可以具备这些特性,各种金属氧化物由于其抗磨损的机械坚固性已被应用于废水中的污染物去除. Drisko等[14]发现,不同的大孔尺寸和形态的分层结构锆钛氧化物会极大地影响表面可进入性,从而影响扩散速率和U(Ⅵ)离子的空间容量. 为了提高材料的吸附速率和吸附容量,新的合成方法有望同时控制微/大孔特性(即孔体积和比表面积). 鉴于此,金属有机骨架(metal-organic frameworks, MOFs)合成金属氧化物为以简单、可控的方式合成定制功能材料提供了很大的可能性[15]. MOFs由与有机配体结合的金属离子簇或链组成[16],是一类具有超高比表面积和可调节孔径的新兴材料. MOFs经热煅烧后可生成孔隙均匀、比表面积高、结构有序的金属氧化物[17]. MOFs衍生的金属氧化物在电催化[18]和能量储存/转换[19]等方面都有很好的应用前景. 然而,目前废水中污染物的固定化应用还很少.

    本研究针以MOFs为前驱体,在有氧条件下煅烧制备了多孔掺碳Al2O3材料,使用扫描电极(SEM)、X射线衍射仪(XRD)和孔隙度分析仪(BET)对该材料煅烧前后的表面形貌进行了表征分析,通过考察吸附剂投加量、初始浓度和共存阴离子等参数的影响分析其对水体中Cr(Ⅵ)的吸附能力,利用等温吸附模型和吸附动力学模型分析,揭示多孔掺碳Al2O3材料对水中Cr(Ⅵ)的去除提供新的途径.

    九水合硝酸铝(Al(NO33•9H2O)、N,N-二甲基甲酰胺(C3H7NO,DMF)、盐酸(HCl)、重铬酸钾(K2Cr2O7)、氯化钠(NaCl)和氢氧化钠(NaOH)由成都科隆化工有限公司提供;迈瑞尔有限公司生产的氨基对苯二甲酸(C8H7NO4),所有的试剂均为分析纯且没有经过纯化处理.

    a) 采用溶剂热法合成了NH2-MIL-53(Al)纳米晶体,将3.751 g九水合硝酸铝、1.81 g氨基对苯二甲酸和150 mL DMF加入到200 mL聚四氟乙烯内衬反应器中并进行搅拌,在150 ℃下反应24 h,冷却至室温,以10000 r·min−1高速离心分离得到固体产物. 将得到的固体产物在150 ℃下加入150 mL DMF活化12 h,再次高速离心分离得到黄色固体产物,用纯水反复洗涤3次,在60 ℃下真空干燥,得到黄色固体NH2-MIL-53(Al).

    b) 将上述得到的NH2-MIL-53(Al)使用马弗炉在600 ℃下煅烧6 h,得到淡黄色多孔掺碳Al2O3粉末材料.

    采用扫描电子显微镜(德国的 ZEISS Sigma 300)观察材料的表面形貌. 粉末X射线衍射图(PXRD)记录在Bruker AXS D8-ADVANCE衍射仪上,使用经过滤波的CuKα辐射源,工作在40 kV和30 mA,扫描速率为5 min−1. 使用美国的Micromeritics ASAP 2460全自动快速比表面与孔隙度分析仪对材料的孔径结构进行表征.

    通过吸附平衡法测定多孔掺碳Al2O3对Cr(Ⅵ)的吸附等温线和动力学参数,取一定量的吸附剂加入到100 mL的不同浓度的重铬酸钾溶液中,振荡一定时间后过滤,通过二苯碳酰二肼分光光度法在波长540 nm处进行分光光度测定Cr(Ⅵ)的浓度. 根据式(1)计算吸附剂对Cr(Ⅵ)的吸附容量Qe(mg·g−1).

    Qe=C0CimV (1)

    式中,C0 为Cr(Ⅵ)离子的初始浓度,mg·L−1Ci 为吸附后剩余的Cr(Ⅵ)离子浓度,mg·L−1 为溶液体积L;m 为吸附剂的质量,g.

    图1a中可以观察到,NH2-MIL-53(Al)表面粗糙,同时在其表面上覆盖着不规则的长矩形片状结构,其由聚集的纳米晶体组成,层叠状堆聚,煅烧后的多孔掺碳Al2O3材料(图1b)总体结构与形貌与NH2-MIL-53(Al)类似,呈层叠状堆聚,但很明显看出其表面要较煅烧前的NH2-MIL-53(Al)材料更加粗糙,覆盖表面的片状结构变成絮状结构.

    图 1  NH2-MIL-53(Al)的扫描电镜图(a);多孔掺碳Al2O3的扫描电镜图(b)
    Figure 1.  SEM image of NH2-MIL-53(Al)(a); SEM image of Porous carbon-doped Al2O3 (b)

    通过XRD测定了制备的NH2-MIL-53(Al)和多孔掺碳Al2O3材料的化学组成和晶体结构(图2). NH2-MIL-53(Al)的XRD谱图可以看出制备样品有明显衍射峰且特征峰形尖锐,表明结晶度良好. 在2θ=8.5°时,存在(110)峰,单峰宽度对应于(211)和(220)的反射,其峰值较高,说明其晶体尺寸大. 由图可以看出,NH2-MIL-53(Al)材料的衍射峰与Qin等 [20]研究结果相吻合.

    图 2  NH2-MIL-53(Al)的X衍射图(a);多孔掺碳Al2O3的X衍射图(b)
    Figure 2.  XRD image of NH2-MIL-53(Al)(a); XRD image of Porous carbon-doped Al2O3 (b)

    图2可以看出,煅烧后的样品没有明显的衍射峰,表明样品以非晶形式存在,在20°和36°附近没有峰,说明不存在对应的α-Al2O3[21]. 2θ=26.3处的峰与θ-Al2O3有关,2θ=41.1°和65.2°处的板状峰是γ-Al2O3的特征[22]. 根据这些峰的位置和形状,可以得出多孔掺碳Al2O3材料由非晶态氧化铝基体中的θ-Al2O3γ-Al2O3晶粒混合组成.

    为了考察NH2-MIL-53(Al)和多孔掺碳Al2O3材料的孔道类型和孔径大小,进行了NH2-MIL-53(Al)和多孔掺碳Al2O3材料的氮气吸脱附测试,如图3a、c为NH2-MIL-53(Al)和多孔掺碳Al2O3材料的氮气吸脱附曲线,图3b、d为采用BEJ模型计算得到的材料孔径分布曲线. 图3a显示NH2-MIL-53(Al)为Ⅰ型吸附等温线,推测为微孔材料. 在图3可以看出,多孔掺碳Al2O3材料在P/P0为0.1—0.4的范围内没有二次吸收,吸附等温线可归为Ⅴ型,而在高压P/P0为0.7—0.9的范围内出现H4型迟滞回线,表明多孔掺碳Al2O3材料存在复合孔[23]. 通过孔径分布曲线可以更详细地验证. NH2-MIL-53(Al)的孔径主要分布在2 nm以前,大量微孔的存在进一步证明了其为微孔材料,而多孔掺碳Al2O3材料的孔径分布以6.36 nm为中心,主要以介孔为主. 用BET方程计算出NH2-MIL-53(Al)的比表面积(116.73 m²·g−1)要明显小于多孔掺碳Al2O3材料(180.24 m²·g−1),与预期结果一致. 基于上述结果,多孔掺碳Al2O3材料成功合成且其更高的比表面积使其成为污染物富集的高效材料之一.

    图 3  NH2-MIL-53(Al)的氮气吸附脱附等温线图(a),孔径分布图(b);多孔掺碳Al2O3的的氮气吸附脱附等温线图(c),孔径分布图(d)
    Figure 3.  Nitrogen adsorption and desorption isotherm of NH2-MIL-53(Al) (a), pore size distribution of NH2-MIL-53(Al) (b); Nitrogen adsorption and desorption isotherm of Porous carbon-doped Al2O3 (c), pore size distribution of Porous carbon-doped Al2O3 (d)

    pH值是影响吸附剂的吸附效果的主要因素之一,因为pH通过影响吸附剂的表面电荷和溶液中Cr(Ⅵ)的离子形态来控制吸附剂表面的吸附能力[24],不同溶液pH条件下多孔掺碳Al2O3吸附剂对Cr(Ⅵ)的吸附效果的影响和材料在不同pH下的Zeta电位如图4所示. 数据分析表明,pH对BPA吸附容量有显著影响,材料在酸性条件比在碱性条件下对Cr(Ⅵ)的去除效果好,Cr(Ⅵ)在多孔掺碳Al2O3吸附剂上的最大吸附容量在pH=4左右出现,最大吸附容量为60.71 mg·g−1. pH较低时,Cr(Ⅵ)主要以HCrO4存在[25],材料在这个范围内的Zeta电位显示其时带正电荷,促进了吸附材料与HCrO4的静电吸引作用. 溶液pH为碱性时,主要以CrO42−形式存在[26],此时吸附材料开始去质子化,表面带负电,与CrO42−存在静电排斥作用,且OH会与CrO42−竞争吸附剂上的吸附位点[8],因此在碱性环境下吸附剂对Cr(Ⅵ)的吸附能力大幅下降.

    图 4  pH对吸附效果的影响
    Figure 4.  The effect of pH on the adsorption effect

    图5显示了Cr(Ⅵ)初始浓度对多孔掺碳Al2O3吸附剂的影响. 由图5可见,随着Cr(Ⅵ)初始浓度从100 mg·L−1增加到1400 mg·L−1,Cr(Ⅵ)在多孔掺碳Al2O3吸附剂上的吸附容量也越来越高,低浓度时,Cr(Ⅵ)初始浓度的增加显著提高了平衡吸附容量(qe),这是由于与活性吸附位点接触的Cr(Ⅵ)增加所致. 当Cr(Ⅵ)初始浓度超过800 mg·L−1时,qe值仍然可以缓慢增加. 这是因为高浓度可以提供更强的驱动力,克服了传质阻力,促进了吸附剂对Cr(Ⅵ)的吸附[27]. 当Cr(Ⅵ)初始浓度大于1000 mg·L−1时,由于吸附位点饱和,吸附容量保持不变[28]. 从图得到的Cr(Ⅵ)的qe值为671.56 mg·g−1.

    图 5  Cr(VI)的起始浓度对吸附效果的影响
    Figure 5.  The effect of Initial concentration on the adsorption effect

    在实际生产中,工业废水的成分非常复杂. 因此,实验还应考虑不同离子类型对吸附的影响. 在本实验中制备了0、1、5、10 mmol·L−1 SO42−、CO32−、C2O42−、CH3COO、Cl和Cr(Ⅵ)的混合溶液. 研究多孔掺碳Al2O3吸附剂在混合溶液中对Cr(Ⅵ)的吸附效果. 实验数据如图6所示. 在CH3COO和Cl介质中,Cr(Ⅵ)的吸附量增加. 当SO42−存在时,多孔掺碳Al2O3吸附剂对Cr(Ⅵ)的吸附能力降低. 这可能是由于SO42−和Cr(Ⅵ)氧阴离子之间具有相似的化学性质,从而导致它们的竞争吸附,降低吸附容量[29],且SO42−与吸附剂竞争溶液中的H+,生成HSO4,从而降低吸附剂表面的正电荷.

    图 6  溶液中的阴离子浓度对吸附效果的影响
    Figure 6.  The effect of anion concentration in solution on the adsorption effect

    图7为多孔掺碳Al2O3吸附剂对Cr(VI)的吸附容量随时间的变化,可以看出初始浓度为25、50、100 mg·L−1的Cr(Ⅵ)随时间的增加,吸附容量的变化过程都是相似的,均随时间的增加而增加,在前10 h内吸附速率很快,然后逐渐减慢,在24 h达到了吸附平衡,最大吸附容量为60.75 mg·g−1. 反应前期,多孔掺碳Al2O3吸附剂材料表面的吸附位点较多并且溶液中的Cr(Ⅵ)此时浓度最高,吸附驱动力大,因此吸附速率快. 然而随着时间的推移,多孔掺碳Al2O3吸附剂表面的吸附位点逐渐被占据并且Cr(Ⅵ)浓度逐渐降低,因此吸附驱动力减弱.

    图 7  吸附时间对吸附效果的影响
    Figure 7.  The effect of the adsorption time in solution on the adsorption effect

    将实验数据拟合在伪一级动力学模型、伪二级动力学模型中,方程见(2)及(3).

    In(qeqt)=InqeK1t (2)
    tqt=1K2q2e+tqe (3)

    其中,K1为伪一阶动力学模型吸附速率常数,min−1K2为伪二阶动力学模型吸附速率常数,g·(mg·min)−1qe为平衡时的吸附量,mg·g−1qtt时刻的吸附量,mg·g−1.

    拟合的图像及相关参数如图8表1所示. 由表1可知,伪二阶动力学模型的回归系数(0.9999、0.9991、0.9997)均高于伪一阶动力学模型的回归系数(0.9685、0.9282、0.9733),且在100 mg·L−1 Cr(Ⅵ)下,伪二级动力学模型的吸附容量(60.75 mg·g−1)更接近实验吸附容量值,表明伪二阶动力学模型更适合多孔掺碳Al2O3吸附剂对Cr(Ⅵ)的吸附过程,同时也说明了该吸附过程是化学吸附[30],且化学键取代过程可能是限制该吸附过程的主要机理.

    图 8  伪一阶动力学模型图(a);伪二阶动力学模型图(b)
    Figure 8.  First-order kinetic model diagram(a); Second-order kinetic model diagram(b)
    表 1  多孔掺碳Al2O3吸附剂吸附Cr(VI)的动力学模型参数
    Table 1.  Kinetic model parameters of Cr(VI) adsorption on Porous carbon-doped Al2O3
    C0/(mg·L−1伪一阶动力学模型Pseudo-first-order model伪二阶动力学模型Pseudo-second-order model
    Qe/(mg·g−1R2k1/(min−1Qe/(mg·g−1R2k2/ (g·(mg·min)−1
    2524.280.96852.45×10−324.320.99994.09×10−2
    5044.460.92821.23×10−345.100.99912.18×10−2
    10059.600.97331.30×10−260.750.99971.61×10−2
     | Show Table
    DownLoad: CSV

    Langmuir和Freundlich吸附等温线是经典的等温线模型,用于解释固体中疏水化合物吸附的非线性性质,因此在本研究中使用Langmuir和Freundlich吸附模型分析多孔掺碳Al2O3吸附剂对Cr(Ⅵ)的吸附等温线.

    Langmuir吸附等温线表明,吸附剂表面会形成均匀的单分子吸附层,能量均匀,吸附分子之间在不同位置没有相互作用[31]. Langmuir方程的非线性形式用(4)方程表示. 而Freundlich等温线是已知最早描述吸附平衡的关系式,用来描述非均相能量吸附剂表面对多层吸附的非理想可逆吸附过程,非线性形式的Freundlich等温方程如(5)所示.

    qe=qmCe1/b+Ce (4)
    lgqe=lgKf+1nlgCe (5)

    式中,qm为最大吸附量,mg·g−1b为Langmuir吸附平衡常数,L·mg−1Kf为Freundlich吸附容量常数,mg·g−1n为Freundlich亲和常数.

    不同等温吸附模型的拟合参数如表2图9所示. 由表2可知,使用Langmuir等温吸附模型拟合R2(0.9963—0.9901)值大于Freundlich等温吸附模型的R2(0.9912—0.9830)值,说明Langmuir等温吸附模型更适合描述多孔掺碳Al2O3吸附剂对Cr(Ⅵ)的吸附过程,说明该吸附是单层吸附[32]. 由Langmuir等温吸附模型拟合得到的理论最大吸附量与实际测得的吸附量接近,说明其具有可信度. 此外,Freundlich等温吸附模型拟合得到的n值可以很好的反应多孔掺碳Al2O3吸附剂对Cr(Ⅵ)的吸附能力,n<1,说明吸附较难;n>1,说明吸附能力较强. 本研究中的Freundlich等温吸附模型中的n(1.0503—1.2450)值均大于1,说明多孔掺碳Al2O3吸附剂对Cr(Ⅵ)的吸附能力较强.

    表 2  多孔掺碳Al2O3吸附剂吸附Cr(Ⅵ)的等温吸附模型参数
    Table 2.  Parameters of the isotherm adsorption model for Cr(Ⅵ) adsorption on Porous carbon-doped Al2O3
    温度/℃Langmuir 模型Freundlich 模型
    Qm/(mg·g−1R2b/(L·mg−1R2Kf/(mg·g−1n
    15122.100.99632.31×10−40.99120.78361.0503
    25130.020.98832.17×10−50.98760.72541.0221
    35133.650.98892.31×10−40.98301.13421.1125
    45148.390.98532.58×10−30.97822.28311.2636
    55157.980.99012.42×10−30.98302.28281.2450
     | Show Table
    DownLoad: CSV
    图 9  多孔掺碳Al2O3吸附剂吸附Cr(VI)的Langmuir等温吸附模型(a);Freundlich等温吸附模型(b)
    Figure 9.  The Langmuir(a) and Freundlich(b) isothermal adsorption model of Cr(VI) by Porous carbon-doped Al2O3

    在250 mL的锥形瓶中配制100 mL水溶液,加入1 g·L−1的多孔掺碳Al2O3吸附剂和纳米氧化铝吸附剂,并用1 mol·L−1的HCl或者NaOH溶液调节pH为1和12,溶液振荡反应24 h后,使用0.22 μm滤膜分离剩下的吸附剂,取25 mL分离得到的液体于50 mL比色管中,利用铬天青s检测溶液中Al3+的析出量,其反应变化如图10所示,水样1为纯水样,水样2、4分别为多孔掺碳Al2O3在pH为1和12条件下Al3+的析出量,水样3、5分别为纳米氧化铝在pH为1和12条件下Al3+的析出量. 在酸性条件下Al3+和铬天青s反应生成蓝绿色的四元胶束,碱性条件下生成紫红色. 从图10可以明显看出,多孔掺碳Al2O3在酸碱条件下产生的絮状物要明显少于纳米氧化铝,说明多孔掺碳Al2O3在酸碱条件下的稳定性要明显优于纳米氧化铝.

    图 10  多孔掺碳Al2O3吸附剂和纳米氧化铝吸附剂的稳定性对比
    Figure 10.  Comparison of stability of porous carbon-doped Al2O3 adsorbent and nano-alumina adsorbent

    吸附剂的再生对吸附剂的实用性和可行性至关重要. 通过连续5次吸附脱吸实验,评价多孔掺碳Al2O3吸附剂的重复使用性. 将100 mg 多孔掺碳Al2O3吸附剂与100 mL Cr(Ⅵ) (100 mg·L−1)结合,振荡24 h进行吸附实验,固液分离后测定Cr(Ⅵ)浓度. 脱附液100 mL与吸附剂混合,振荡24 h得到脱附上清. 脱附液由10%的硫脲和2%的盐酸组成. 图11a为5次循环中Cr(Ⅵ)的吸附速率. 各吸附率分别为98.4%、97.6%、96.5%、95.1%和94.5%. 多孔掺碳Al2O3吸附剂在5次循环后仍具有较强的吸附势. 值得注意的是,吸附率的轻微下降可能是由于未洗Cr(Ⅵ)的积累或实验过程中不可避免的活性位点的损失. 为了确定是否将污染物完全脱附以及脱附后是否有改变吸附剂的结构,使用傅立叶变换红外光谱仪对多孔掺碳Al2O3吸附剂脱附前后的光谱进行分析,如图11b所示,脱附再生后的多孔掺碳Al2O3与原多孔掺碳Al2O3相似. 从图中可以观察到,877 cm−1的峰值代表了吸附Cr(Ⅵ)之后多孔掺碳Al2O3上的C—H伸缩振动在脱附后的多孔掺碳Al2O3上消失了,说明脱附液洗涤吸附的Cr(Ⅵ)被成功清除. 结果验证了多孔掺碳Al2O3的稳定性和可重复使用性.

    图 11  多孔掺碳Al2O3吸附剂循环吸附率(a)和多孔掺碳Al2O3的红外光谱(b)
    Figure 11.  Cyclic adsorption rate of porous carbon-doped Al2O3 (a) and FT-IR spectra of porous carbon-doped Al2O3(b)

    吸附Cr(Ⅵ)后的多孔掺碳Al2O3红外光谱如图11b所示,3453 cm−1处为OH 的伸缩振动,羟基与Cr(Ⅵ)结合后,νOH相对强度减弱,并发生约12 cm−1的位移,表明结合Cr(Ⅵ)后羟基的振动峰强减弱. 同样的位于615 cm−1左右处的Al—O键晶格振动的相对强度减弱,并发生约15 cm−1的位移. 红外分析结果表明,多孔掺碳Al2O3具有较高的吸附能力是由于大量羟基的存在,这些羟基能有效地与阳离子结合并形成表面复合物.

    (1)本研究将水热法合成的NH2-MIL-53(Al)作为原材料进行碳化,利用碳化开发制备出一种新型制备多孔掺碳Al2O3吸附材料,并将其用于吸附水中的Cr(Ⅵ)污染物. 根据经过XRD、SEM、BET的测试方法分析,XRD、SEM结果表明多孔掺碳Al2O3成功合成,呈低石墨化状态,晶体结构稳定;SEM则表明多孔掺碳Al2O3材料表面呈絮状结构,但其结构没有受到破坏;通过BET测试表明,多孔掺碳Al2O3的比表面积为180.24 m²·g−1,其比表面积要大于煅烧前,其孔径主要为介孔.

    (2)探究了吸附过程中各因素对多孔掺碳Al2O3吸附剂吸附Cr(Ⅵ)的影响,结果表明,多孔掺碳Al2O3吸附剂对Cr(Ⅵ)的吸附平衡时间为48 h,平衡吸附量最大可达为671.56 mg·g−1;pH值为4时,多孔掺碳Al2O3吸附剂对Cr(Ⅵ)的吸附容量达到最大;同时,SO42−和Cr(Ⅵ)氧阴离子之间具有相似的化学性质,因此增加SO42−会导致它们的竞争吸附,降低吸附容量在吸附剂表面竞争活性位点,抑制吸附过程.

    (3)通过吸附模型结果表明,多孔掺碳Al2O3吸附剂对Cr(VI)的吸附过程与Langmuir等温线模型和伪二阶动力学模型拟合更好,说明吸附是单层的化学吸附.

  • 图 1  OUR测试装置示意图

    Figure 1.  Schematic diagram of OUR test device

    图 2  OUR数据及ASM1、双水解模型拟合结果

    Figure 2.  Profiles of OUR and fitting results of ASM1 and dual hydrolysis model

    图 3  OUR对模型组分初始值灵敏度

    Figure 3.  Sensitivity of OUR with respect to initial value of model components

    图 4  OUR测试中模型组分变化过程

    Figure 4.  Variations of model components during OUR test

    图 5  活性污泥絮体对污水各有机组分的捕获过程

    Figure 5.  Processes of activated sludge floc capturing organic components in wastewater

    表 1  双水解模型矩阵

    Table 1.  Matrix of dual hydrolysis model

    子过程序号子过程SB/(mg·L−1)SO/(mg·L−1)SH/(mg·L−1)XB/(mg·L−1)XH/(mg·L−1)子过程速率
    1异养菌的好氧生长1YH1YHYH1μHSBK1+SBXH
    2快速水解型有机物的水解1−1k1SH/XHK2+SH/XHXH
    3慢速水解型有机物的水解1−1k2XB/XHK3+XB/XHXH
    4异养菌的衰减−(1 − fE)−1bHXH
      注:μH为异养菌比生长速率,d−1K1SB利用半饱和系数,mg·L−1bH为异养菌衰减常数,d−1k1SH水解速率常数,d−1K2SH水解半饱和系数;k2XB水解速率常数,d−1K3XB水解半饱和系数,mg·L−1YH为异养菌产率系数;fE为内源呼吸残留比;氧气SO的COD当量为负值。
    子过程序号子过程SB/(mg·L−1)SO/(mg·L−1)SH/(mg·L−1)XB/(mg·L−1)XH/(mg·L−1)子过程速率
    1异养菌的好氧生长1YH1YHYH1μHSBK1+SBXH
    2快速水解型有机物的水解1−1k1SH/XHK2+SH/XHXH
    3慢速水解型有机物的水解1−1k2XB/XHK3+XB/XHXH
    4异养菌的衰减−(1 − fE)−1bHXH
      注:μH为异养菌比生长速率,d−1K1SB利用半饱和系数,mg·L−1bH为异养菌衰减常数,d−1k1SH水解速率常数,d−1K2SH水解半饱和系数;k2XB水解速率常数,d−1K3XB水解半饱和系数,mg·L−1YH为异养菌产率系数;fE为内源呼吸残留比;氧气SO的COD当量为负值。
    下载: 导出CSV

    表 2  污水中有机组分的表征结果(95%置信区间)

    Table 2.  Results of characterization of organic fractions in wastewater (95% confidence interval)

    序号CODT/(mg·L−1)SB0/(mg·L−1)SH0/(mg·L−1)XB0/(mg·L−1)XH0/(mg·L−1)γK
    1933178.1±0.2110.6±0.286.6±0.198.9±0.117.8
    21 178186.7±0.1117.6±0.2127.1±0.247.3±0.0415.6
    31 40479.9±0.255.1±0.257.3±0.1104.6±0.210.3
    41 01575.6±0.264.1±0.186.4±0.340.8±0.18.95
    550291.0±0.086.9±0.0105.8±0.064.7±0.015.4
    6560122.7±0.990.6±0.5120±0.863.8±0.710.5
    763381.0±0.279.7±0.175.0±0.282.0±0.28.57
    829129.6±0.141.2±0.041.3±0.1112.7±0.49.98
    92914.12±54.8420.7±300.0328.3±18 988.8434.4±19 140.01 016
      注:CODT为进水中总有机物浓度(以COD计);置信区间中0.0表示该值<0.1。
    序号CODT/(mg·L−1)SB0/(mg·L−1)SH0/(mg·L−1)XB0/(mg·L−1)XH0/(mg·L−1)γK
    1933178.1±0.2110.6±0.286.6±0.198.9±0.117.8
    21 178186.7±0.1117.6±0.2127.1±0.247.3±0.0415.6
    31 40479.9±0.255.1±0.257.3±0.1104.6±0.210.3
    41 01575.6±0.264.1±0.186.4±0.340.8±0.18.95
    550291.0±0.086.9±0.0105.8±0.064.7±0.015.4
    6560122.7±0.990.6±0.5120±0.863.8±0.710.5
    763381.0±0.279.7±0.175.0±0.282.0±0.28.57
    829129.6±0.141.2±0.041.3±0.1112.7±0.49.98
    92914.12±54.8420.7±300.0328.3±18 988.8434.4±19 140.01 016
      注:CODT为进水中总有机物浓度(以COD计);置信区间中0.0表示该值<0.1。
    下载: 导出CSV
  • [1] JIMENEZ J, MILLER M, BOTT C, et al. High-rate activated sludge system for carbon management-Evaluation of crucial process mechanisms and design parameters[J]. Water Research, 2015, 87: 476-482. doi: 10.1016/j.watres.2015.07.032
    [2] MEERBURG F A, BOON N, VAN WINCKEL T, et al. Live fast, die young: optimizing retention times in high-rate contact stabilization for maximal recovery of organics from wastewater[J]. Environmental Science & Technology, 2016, 50(17): 9781-9790.
    [3] AKANYETI I, TEMMINK H, REMY M, et al. Feasibility of bioflocculation in a high-loaded membrane bioreactor for improved energy recovery from sewage[J]. Water Science & Technology, 2010, 61(6): 1433-9.
    [4] 刘智晓. 未来污水处理能源自给新途径: 碳源捕获及碳源改向[J]. 中国给水排水, 2017, 33(8): 43-52.
    [5] ALLOUL A, GANIGUE R, SPILLER M, et al. Capture-ferment-upgrade: A three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12): 6729-6742.
    [6] HENZE M, GUJER W, VAN LOOSDRECHT M C M, et al. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3[M]. IWA Publishing, 2000.
    [7] HAIDER S, SVARDAL K, VANROLLEGHEM P A, et al. The effect of low sludge age on wastewater fractionation (SS, SI)[J]. Water Science & Technology, 2003, 47(11): 203-209.
    [8] NOGAJ T M, RANDALL A A, JIMENEZ J A, et al. Mathematical modeling of the high rate activated sludge system: Optimizing the COD∶N ratio in the process effluent[C]//Water Environment Federation. Proceedings of the Water Environment Federation, 2014: 913-926.
    [9] HENZE M. Characterization of wastewater for modelling of activated sludge processes[J]. Water Science and Technology, 1992, 25: 1-15. doi: 10.2166/wst.1992.0110
    [10] DOCHAIN D, VANROLLEGHEM P A, VAN DAELE M. Structural identifiability of biokinetic models of activated sludge respiration[J]. Water Research, 1995, 29(11): 2571-2578. doi: 10.1016/0043-1354(95)00106-U
    [11] VANROLLEGHEM P A, DAELE M V, DOCHAIN D. Practical identifiability of a biokinetic model of activated sludge respiration[J]. Water Research, 1995, 29(11): 2561-2570. doi: 10.1016/0043-1354(95)00105-T
    [12] MATHIEU S, ETIENNE P. Estimation of wastewater biodegradable COD fractions by combining respirometric experiments in various S0/X0 ratios[J]. Water Research, 2000, 34(4): 1233-1246. doi: 10.1016/S0043-1354(99)00241-9
    [13] LOOSDRECHT M C M V, NIELSEN P H, LOPEZ-VAZQUEZ C M, et al. Experimental Methods in Wastewater Treatment[M].London, UK: IWA Publishing, 2016.
    [14] SPANJERS H, VANROLLEGHEM P, OLSSON G, et al. Respirometry in control of the activated sludge process[J]. Water Science & Technology, 1998, 34(3/4): 117-126.
    [15] BRUN R, KüHNI M, SIEGRIST H, et al. Practical identifiability of ASM2d parameters-systematic selection and tuning of parameter subsets[J]. Water Research, 2002, 36(16): 4113-4127. doi: 10.1016/S0043-1354(02)00104-5
    [16] SIN G, MEYER A S, GERNAEY K V. Assessing reliability of cellulose hydrolysis models to support biofuel process design: Identifiability and uncertainty analysis[J]. Computers & Chemical Engineering, 2010, 34(9): 1385-1392.
    [17] SIN G, VANROLLEGHEM P A. Extensions to modeling aerobic carbon degradation using combined respirometric: Titrimetric measurements in view of activated sludge model calibration[J]. Water Research, 2007, 41(15): 3345-3358. doi: 10.1016/j.watres.2007.03.029
    [18] HOCAOGLU S M, INSEL G, COKGOR E U, et al. COD fractionation and biodegradation kinetics of segregated domestic wastewater: Black and grey water fractions[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(9): 1241-1249.
    [19] KAPPELER J, GUJER W. Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling[J]. Water Science and Technology, 1992, 25(6): 125-139. doi: 10.2166/wst.1992.0118
    [20] MEERBURG F A, BOON N, VAN WINCKEL T, et al. Toward energy-neutral wastewater treatment: A high-rate contact stabilization process to maximally recover sewage organics[J]. Bioresource Technology, 2015, 179: 373-381. doi: 10.1016/j.biortech.2014.12.018
    [21] TCHOBANOGLOUS G, STENSEL H D, TSUCHIHASHI R, et al. Wastewater Engineering: Treatment and Resource Recovery[M]. New York: McGraw-Hill Education, 2014.
    [22] IKUMI D S, HARDING T H, EKAMA G A. Biodegradability of wastewater and activated sludge organics in anaerobic digestion[J]. Water Research, 2014, 56: 267-279. doi: 10.1016/j.watres.2014.02.008
    [23] EKAMA G A, SOTEMANN S W, WENTZEL M C. Biodegradability of activated sludge organics under anaerobic conditions[J]. Water Research, 2007, 41(1): 244-252. doi: 10.1016/j.watres.2006.08.014
  • 加载中
图( 5) 表( 2)
计量
  • 文章访问数:  5794
  • HTML全文浏览数:  5794
  • PDF下载数:  97
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-17
  • 录用日期:  2019-12-09
  • 刊出日期:  2020-06-01
江海鑫, 贺艺, 戴晓虎, 陈洪斌. 高负荷活性污泥法中污水有机组分表征[J]. 环境工程学报, 2020, 14(6): 1471-1480. doi: 10.12030/j.cjee.201908098
引用本文: 江海鑫, 贺艺, 戴晓虎, 陈洪斌. 高负荷活性污泥法中污水有机组分表征[J]. 环境工程学报, 2020, 14(6): 1471-1480. doi: 10.12030/j.cjee.201908098
JIANG Haixin, HE Yi, DAI Xiaohu, CHEN Hongbin. Characterization of organic fractions in wastewater for high-rate activated sludge process[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1471-1480. doi: 10.12030/j.cjee.201908098
Citation: JIANG Haixin, HE Yi, DAI Xiaohu, CHEN Hongbin. Characterization of organic fractions in wastewater for high-rate activated sludge process[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1471-1480. doi: 10.12030/j.cjee.201908098

高负荷活性污泥法中污水有机组分表征

    通讯作者: 陈洪斌(1968—),男,博士,教授。研究方向:污水处理与资源化。E-mail:bhctxc@tongji.edu.cn
    作者简介: 江海鑫(1994—),男,博士研究生。研究方向:污水处理与资源化。E-mail:jhx1994@tongji.edu.cn
  • 1. 同济大学环境科学与工程学院,上海 200092
  • 2. 同济大学,城市污染控制国家工程研究中心,上海 200092
基金项目:
国家重点研发计划重点专项(2017YFC0403402);政府间国际科技创新合作重点专项国家重点研发计划项目(2016YFE0123500)

摘要: 污水有机组分表征是高负荷活性污泥法(HRAS)模型建立的基础。针对经典活性污泥1号模型不适用于HRAS这一问题,提出了相应的双水解模型,即将污水有机组分中水解型有机物分为快速水解型与慢速水解型2种,发现两者水解动力学参数具有明显差异。对原水氧利用速率进行参数拟合,通过灵敏度和共线性分析,估计了快速生物降解型有机物、快速水解型有机物、慢速水解型有机物以及异养菌等4种污水有机组分,探讨了污水有机组分与增加HRAS碳源捕获率的关系。结果表明:以上4种有机组分均可被准确识别,共线性指数γK低于经验限值,各组分比例分别为13.9%、11.6%、12.6%和12.8%;从污水组分角度来说,提高HRAS碳源捕获率的3个方向分别为:反应器中的异养菌尽可能将快速生物降解型有机物和快速水解型有机物同化生成细胞物质;避免絮体污泥中的慢速水解型有机物过量水解;抑制异养菌衰减,减少内源呼吸产物的产生。双水解模型对污水有机组分成功表征有助于HRAS的设计、运行及优化。

English Abstract

  • 近年来,高负荷活性污泥法(high-rate activated sludge process, HRAS)在碳源捕获与回收方面展现出巨大的潜力,成为了污水厂实现碳中和、能源自给等目标的热门工艺[1-5]。在优化泥龄(SRT)、水力停留时间(HRT)、溶解氧(DO)等工艺参数和提高HRAS污水碳源捕获率等方面,已取得了阶段性成就。然而,关于HRAS的数学模型的研究较少。有机组分表征是HRAS模型建立的基础,有助于HRAS的设计、运行与优化。

    活性污泥法1号模型(activated sludge model number 1, ASM1)在传统活性污泥法(conventional activated sludge process, CAS)中应用最为广泛。CAS为低负荷系统,进水可生物降解有机物(以COD计)污泥负荷为0.2~0.6 g·(g·d)−1,SRT>3 d,HRT通常可达数小时甚至几十小时。而HRAS的SRT通常小于2 d,HRT为0.5~1 h,负荷高达2~10 g·(g·d)−1。因此,HRAS与CAS的微生物和酶系组成、底物降解程度以及生物学过程等存在明显差异,ASM1无法直接应用于HRAS[6]。ASM1将可生物降解的有机物划分为易生物降解有机物(SB)、慢速生物降解有机物(XB)以及微生物(异养菌XH和自养菌XA)。HAIDER等[7]通过对AB系统进出水水质进行分析发现,SB 并不能全部在A段去除,残余的SB只能在B段去除,并认为SB应该分为2种组分。NOGAJ等[8]认为,SB可分为快速生物降解溶解性有机物(SBf)和慢速生物降解溶解性有机物(SBs),两者均可被异养菌直接吸收而不必通过水解过程,不同的是前者的利用速率高于后者。而HENZE[9]认为,溶解性可生物降解组分中存在部分快速水解型有机物(SH),这部分有机物在HRAS系统中不能被异养菌直接利用。HRAS中的异养菌为快速生长型细菌,与污水原水中的异养菌类似,但与CAS系统存在差异[6]。HRAS涉及生物絮凝和细胞贮存,因此,胞外聚合物和细胞贮存物也被划分为模型组分[8]。但是,子过程和模型组分的增加并不一定会提高模型预测的准确性,反而可能导致模型参数辨识难度增加,实用性和拓展性降低。

    目前,尚未有针对HRAS有机组分表征的报道,更无标准化组分表征方法的编制。本研究使用氧利用速率(oxygen utilization rate, OUR)测试装置获取污水原水OUR曲线,采用双水解模型对HRAS进行了建模,并对OUR曲线拟合且估计了模型参数;同时,利用灵敏度和共线性分析方法[10-11],解决了模型参数识别问题,从模型组分的角度分析了提高碳源捕获量的工艺参数优化方向,还提出了提高模型参数实践识别能力的方法,为HRAS模型建立提供保障。

  • 本研究采用的双水解模型修正自ASM1,模型矩阵如表1所示。该模型包括易生物降解有机物SB、快速水解型有机物SH、慢速水解型有机物XB及异养菌XH等4种有机组分以及溶解氧SO,共5个组分,不包括氮组分。总共涉及4个子过程:异养菌的好氧生长、快速水解型有机物的水解、慢速水解型有机物的水解和异养菌的衰减。快速水解有机物水解过程的k1大于慢速水解过程的k2。污水原水与HRAS系统中异养菌均为快速生长型细菌[2, 12],因此,对原水直接进行OUR测试并拟合OUR曲线,足以表征HRAS的有机组分。由于OUR测试时,溶解氧始终保持在3 mg·L−1以上,故异养菌的生长、水解等过程不受溶解氧的限制,因此,对应的子过程中不含溶解氧开关函数。异养菌的衰减采用内源呼吸理论,不采用死亡-再生理论。由表1可知,氧气在子过程1和4中出现,因此,理论OUR模拟值OURmod(η(θ))计算方法见式(1)。

    OUR的测试装置如图1所示,为典型的液相-静止气体-静止液体(liquid phase principle-static gas-static liquid,LSS)型反应器[13-14]。将一定体积的污水原水加入测试装置,同时加入20 mol·L−1烯丙基硫脲(ATU),抑制潜在的硝化作用,进行间断式曝气,利用加热棒进行加热,同一批测试期间温度保持稳定。pH通过自动投加1 mol·L−1的NaOH和1 mol·L−1的HCl进行控制。曝气由PLC进行开关量控制,当DO小于下限时,开启曝气;当DO大于上限时,停止曝气。在停止曝气时,溶解氧下降阶段的斜率为实测OURexp

  • 模型参数估计可分为3个主要步骤[15-17]:根据目标函数,拟合实际数据,估计参数值;进行不确定性分析,求得置信区间及两两参数之间的相关性;灵敏度与共线性分析,评价参数是否可以准确识别。

    多次实验表明,OURmod与OURexp的误差服从正态分布,因此,以含权重余差平方和(WRSS)作为目标函数J(θ)估计参数值。目标函数如式(2)所示。

    式中:Y为OUR实测值OURexpη(θ)为OUR模拟值OURmodθ为参数;W为对角权重矩,对角元素为实测值OURexp的倒数。

    当进行不确定性参数分析时,参数估计值的协方差矩阵C(θ)如式(3)所示。

    式中:N为总数据个数;p为参数个数;Qm为估计误差的协方差矩阵。

    在一定的显著性水平α下,参数估计值的置信区间θ1−α如式(4)所示。

    式中:t(N–p, α/2)为t分布值;diag(C(θ))表示θ协方差矩阵的对角元素。

    那么,两两参数θiθj之间的相关性矩阵R(θi, θj)如式(5)所示。

    式中:σθiθi的参数估计的标准偏差;σθjθj参数估计的标准偏差。

    当进行灵敏度和共线性分析时,相对灵敏度Sr计算方法如式(6)所示。

    参数重要性排序值δmsqr如式(7)所示。

    参数组合K的共线性指数γK计算方法如式(8)~式(10)所示。

    式中:eigen为矩阵特征值;˜S为标准化欧式范数;||Sr||为相对灵敏度的欧式范数。以γK=5~20作为限值用于判断参数是否可以准确识别[15-17]。若γK<20,即可认为该参数组合可以被识别。

  • 污水有机组分表征结果见表2。序号1~8为原水的OUR测试结果,序号9为原水与活性污泥混合液的OUR测试结果,其原水水质与序号8相同。SB0SH0XB0XH0的比例分别为13.9%、11.6%、12.6%和12.8%。

    HOCAOGLU等[18]利用低负荷OUR测试方法对黑水进行了水质表征,发现SB0SH0XB0比例分别为14.7%、29.7%和50.7%。其与本研究中的SB0相差不大,但是他们所检测到的水解性组分分别为本研究的2.65倍和3.99倍。这是因为HOCAOGLU等[18]的研究对象是低负荷、高泥龄的常规活性污泥系统,活性污泥中的微生物和酶系种类和数量多,能够对原水土著微生物或者HRAS中微生物无法水解的有机物进行水解。HENZE[9]的研究表明,常规污水中的SB0SH0XB0XH0的比例分别为15.0%、25.0%、27.5%和19.8%,除SB0外的其他组分均高于本研究的结果。SH0XB0比例高的原因与上述相同;而XH0高的原因是,对于常规集中式污水厂,污水运输管线长,加上重力排水系统可以进行大气复氧,微生物有足够的停留时间利用污水中底物进行增殖。由于污水厂进水特性受服务范围内居民生活方式、气候(如温度、降雨)、污水厂运行状况等因素的影响大,因此,原水有机物浓度及其组成差异较大。每一个测试序号(序号9除外)组分估计精度高,在95%置信度下,置信区间长度均小于2 mg·L−1图2(a)~图2(c)为污水原水OUR测试的拟合效果,明显地,双水解模型均能取得良好的拟合程度,而 ASM1拟合程度差。尽管双水解模型对原水与活性污泥的混和液OUR测试数据也能够获得良好的拟合效果(图2(d)),但估计精度极低,数据不可信。其可能原因有以下2点:一是实践识别的问题,F/M低,易生物降解COD在短时间内(数分钟至十几分钟)被活性污泥利用完全,而LSS型反应器采样频率低,无法对这一过程进行准确的检测[12],与SB降解过程相关的模型参数也就无法准确估计;二是结构识别的问题,在测试序号9中,使用活性污泥与污水混合,其泥龄为50~60 d,水解型COD可能无需分为SHXB,换言之,两者降解过程的动力学参数及计量学参数相同。但第2个原因的可能性较小,因为ASM1无法对图2(d)中的数据点进行准确拟合。

    模型参数辨识绝大程度上取决于模型输出对模型参数灵敏度的分析:灵敏度绝对值越高,说明该参数对模型输出的影响越大,绝对值越低或者接近零,说明对输出的影响较小甚至无影响;当灵敏度为负值时,表明参数值增加会减少模型输出;当灵敏度为正值时,表明参数值增加会导致模型输出增加;参数之间灵敏度曲线相同或者相似,这说明参数之间可能存在相关性[13]图3(a)图3(b)分别为序号2和序号8模型组分初始值的灵敏度曲线。在同一测试过程中,4个组分的灵敏度曲线各具特点,相似程度较低,这说明组分之间的整体相关性低。在SB利用完全前,XH0的灵敏度保持在某一较大的正值不变,而其他组分的灵敏度几乎保持在零,这说明此阶段内OUR曲线的灵敏参数为XH0。在最大比生长速率μH和产率系数YH已知、忽略内源呼吸的前提下,可利用这一阶段估计XH0[19]。在SB利用完全时间点附近,4条灵敏度曲线均发生突变,并出现峰值(图3(b)SH0峰值较小),而此时刻恰好为OUR曲线最高点,这与理论分析结果一致。在XH0保持不变的前提下,底物浓度初始值尤其是SB0增加,会延长OUR对数上升期,推迟OUR陡降。而XH0的增加会加速底物利用,从而导致SB0更早地被消耗,OUR陡降提前。SB利用完全后,在图3(a)中,SH0XB0灵敏度曲线相似程度高,两者均是先上升后下降,但两者的形状有差异,SH0XB0更早出现正的峰值。而图3(b)中,SH0XB0灵敏度曲线形状差异很大。正是因为图3(a)图3(b)对应的灵敏度曲线形状存在差异,两者对应的OUR曲线也不同(如图2(a)图2(c)所示):序号8的有机物降解过程具有更加明显的阶段性,即OUR陡降后出现明显的OUR平台。

    模型组分参数拟合的共线性指数γK表2所示。γK越低,共线程度越小,估计值可信度越高。由表2可知,除序号9外,其他测试的γK均小于20,这说明直接对污水原水进行OUR测试,可准确辨识所有有机组分(其中惰性组分可用COD守恒计算出来)。γK的大小与OUR曲线形状存在相关性,OUR曲线阶段性越明显,γK越小。因此,序号3~8的γK小于序号1和序号2。

  • 图4所示,快速生长型微生物(即原水中的微生物)利用原水中有机物的过程大致可以分为4个阶段:阶段I(0~t1),SB利用完全;阶段II(t1~t2),SH水解完全;阶段III(t2~t3),XB水解完全;阶段IV(t3至测试结束),无底物存在。尽管纵轴并不表示细菌数的对数,但还是可以将上述阶段对应微生物的对数增长期(阶段I),稳定期(阶段II和III)和衰亡期(阶段IV)。不存在明显的延迟期是因为微生物已经适应了原水环境,无需合成新的酶系即可利用底物。序号2模型组分SB0SH0XB0XH0的初始值分别为186.7、117.6、127.1和47.3 mg·L−1,而序号8对应的初始值分别为29.6、41.2、41.3和112.7 mg·L−1。序号8的SBSHXB等3个可生物降解组分明显低于序号2,而微生物量XH为序号2的2.4倍。序号2的SBSHXB利用完全的时间点分别为4.56、8.72和12.3 h,均多于序号8组分降解所需的时间:1.06、1.93和8.00 h。这是因为序号2测样时间为春季,排水管网中温度低,微生物活动弱,污水在管道中转化程度小。而序号8在炎热的夏季测样,微生物活动强,可生物降解组分管道中被降解、转化,同时微生物量增加。

  • 对于市政污水,碳源捕获是碳源回收的前提。HRAS能够同时对溶解态和颗粒态有机物进行捕获,是实现碳源浓缩的热点研究工艺[1, 20]。如图5所示,市政污水进入活性污泥池后,在好氧条件下,溶解态易生物降解有机物SB被活性污泥絮体中的异养菌XH所利用。其中,一部分被同化生成细胞物质或新细胞,另一部分被异化为二氧化碳和水。溶解态惰性有机物SI不可被微生物所利用,故保持在液相中。异养菌XH在生长的同时,也会发生衰亡(内源呼吸)过程,即细胞解体死亡,进而生成二氧化碳、水和内源呼吸惰性产物XP等。进水中颗粒态有机物,包括慢速水解型有机物XB、颗粒态惰性有机物XI和异养菌XH,通过生物絮凝作用被污泥絮体絮凝捕获。污泥絮体中XB和液相中的快速水解型有机物SH在胞外酶的作用下发生水解,生成易生物降解有机物SBSB又可重新被异养菌XH同化和异化。颗粒态惰性有机物XI不可被水解,从而保留在絮体污泥中。絮体污泥在沉淀池沉淀浓缩,污水碳源至此完成捕获、浓缩过程。

    由以上分析可知,絮体污泥中有机物包括4种成分:慢速水解型有机物XB、颗粒态惰性有机物XI、异养菌XH及其衰亡产物XP[21]。若以厌氧消化作为碳源回收最终手段,慢速水解型有机物XB、异养菌XH及部分颗粒态惰性有机物XI可在厌氧环境下水解发酵、产生甲烷,而衰亡产物XP不可被水解,继而不能被发酵细菌、产乙酸菌和产甲烷菌所利用。部分颗粒态惰性有机物XI之所以能在厌氧消化中被厌氧菌利用的原因是:本研究测得的XI对于HRAS或原水中微生物是惰性的,但其中一部分能在低负荷好氧系统中进一步降解,这部分XI是可厌氧消化的[22-23]。从污水组分角度来看,提高HRAS碳源捕获能力的目标是提高絮体污泥中XBXHXI的比例。实现此目标的方向有:方向1,反应器中的XH尽可能将SBSH同化生成细胞物质;方向2,避免吸附絮体污泥中的XB过量水解;方向3,抑制XH衰减,减少内源呼吸产物XP的产生。关于方向1,HRAS反应器中SB在极短的水力停留时间内利用完全,且直接用于细胞生长并不考虑中间的细胞贮存过程。尽管细胞贮存可能是微生物利用碳源的一个过程,但在研究HRAS时,并未发现明显的细胞贮存现象[2]。HRAS中出水中含有高浓度溶解性COD,且主要为SHSB,延长水力停留时间可避免这部分出水碳源损失。但方向2和方向3存在矛盾,由图4可知,SH水解过程伴随着XB的水解,延长水力停留时间,可能造成XB过量水解。因此,需要合理地设置水力停留时间,使得碳源捕获量最大化。另外,SB的利用、SHXB的水解过程受溶解氧的影响(表1中未给出溶解氧Monod项),故溶解氧也是工艺参数优化条件之一。泥龄是方向3的决定性因素,泥龄降低,减少内源呼吸造成的氧化损失量。

  • 理论上,根据溶解氧测定位置、反应液和气体(空气或氧气)的流动方式,OUR反应器可以分为8种[14]。由于技术或成本限制,目前,主要的OUR反应器类型有LSS型、GSS型、LFS型和LSF型等4种[13]。LSS和GSS型OUR反应器测试原理相对简单,但测样频率较低(数分钟甚至十几分钟一个数据),无法准确地反映有机物在短时间内被完全利用的过程,对模型参数估计不利。本研究采用了LSS型反应器,对原水进行OUR测试时,测样频率满足要求,但对原水与污泥的混合液进行测试时,无法准确追踪SB的利用过程(图2(d)),导致参数识别性极差(表2)。另外,本研究仅仅对组分进行了估计,由于实践识别问题,未估计动力学参数和计量学参数,若要建立完整的HRAS模型,必须使用高精度的OUR反应器对这些参数进行估计。LFS型和LSF型均为高精度OUR反应器。LFS型需要对氧体积传递速率kLa进行估计,要求曝气稳定,需要用精密的气体流量控制器进行准确控制。另外,在测定HRAS污泥与原水的混合液OUR时,加入的原水体积大,影响kLa的估计。LSF型反应器无需对kLa进行估计,测样频率也高(1 min内),因此,适合用于HRAS模型参数的估计。笔者将在未来的研究中,将LSS型反应器改造成LSF型反应器,从而提高OUR测试频率,为HRAS模型参数识别与估计提供技术基础。

  • 1)双水解模型适用于高负荷活性污泥法,而活性污泥1号模型(ASM1)不适用。根据双水解模型,进水中可生物降解有机组分可分为易生物降解COD、快速水解型COD、慢速水解型COD及普通异养菌等4种。

    2) OUR测试可准确识别原水中SBSHXBXH等4种有机组分。占原水总COD比例分别为13.9%、11.6%、12.6%和12.8%,共线性指数γK低于20,95%置信区间长度小于2 mg·L−1

    3)提高HRAS碳源捕获能力包括以下3个方面:反应器中的XH尽可能将SBSH同化生成细胞物质;避免吸附在絮体污泥中的XB过量水解;抑制XH衰减,减少内源呼吸产物XP的产生。未来研究应以这3个方向为基础,进一步优化高负荷活性污泥法的工艺参数。

参考文献 (23)

返回顶部

目录

/

返回文章
返回